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What is Tracing?

• Instrumentation of code:

• Static insertion & dynamically enabled,

• Fully dynamic.

• Collect or react to a sequence of events

emitted during code execution:

• Minimal intrusiveness on the workload,

• Low-overhead is key.

• Can be compared to logging, except that it 

needs to handle a high event throughput

(millions events per second).
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Why Tracing?

• Identify root cause of:

• Heisenbugs

• Hard to reproduce issues,

• Issues that disappear under observation.

• Performance bottlenecks

• Protocol, API, ABI specification violation

• Monitor a program behavior and react when 

detecting:

• performance outliers,

• errors (e.g. application core dump).
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Tracing and Profiling

• Profiling and Tracing are complementary 

diagnostic techniques

• Profiling is good at identifying active usage of 

resources

• Tracing excels at identifying resources misuse

(e.g. wait time, threads blocked on 

synchronization or I/O)
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LTTng Historic Focus

• LTTng (2005-) [1]:

• Telecom

• Embedded/real-time systems

• Large multi-core systems

• Linux kernel and applications

• Common Trace Format [2] (CTF)

• Developed in collaboration with trace 

analysers

• Babeltrace [3]

• Trace Compass [4]
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Common Trace Format: 1.8 (2012)

• Domain specific language metadata

• Structured type system

• Can be defined statically or dynamically

• Clock descriptions for correlation between 

traces

• Binary trace format

• Compact

• Fast to produce

• Easily generated by software and hardware 

components
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Common Trace Format: 2 (2024)

• JSON metadata

• Superset of CTF 1.8 type system

• New built-in types

• User defined metadata and extensions

• Binary trace format

• Superset of CTF 1.8 trace format

• Support the new types
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Babeltrace

• Trace reader:

o Convert, filter, seek and analyse traces

• Plugin system

o Allow supporting arbitrary trace formats

o Allow adding custom phases (e.g. new 

analysis, filtering)

o Built-in plugins for CTF 1.8 and 2

• C/C++ library API

• Python bindings

• Command line interface
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Trace Compass

• Support CTF and other trace formats

• Plugin system for views and analysis phases

• Many built-in views and analysis 

• Linux kernel

• Disk I/O

• Scheduler

• Hardware resources (e.g. CPU, IRQ)

• And many more

• Critical path analysis

• Log correlation with traces

• Network packet correlation
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Trace Compass Kernel View
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LTTng Main Features
• Low-overhead

• Fast per-CPU ring buffer

• ~100 ns/event

• User-configurable dynamic runtime filters

• ~50 ns/evaluation

• Event streaming (disk or network)

• Snapshot mode

• Flight recorder in memory

• Triggers

• Event notifications with payload capture

• Session rotation
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LTTng Trace Correlation

• Correlation across tracing domains:

• Linux kernel

• Userspace

• Correlation across hosts

• based on NTP/PTP time synchronization 

OR

• realign traces at post-processing based on 

network communications
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HPC Collaboration: ANL

• Argonne National Laboratory 

• THAPI (developed by ANL) [5,6]

• Based on LTTng and Babeltrace

• Instrumentation of OpenCL, Level Zero, 

Cuda Runtime, HIP, OMPT.

• Developed for tracing Aurora

• 10 624 nodes

• 9 264 128 cores

• Capture millions of events/s per node

• Run for hours with tracing enabled
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HPC Collaboration: LLNL

• Lawrence Livermore National Laboratory

• Exa-Tracer [7] (developed by EfficiOS in 

collaboration with AMD)

• Instrumentation of:

• ROCm (HIP, HSA, ROC-TX, GPU kernels 

dispatch)

• OpenMPI, CrayMPI.

• Developed for tracing El Capitan:

• 11 000 nodes

• 11 039 616 cores
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HPC Collaboration: Polytechnique Montréal

• École Polytechnique de Montréal

• Trace Compass

• Trace analyser and visualizer

• Working on improvement of scalability to 

large traces (100 GB+)

• Reduce reaction time (interactivity)

• Reduce analysis delay
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HPC Software Stack Diagram
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Exa-Tracer

• Targeting MPI, HSA, HIP, ROC-TX and GPU 

kernels dispatches

• Header files parsed with Clang

• For MPI, HSA and HIP

• Instrumentation wrappers generated 

automatically

• HIP/HSA instrumented via interception tables

• MPI and ROC-TX instrumented with 

LD_PRELOAD symbols override

• GPU kernels instrumented using rocprofiler-sdk
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Babeltrace Text Output (HPC)
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Babeltrace Text Output (HPC)
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[14:32:13.385016917]            ; Timestamp
(+0.006906255)                  ; Relative in time (ns) to the previous event
epycamd ; Hostname
hip:hipMalloc_entry:            ; provider:tracepoint
; Context fields:
{ cpu_id = 17 },                ;   CPU on which the event was emitted
{ ...  _app_MPI_rank = { 1 } }, ;   MPI rank on which the event was emitted
; Event payload:
{ lttng_thread_id = 0,          ;   Unique thread ID (not OS)
lttng_local_id = 0,             ;   Unique per-thread ID for entry/exit correlation
ptr = 0x7FFD84572790,           ;   Pointer filled with hipMalloc() allocation
size = 400 }                    ;   Asked size of allocation hipMalloc()

[14:32:13.783156521]            ; Timestamp
(+0.000001270)                  ; Relative in time (ns) to the previous event
epycamd ; Hostname
mpi:exit_MPI_Send:              ; provider:tracepoint
; Context fields:
{ cpu_id = 2 },                 ;   CPU on which the event was emitted
{ ... _app_MPI_rank = { 0 } },  ;   MPI rank on which the event was emitted
; Event payload:
{ lttng_thread_id = 0,          ;   Unique thread ID (not OS)
lttng_local_id = 3,             ;   Unique per-thread ID for entry/exit correlation
lttng_has_ret = 1,              ;   Did the function returns (no exception)?
lttng_ret = 0 }                 ;   Returned value (valid only if lttng_has_ret = 1)



Trace Compass (HPC)
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Challenges of Tracing HPC Clusters

• Large volume of data

• Execution overhead

• Memory footprint and bandwidth

• I/O throughput

• Storage

• Waiting time between trace generation and 

visualisation of analysis results

• Interactivity of trace visualisation at scale 

(100GB+ traces)

• Precision of trace correlation across hosts
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Future Work (Instrumentation)

• Improve instrumentation coverage granularity:

• API annotations

• Function arguments input/output/in-out

• Tagged unions

• SIDE [8]

• ABI defining an extensible type system for 

instrumentation

• Support nested compound types

• Runtime and OS agnostic
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Future Work (Trace Analysis)

• Improve interactivity of Trace Compass for 

large traces

• State History Scalability

• Reduce delay between production and 

availability of analysis results

• Partition trace analysis

• Node-local vs Global interactions

• Pipeline trace analysis
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