
BLE Service Discovery
with Zephyr

Florian Limberger
FOSDEM 2025 Brussels

Insights and Pitfalls

@flimberger

Florian Limberger

Senior Embedded Systems Engineer

● Embedded Linux
● Real-time systems
● Zephyr Neophyte

2

Florian Limberger

https://github.com/flimberger
https://www.linkedin.com/in/florian-limberger-ba94a8281/

● BLE Basics
○ Protocol Stack
○ GATT Protocol

● BLE in Zephyr
○ API
○ Tools

3

Agenda

Terminology Clarification

Bluetooth does not use Host and Client terminology

● Host → Central Device
● Client → Peripheral Device

4

Bluetooth Low Energy: General Terminology

● Central Device
○ Controls the connection
○ (Comparatively) powerful device
○ Less resource constrained
○ Mobile phones, Laptops, …

● Peripheral Device
○ resource constrained
○ potentially low-cost, high-volume

5

Images: https://publicdomainvectors.org/

https://publicdomainvectors.org/

How does BLE work?

The spec is huge: Core v5.4 alone has 3112 pages!

Protocol Stack:

● L2CAP (Logical Link Control and Adaptation Layer Protocol)
● HCI (Host Controller Interface)
● GAP (Generic Access Profile)
● ATT (Attribute Protocol)
● GATT (Generic Attribute Protocol)

Focus on the Generic Attribute (GATT) protocol:

● “Application Layer”
● Usual abstraction layer for application developer
● Peripheral Device is usually the server
● Central Device is usually the client

6

● UUIDs are used everywhere
○ Type information
○ Object identity
○ …

● 128-bit are kind of big

Solution: Objects defined in the standard use a 16-bit or 32-bit
portion to represent a full UUID

xxxxxxxx-0000-1000-8000-00805F9B34FB

The Bluetooth SIG loves UUIDs

7

ATT: Attribute Protocol

● Client-server protocol
● Provides access to values via 16-bit handle
● Attribute data:

● Basic operations
○ Read: client receives a value
○ Write: client sends a value
○ Notify: client instructs server to send updates
○ Indicate: client instructs server to send updates, and requires each

update to be acknowledged by the client

8

Handle Type Value Permissions

GATT: Generic Attribute Protocol

● Services
○ Identified by UUID
○ Protected by permissions
○ Potentially multiple

characteristics providing data

● Characteristics
○ “Container” for values
○ Identified by UUID
○ Metadata:

Client Characteristic Configuration Descriptor (CCCD)

9

Service

Characteristic
Value

Characteristic
Value

● Built on ATT attributes
○ Services and Characteristics are stored as big list of attributes

● Data is accessed via ATT operations

A mapping between ATT handles and GATT UUIDs is required

● Mapping may differ between devices or sessions
● Mapping may be cached for efficiency

○ Not implemented by Zephyr

GATT Service Discovery

10

BLE Central Devices with Zephyr

Just enable the BLE Central module in prj.conf:

That’s it, we’re ready to go!

11

CONFIG_BT=y

CONFIG_BT_CENTRAL=y

CONFIG_BT_GATT_CLIENT=y

General Structure: Startup

12

 1 int main(void) {
 2 bt_enable(NULL); /* synchronous for simplicity */
 3 bt_le_scan_start(BT_LE_SCAN_PASSIVE, on_device_scanned);
 4 k_sleep(K_FOREVER);
 5 }
 6
 7 void on_device_scanned(const bt_le_addr_t *addr, /* omitted */) {
 8 bt_le_scan_stop();
 9 struct bt_conn *conn;
10 bt_conn_le_create(addr, BT_CONN_LE_CREATE_CONN,
11 BT_LE_CONN_PARAM_DEFAULT, &conn);
12 }

General Structure: Callbacks

13

 1 BT_CONN_CB_DEFINE(conn_cbs) = {
 2 .connected = on_connected,
 3 .disconnected = on_disconnected,
 4 };
 5
 6 void on_connected(struct bt_conn *conn, uint8_t err) {
 7 /* start service discovery */
 8 }
 9
10 void on_connected(struct bt_conn *conn, uint8_t err) {
11 /* clean up */
12 }

Service Discovery in Zephyr

● Set up parameters and callback
● Call the Zephyr BLE stack
● Callback is called from the BLE RX thread for

matching conditions

While it sound simple and straightforward,
the samples are lacking in this regard.

14

The Zephyr GATT API

15

 1 int bt_gatt_discover(struct bt_conn *conn,
 2 struct bt_gatt_discover_params *params);
 3
 4 struct bt_gatt_discover_params {
 5 const struct bt_uuid *uuid;
 6 bt_gatt_discover_func_t func;
 7 union {
 8 struct { /* 3 fields omitted */ } _included;
 9 uint16_t start_handle;
10 };
11 uint16_t end_handle;
12 uint8_t type;
13 /* 2 more omitted fields */
14 };

The Zephyr GATT API (cont’d)

16

 1 typedef uint8_t (*bt_gatt_discover_func_t)(struct bt_conn *conn,
 2 struct bt_gatt_attr *attr,
 3 struct bt_gatt_discover_params
 4 *params);
 5
 6 struct bt_gatt_attr {
 7 const struct bt_uuid *uuid;
 8 bt_gatt_attr_read_func_t read;
 9 bt_gatt_attr_write_func_t write;
10 void *user_data;
11 uint16_t handle;
12 uint16_t perm;
13 };

17

 1 int discover_primary_services(struct bt_conn *conn) {
 2 /* set up svc_discover_params */
 3 return bt_gatt_discover(conn,
 4 &svc_discover_params);
 5 }
 6

 7 int discover_characteristics(struct bt_conn *conn) {
 8 /* set up chrc_discover_params */
 9 return bt_gatt_discover(conn,
10 &chrc_discover_params);
11 }
12

13 void discover_services(struct bt_conn *conn) {
14 if (!discover_primary_services(conn)) {
15 discover_characteristics(conn);
16 }
17 }

Apparently linear code may be actually
asynchronous

Pitfalls with BLE Central Devices in Zephyr

● Only API documentation and example code, no actual
explanations

● Examples are few and rather simplistic
○ no multi-service discovery
○ no optional services
○ no interdependencies

● The Bluetooth subsystem is big and complex
○ Most of the Bluetooth APIs are asynchronous by default
○ Multithreading (e.g. callbacks called from RX thread)
○ Call-limitations, e.g. cannot call a function from interrupt, like a

timer

18

● Use the the source, Luke!
○ The code describes what will happen
○ Doxygen rendering is suboptimal

● Use an event loop for interaction with
other components
○ Simplifies concurrency issues
○ Prevents problems from call restrictions

Hints for being productive

19

Portability

Demo code works out of the box without board-specific application code
on:

● Nordic Semiconductor nRF52833 DK
● Infineon Technologies AIROC CYW920829M2EVK

20

Disclaimer: Tested only simple applications without power saving features

Tools

21

● Emulator support:
○ qemu_x86 target

■ Needs the btproxy utility
■ Run with west build -b qemu_x86 -t run

○ native simulator (native_sim)
■ Run with sudo ./build/zephyr/zephyr --bt-dev=hci0

More information:
https://docs.zephyrproject.org/latest/connectivity/bluetooth/bluetooth-tools.html#runn
ing-on-qemu-or-native-sim

https://docs.zephyrproject.org/latest/connectivity/bluetooth/bluetooth-tools.html#running-on-qemu-or-native-sim
https://docs.zephyrproject.org/latest/connectivity/bluetooth/bluetooth-tools.html#running-on-qemu-or-native-sim

Where to go from here?

● Service Discovery Demo Project (contains a Central Device):
https://github/com/inovex/talk-zephyr-ble-service-discovery

● Nordic Semiconductor has a great introduction:
https://academy.nordicsemi.com/courses/bluetooth-low-energy-
fundamentals/

● Check out the specification:
○ https://www.bluetooth.com/specifications/specs/
○ https://www.bluetooth.com/specifications/assigned-numbers/

● Tinker with BLE devices from your phone:
https://www.nordicsemi.com/Products/Development-tools/nrf-c
onnect-for-mobile

22

https://github/com/inovex/talk-zephyr-ble-service-discovery
https://academy.nordicsemi.com/courses/bluetooth-low-energy-fundamentals/
https://academy.nordicsemi.com/courses/bluetooth-low-energy-fundamentals/
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/assigned-numbers/
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile

Thank you!

23

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

● founded in 1999
● 500+ employees
● 8 offices across

Germany

Florian Limberger

Senior Embedded Engineer

florian.limberger@inovex.de

www.inovex.de

Visit the Zephyr table
(Building K, Level 1) to chat!

Join us on Discord:
https://chat.zephyrproject.org/

Motivation

Recent project: Implement the Proximity Profile on nRF52833/nRF52840

● Link Loss Service
● optional, either both or none

○ Immediate Alert Service
○ Tx Power Service

● Battery Service

24

Using the Zephyr GATT API

25

 1 static struct bt_gatt_discover_params global_params;
 2 static uint16_t global_handle;
 3
 4 int discover(struct bt_conn *conn) {
 5
 6 global_params.uuid = MY_SERVICE_UUID;
 7 global_params.func = my_discover_func;
 8 global_params.start_handle = BT_ATT_FIRST_ATTRIBUTE_HANDLE;
 9 global_params.end_handle = BT_ATT_LAST_ATTRIBUTE_HANDLE;
10 global_params.type = BT_GATT_DISCOVER_PRIMARY;
11
12 return bt_gatt_discover(conn, &global_params);
13 };

All example code is available on GitHub

https://github/com/inovex/talk-zephyr-ble-service-discovery

Using the Zephyr GATT API (cont’d)

26

 1 uint8_t my_discover_func(struct bt_conn *conn, struct bt_gatt_attr *attr,
 2 struct bt_gatt_discover_params *params) {
 3

 4 if (attr == NULL) { return BT_GATT_ITER_STOP; } /* done */
 5

 6 if (!bt_uuid_cmp(&global_params.uuid, MY_SERVICE_UUID) {
 7

 8 global_params.uuid = MY_CHARACTERISTIC_UUID;
 9 global_params.start_handle = attr->handle + 1;
10 global_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
11 bt_gatt_discover(conn, &global_params);
12

13 } else if (!bt_uuid_cmp(&global_params.uuid, MY_CHARACTERISTIC_UUID) {
14 global_handle = bt_gatt_attr_value_handle(attr);
15 }
16 return BT_GATT_ITER_STOP;
17 };

All example code is available on GitHub

https://github/com/inovex/talk-zephyr-ble-service-discovery

Handling Multiple Services Gracefully

27

 static struct bt_gatt_discover_params global_params;
 static uint16_t global_handle;

 int discover(struct bt_conn *conn) {

- global_params.uuid = MY_SERVICE_UUID;
 global_params.func = my_discover_func;
 global_params.start_handle = BT_ATT_FIRST_ATTRIBUTE_HANDLE;
 global_params.end_handle = BT_ATT_FIRST_ATTRIBUTE_HANDLE;
 global_params.type = BT_GATT_DISCOVER_PRIMARY;

 return bt_gatt_discover(conn, &global_params);
 };

All example code is available on GitHub

https://github/com/inovex/talk-zephyr-ble-service-discovery

Handling Multiple Services Gracefully (cont’d)

28

 1 uint8_t my_discover_func(struct bt_conn *conn, struct bt_gatt_attr *attr,
 2 struct bt_gatt_discover_params *params) {
 3 if (attr == NULL) { return BT_GATT_ITER_STOP; } /* done */
 4 uint8_t ret = BT_GATT_ITER_CONTINUE;
 5

 6 if (params->type == BT_GATT_DISCOVER_PRIMARY) {
 7 struct bt_gatt_service_val *svc = (struct bt_gatt_service_val
*)attr->user_data;
 8 if (!bt_uuid_cmp(svc->uuid, MY_SERVICE_UUID) {
 9 ret = BT_GATT_ITER_STOP;
10 } else if (!bt_uuid_cmp(svc->uuid, OTHER_SERVICE_UUID) { /* … */ }
11 if (ret == BT_GATT_ITER_STOP) {
12 global_params.start_handle = attr->handle + 1;
13 global_params.end_handle = svc->end_handle;
14 global_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
15 }

All example code is available on GitHub

https://github/com/inovex/talk-zephyr-ble-service-discovery

Handling Multiple Services Gracefully (cont’d)

29

 1 } else if (params->type == BT_GATT_DISCOVER_CHARACTERISTIC) {
 2 struct bt_gatt_chrc *chrc = (struct bt_gatt_chrc *)attr->user_data;
 3 if (!bt_uuid_cmp(chrc->uuid, MY_CHARACTERISTIC_UUID) {
 4 global_handle = bt_gatt_attr_value_handle(attr);
 5 ret = BT_GATT_ITER_STOP;
 6 } else if (!bt_uuid_cmp(chrc->uuid, OTHER_CHARACTERISTIC_UUID) { /* … */ }
 7 if (ret == BT_GATT_ITER_STOP) {
 8 global_params.uuid = NULL;
 9 global_params.start_handle = global_params.end_handle + 1;
10 global_params.end_handle = BT_ATT_LAST_ATTRIBUTE_HANDLE;
12 global_params.type = BT_GATT_DISCOVER_PRIMARY;
13 }
14 }
15

16 if (ret == BT_GATT_ITER_STOP) { bt_gatt_discover(conn, &global_params); }
17 return ret;

All example code is available on GitHub

https://github/com/inovex/talk-zephyr-ble-service-discovery

Recap

● Discover known services by their UUID
○ Simple to implement
○ May be slow for multiple services, as the descriptors have to be

traversed for each service
○ Unnecessary traversals for missing optional services

● Iterate over all primary services
○ Traverse all attributes only once
○ More complicated code and state tracking

30

31

How did we solve our issues?

A couple of observations:

● We monitor disconnection events already
● We looked only at RSSI, not the Tx Power
● Immediate Alert Service is very simple

Conclusion: Do not implement Proximity Profile, just put everything into
our own non-standard service which is discovered simply by UUID ;)

Disclaimer: During creation of the demos for this presentation I learned how to do it properly!

