
Exa-Tracer

Tracing HPC Supercomputers with

LTTng

FOSDEM 2025

1

What is Tracing?

• Instrumentation of code:

• Static insertion & dynamically enabled,

• Fully dynamic.

• Collect or react to a sequence of events

emitted during code execution:

• Minimal intrusiveness on the workload,

• Low-overhead is key.

• Can be compared to logging, except that it

needs to handle a high event throughput

(millions events per second).

2

Why Tracing?

• Identify root cause of:

• Heisenbugs

• Hard to reproduce issues,

• Issues that disappear under observation.

• Performance bottlenecks

• Protocol, API, ABI specification violation

• Monitor a program behavior and react when

detecting:

• performance outliers,

• errors (e.g. application core dump).

3

Tracing and Profiling

• Profiling and Tracing are complementary

diagnostic techniques

• Profiling is good at identifying active usage of

resources

• Tracing excels at identifying resources misuse

(e.g. wait time, threads blocked on

synchronization or I/O)

4

LTTng Historic Focus

• LTTng (2005-) [1]:

• Telecom

• Embedded/real-time systems

• Large multi-core systems

• Linux kernel and applications

• Common Trace Format [2] (CTF)

• Developed in collaboration with trace

analysers

• Babeltrace [3]

• Trace Compass [4]

5

Common Trace Format: 1.8 (2012)

• Domain specific language metadata

• Structured type system

• Can be defined statically or dynamically

• Clock descriptions for correlation between

traces

• Binary trace format

• Compact

• Fast to produce

• Easily generated by software and hardware

components

6

Common Trace Format: 2 (2024)

• JSON metadata

• Superset of CTF 1.8 type system

• New built-in types

• User defined metadata and extensions

• Binary trace format

• Superset of CTF 1.8 trace format

• Support the new types

7

Babeltrace

• Trace reader:

o Convert, filter, seek and analyse traces

• Plugin system

o Allow supporting arbitrary trace formats

o Allow adding custom phases (e.g. new

analysis, filtering)

o Built-in plugins for CTF 1.8 and 2

• C/C++ library API

• Python bindings

• Command line interface

8

Trace Compass

• Support CTF and other trace formats

• Plugin system for views and analysis phases

• Many built-in views and analysis

• Linux kernel

• Disk I/O

• Scheduler

• Hardware resources (e.g. CPU, IRQ)

• And many more

• Critical path analysis

• Log correlation with traces

• Network packet correlation
9

Trace Compass Kernel View

10

LTTng Main Features
• Low-overhead

• Fast per-CPU ring buffer

• ~100 ns/event

• User-configurable dynamic runtime filters

• ~50 ns/evaluation

• Event streaming (disk or network)

• Snapshot mode

• Flight recorder in memory

• Triggers

• Event notifications with payload capture

• Session rotation

11

LTTng Trace Correlation

• Correlation across tracing domains:

• Linux kernel

• Userspace

• Correlation across hosts

• based on NTP/PTP time synchronization

OR

• realign traces at post-processing based on

network communications

12

HPC Collaboration: ANL

• Argonne National Laboratory

• THAPI (developed by ANL) [5,6]

• Based on LTTng and Babeltrace

• Instrumentation of OpenCL, Level Zero,

Cuda Runtime, HIP, OMPT.

• Developed for tracing Aurora

• 10 624 nodes

• 9 264 128 cores

• Capture millions of events/s per node

• Run for hours with tracing enabled

13

HPC Collaboration: LLNL

• Lawrence Livermore National Laboratory

• Exa-Tracer [7] (developed by EfficiOS in

collaboration with AMD)

• Instrumentation of:

• ROCm (HIP, HSA, ROC-TX, GPU kernels

dispatch)

• OpenMPI, CrayMPI.

• Developed for tracing El Capitan:

• 11 000 nodes

• 11 039 616 cores

14

HPC Collaboration: Polytechnique Montréal

• École Polytechnique de Montréal

• Trace Compass

• Trace analyser and visualizer

• Working on improvement of scalability to

large traces (100 GB+)

• Reduce reaction time (interactivity)

• Reduce analysis delay

15

HPC Software Stack Diagram

16

Exa-Tracer

• Targeting MPI, HSA, HIP, ROC-TX and GPU

kernels dispatches

• Header files parsed with Clang

• For MPI, HSA and HIP

• Instrumentation wrappers generated

automatically

• HIP/HSA instrumented via interception tables

• MPI and ROC-TX instrumented with

LD_PRELOAD symbols override

• GPU kernels instrumented using rocprofiler-sdk

17

Babeltrace Text Output (HPC)

18

Babeltrace Text Output (HPC)

19

[14:32:13.385016917] ; Timestamp
(+0.006906255) ; Relative in time (ns) to the previous event
epycamd ; Hostname
hip:hipMalloc_entry: ; provider:tracepoint
; Context fields:
{ cpu_id = 17 }, ; CPU on which the event was emitted
{ ... _app_MPI_rank = { 1 } }, ; MPI rank on which the event was emitted
; Event payload:
{ lttng_thread_id = 0, ; Unique thread ID (not OS)
lttng_local_id = 0, ; Unique per-thread ID for entry/exit correlation
ptr = 0x7FFD84572790, ; Pointer filled with hipMalloc() allocation
size = 400 } ; Asked size of allocation hipMalloc()

[14:32:13.783156521] ; Timestamp
(+0.000001270) ; Relative in time (ns) to the previous event
epycamd ; Hostname
mpi:exit_MPI_Send: ; provider:tracepoint
; Context fields:
{ cpu_id = 2 }, ; CPU on which the event was emitted
{ ... _app_MPI_rank = { 0 } }, ; MPI rank on which the event was emitted
; Event payload:
{ lttng_thread_id = 0, ; Unique thread ID (not OS)
lttng_local_id = 3, ; Unique per-thread ID for entry/exit correlation
lttng_has_ret = 1, ; Did the function returns (no exception)?
lttng_ret = 0 } ; Returned value (valid only if lttng_has_ret = 1)

Trace Compass (HPC)

20

Challenges of Tracing HPC Clusters

• Large volume of data

• Execution overhead

• Memory footprint and bandwidth

• I/O throughput

• Storage

• Waiting time between trace generation and

visualisation of analysis results

• Interactivity of trace visualisation at scale

(100GB+ traces)

• Precision of trace correlation across hosts

21

Future Work (Instrumentation)

• Improve instrumentation coverage granularity:

• API annotations

• Function arguments input/output/in-out

• Tagged unions

• SIDE [8]

• ABI defining an extensible type system for

instrumentation

• Support nested compound types

• Runtime and OS agnostic

22

Future Work (Trace Analysis)

• Improve interactivity of Trace Compass for

large traces

• State History Scalability

• Reduce delay between production and

availability of analysis results

• Partition trace analysis

• Node-local vs Global interactions

• Pipeline trace analysis

23

References

1. https://lttng.org/

2. http://diamon.org/ctf/

3. https://babeltrace.org/

4. https://eclipse.dev/tracecompass/

5. https://github.com/argonne-lcf/THAPI

6. https://tracingsummit.org/ts/2023/files/Heterogeneous_Appencourt_Videau.pdf

7. https://git.efficios.com/deliverable/exatracer.git

8. https://github.com/efficios/libside

24

https://lttng.org/
http://diamon.org/ctf/
https://babeltrace.org/
https://eclipse.dev/tracecompass/%E2%80%8B
https://github.com/argonne-lcf/THAPI
https://tracingsummit.org/ts/2023/files/Heterogeneous_Appencourt_Videau.pdf
https://git.efficios.com/deliverable/exatracer.git
https://github.com/efficios/libside

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

