
What if Log4Shell were
to happen today?

Piotr Karwasz, VP Logging, Apache Software Foundation: pkarwasz@apache.org
Piotr Karwasz, freelancer: piotr@copernik.eu

mailto:pkarwasz@apache.org
mailto:piotr@copernik.eu

Who are we?
Piotr Karwasz:

● 2000: OSS aficionado.
● 2009: Ph.D. in Mathematics (UHP, Nancy).
● Father of three daughters:

Mimi, Lili and Nati.
● 2017: I started my own IT company.
● 2022, January: start contributing to Log4j.
● 2022, July: Logging Services PMC member.
● 2024, March: ASF member.
● 2024, June: Logging Services PMC chair.

https://oss.copernik.eu/
https://linkedin.com/in/ppkarwasz/

● One of the logging libraries of Apache

Logging Services, together with

Log4cxx, Log4Net, Log4j Kotlin, Log4j Scala.

● 2001: Ceki Gülcü creates Log4j 1

● 2005-2011: Ceki Gülcü starts working on

SLF4J/Logback successor

● 2014: Log4j 2 API/Core is published by:

G. Gregory, R. Goers, R. Popma, M. Sicker

and others

● 2015: end-of-life of Log4j 1

https://logging.apache.org/log4j/2.x/index.html

https://oss.copernik.eu/
https://www.linkedin.com/in/ppkarwasz/
https://logging.apache.org/log4j/2.x/index.html

Remember,
remember,
the 9th of December!
(2021)

Source: Devianart

https://www.deviantart.com/papaosmubal/art/Guy-Fawkes-protest-mask-983793563

CVE-2021-44228 (Log4Shell)
“An attacker who can control log messages or log

message parameters can execute arbitrary code

loaded from LDAP servers…”—NVD Database

Ingredients:

1. (Pluggable) lookups: ${sys:user.name},

${jndi:java:comp/env/value}

2. (Pluggable) message patterns: %m (prints log

message), %d (prints date), %p (prints log

level), etc.

Order of evaluation was inverted:

1. Configured pattern:
%d ${sys:user.name}: %m

2. Message pattern evaluated:
2024-02-01 ${sys:user.name}: Hello
FOSDEM!

3. Lookups evaluated:
2024-02-01 piotr: Hello FOSDEM!

This flow was reported in LOG4J2-905 (November

2014), classified as feature and a new configuration

option was added to disable it.

https://issues.apache.org/jira/browse/LOG4J2-905

Timeline of 2.15.0 release
November 24th, 7:51 UTC:

Chen Zhaojun reports the vulnerability

November 24th, 17:30 UTC:
Team discusses the report. It is bad.

November 25th: Thanksgiving!

November 26th, 4:00 UTC:
CVE number requested.

November 30th:
Patch supplied (public PR).

December 5th:
Patch amended, reviewed and merged.

December 7th:

Release vote for 2.15.0 RC1 (72 hours)

December 9th:

Users notice the PR solves a security issue.

Problem with RC1, RC2 vote (7 hours)

Version 2.15.0 released with 7 votes.

Note: Release 2.15.0 was the first of 4 releases

that patched a total of 4 CVEs and ended on

December 28th with the 2.17.1 release.

Source: Sonatype Log4j Updates and Vulnerabilities

https://www.sonatype.com/resources/log4j-vulnerability-resource-center

Source: Azul State of Java 2025 Report

Apache Logging PMC:

● 15 days from report to release
● 11 days to create/merge patch (-4 days for Thanksgiving?)
● 9 days of public patch exposure
● 2 days to prepare a release candidate
● 72 hours for the voting procedure

Users:

● 50% of users downloaded a patched version in 30 days (probably 3 times)
● 20% of users downloaded a vulnerable version 3 years after the CVE.

Timeline summary

Apache Log4j Reactions

How can we do better?

Lessons learned
Supply chain problems:

● Tests are flaky (slow down release),

● Site generation is slow,

● Release procedure is complex,

● Keep dependencies up-to-date

(and tell about it).

Too many bundled features:

learn to say NO (intelligently).

Documentation problems:

● Is hard to find,

● Is not complete, some obscure features are

not documented,

● Does not contain best practices.

Helped solving the problems:

● Tidelift supports Log4j since January 2023,

● German Sovereign Tech Agency with a grant
to Christian Grobmeier, Volkan Yazıcı and me,
since September 2023.

https://tidelift.com/
https://www.sovereign.tech

Making a release
Before, a Release Manager had to:

● Select the changes for a new release,

● Run all the test suites,

● Build the website,

● Sign the release,

● Prepare the release notes,

● Handle the voting procedure,

● Release the new version.

Now:

● Select the changes for a new release,

● Prepare the release notes,

● Handle the voting procedure,

● Release the new version.

Future: Apache Trusted Releases Platform

will also handle voting and releasing the

artifacts for us.

Key release elements
● Can we trust automation?

ASF policy requires the RM to create the binaries.

Reproducible Builds Project:

All our Java builds are reproducible!

● Dependabot: upgrades dependencies since 2017.

We accept those upgrades automatically if tests pass.

● GitHub Actions is the CI/CD engine we use.

● Lots of Maven plugins and test libraries

that don’t get credit enough!

https://reproducible-builds.org/
https://github.com/dependabot
https://docs.github.com/en/actions

Testing suite
In December 2021 site generation took

hours (rebuild for each Maven Site

module).

September 2023:

● Sequential tests,

● Only unit/integration tests,

● 30-40% of test runs failed for no

reason,

● Build times up to 60 minutes.

September 2024:

● Parallel tests,

● Dynamic tests (fuzzing),

● 8% of test runs fails (21% flaky),

● Build + deploy around 30 minutes.

● Searchable build failure database:

Gradle Develocity

https://gradle.com/develocity/

Securing optional features
Handling features is hard:

● Features bring users,

● Features bring security exposure,

● OSS is a meritocracy:

Maintainers have the right to their

features in exchange for their work.

● Log4j created a 3.x branch in 2018 to

split each optional dependency, including

JNDI into its own artifact.

Completed: IX 2024

● Removal of seldom downloaded artifacts.

● Ramp-up program:

We accept new modules with a proven

user base and a maintainer. These

modules start as third-party.

Vulnerability reporting

Software Bill of Materials
For a library that does not include its
dependencies in the published JAR, an SBOM
has a very limited usage for vulnerability
handling.

Present:

● Publishing of SBOMs for all Log4j artifacts.
The dependency versions are just a
suggestion.

● Usage of SBOM links to point to a
machine-readable VDR.

● Features contributed back to
CycloneDX Maven Plugin 2.8.0

Near future:

● Compare information in our SBOM with

SBOMs of our dependencies.

● Enrich information in our SBOM with

information from dependency SBOMs.

● Download all VDR/VEX metadata from

dependency SBOMs.

Work with Christian Grobmeier:

https://github/sbom-enforcer/sbom-enforcer

https://github.com/CycloneDX/cyclonedx-maven-plugin
https://github/sbom-enforcer/sbom-enforcer

SBOMs future (?)
● Integration of SBOMs into

ecosystem-specific dependency

management systems.

Transparency Exchange API for:

● Automatically import VDR/VEX entries

from dependencies to stage VEX entries.

“Vulnerability Bot”

● Push our VDR, VEX and version

suggestions to consumers/dependents.

https://github.com/CycloneDX/transparency-exchange-api

Security through education
Logging is not always safe:

● Unstructured logging:

CWE-93 CRLF Injection

● Presence of sensitive information in logs:

CWE-215: SI in Debug Code

● Injection of {} Log4j formatting patterns:

String user = “root {}”;
String what = “login”;
log.(user + “failed to {}”, what);

● Reliable and secure transport.

Solutions:

● Rewrite of documentation website.

Learn from the source, not ChatGPT.

● Generation of reference from code:

Living documentation,

Developers can not forget.

● Provide best practices and tips:

The maintainers knowledge base was

mainly unwritten.

Tip: there will be an in-depth book by Christian

Grobmeier published by Manning.

https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/215.html
https://www.manning.com/

Future timeline
Day 0:

● Request a CVE number.
● Start a 72 hours consensus gathering period

for shorter vote.
● Establish private Git repo (INFRA).

Day 1:

● Propose “fallback” patch (that removes the
functionality).

Day 2:

● Optionally propose a better patch.

Day 5-6:

● Accept “fallback” patch if there is not

consensus on a better alternative.

● Prepare a release candidate

Day 6-7:

● Log4j consumers automatically test the

release candidate.

Day 7-9:

● Release and CVE announcement.

Apache Logging PMC:

● 15 7 days from report to release
● 11 3 days to create/merge patch
● 9 1 days of public patch exposure
● 2 days 1 hours to prepare a release candidate
● 72 24 hours for the voting procedure

Users:

● 20% of users downloaded a patched version before the end of the vote.
● 50% of users downloaded a patched version in 30 days

Future timeline summary

Q & A

https://logging.apache.org/

Thanks
My wife Agnieszka and my angels:

Milena, Liliana, Natalia

Apache Logging Services team:
C. Kozak, D. McColl, D. Psenner, G. Gregory,
J. Friedrich, J. Katariya, M. Sicker, R. Goers, R. Gupta,
R. Popma, R. Middleton, R. Grabowski, S. Deboy,
S. Webb and Th. Schöning.
See also https://logging.apache.org

Partners in crime (STF project):
Christian Grobmeier and Volkan Yazıcı

Financial supporters:
Tidelift and Sovereign Tech Fund

Remember about:

Source: XKCD

https://logging.apache.org/team-list.html
https://logging.apache.org
https://tidelift.com/
https://www.sovereigntechfund.de/
https://xkcd.com/2347/

