
Unlocking the Power
of Property-Based Testing

Merlin Pahič

Example-based testing (conventional unit testing)

Unit tests are commonly written this way.

Programmer defines expected outputs/behaviour for specific inputs.

Challenging to come up with examples covering every edge case.

def test_reversing_string():

assert reverse("abc") == "cba"

def test_reversing_empty_string():

assert reverse("") == ""

What is Property-Based Testing?

Programmers specify properties: general truths or invariants that should hold for
all inputs, or under certain conditions.

Inputs are automatically generated – tests run hundreds or thousands of times.

@given(strategies.text())

def test_reversing_all_the_strings(s):

assert reverse(reverse(s)) == s

Running a property-based test

When a test fails, the input used may be simplified (“shrunk”) to ease debugging.

Generate input

Check property

Passing testFailing test

Shrink input

Input generation

Inputs are generated randomly but not uniformly to cover edge cases.

Specify required inputs as “generators” or arbitraries”,
e.g. string, real number, list of integers

Generated values include typical edge cases:

● Empty string, non-ASCII characters
● 0, 1, -1, ± Infinity, NaN
● Lists of various lengths, including duplicate items.

Generators can be combined to produce more complex data.

Each test run uses a specific random seed to allow reproducing any failures.

Properties

We can consider properties as invariants.

● What holds true across (a class of) inputs?
● What does not change after applying the function under test?

But anything can be a property.

for all (x, y, …)
[satisfying precondition(x, y, …)]
predicate(x, y, …) evaluates to true

E.g. given two strings (or lists) a and b, len(a + b) == len(a) + len(b)

Finding properties

Distributivity: len(a + b) == len(a) + len(b) (many other transformations)

Commutativity: a + b == b + a

● image.flipX().flipY() == image.flipY().flipX()
● data.filter(…).sort() == data.sort().filter(…)

Associativity: (a + b) + c == a + (b + c)

Invertible functions

● reversing a string, flipping an image
● serialization, encryption, lossless compression, undo/redo

Idempotency: sort(x) == sort(sort(x))

Libraries are available for most languages
Language Property-based testing library License
JavaScript/TypeScript fast-check MIT
Python Hypothesis MPL 2.0
Rust Proptest Apache 2.0, MIT
Go Rapid MPL 2.0
PHP Eris MIT
C#/.NET FsCheck BSD-3-Clause
Java/JUnit5 jqwik EPL 2.0
Scala ScalaCheck BSD-3-Clause
Kotlin Kotest-property Apache 2.0
C theft ISC
C++ RapidCheck BSD-2-Clause
Swift SwiftCheck MIT
Haskell QuickCheck BSD-3-Clause
Elm elm-explorations/test BSD-3-Clause

Thank you!

Thanks for listening.

Now’s the time for any questions you may have.

