
Mathieu Desnoyers, EfficiOS

FOSDEM 2025
February 1 & 2, 2025
Brussels, Belgium

A New Cgroup 
cpu.max.concurrency 
Controller Interface File



February 1st, 2025 FOSDEM 2025 2

Current/Max CPU Number in Userspace
● Userspace Per-CPU data use-cases:

– Tracing ring buffers,
– Memory allocators

● tcmalloc, jemalloc,
● GNU C Library malloc(3),

– Caches (e.g. NPTL thread stack caches),
– Schedulers,
– Statistics counters.

● Userspace uses the observable number of CPUs to automatically scale the 
number of threads.



February 1st, 2025 FOSDEM 2025 3

Problem Context
● New machines with 512+ hardware threads (logical CPUs) 

bring interesting challenges:
– Memory footprint of user-space per-CPU data structures and
– Scaling the number of worker threads.

● The RSEQ per-memory-map concurrency IDs allow 
indexing user-space memory with indexes bounded by 
the number of concurrently running threads.
– upstreamed in Linux v6.3



February 1st, 2025 FOSDEM 2025 4

Current Approaches: cpuset(7)
● This provides memory use upper bound when limiting 

containers with cpusets (e.g. cpuset: 0-31),
● Cpusets are far from ideal to describe the constraints in a 

cloud-native way:
– those are bound to the machine topology,
– hard to compose containers expressed with cpuset constraints,
– tricky with big.LITTLE, P-core/E-core CPUs.



February 1st, 2025 FOSDEM 2025 5

Current Approaches: CPU Cgroups
● Allow limiting containers to a specified portion of time slice:

– e.g. cpu.max 2000 1000
– maximum 2000 µs per 1000µs slice
– 200% of CPU time

● Does not restrict migration, which meant it can result in either:
– 2 CPUs running the workload 100% of the time, or
– 200 CPUs running the workload 1% of the time.

● Cannot effectively restrict the number of concurrent CPUs that can be 
used by the cgroup.



February 1st, 2025 FOSDEM 2025 6

Discuss Proposal: cpu.max.concurrency
● Introduce a new “cpu.max.concurrency” interface file to 

the cpu controller, which defines the maximum number of 
concurrently running threads for the cgroup.

● Extend the Linux scheduler migration and load balancer to:
– track the number of CPUs concurrently used by the cgroup,
– constrain migration to the currently used set of cpus when the 

number of concurrently used CPUs reaches the maximum 
threshold.



February 1st, 2025 FOSDEM 2025 7

Additional Cgroups Data Structures
● Count of the number of threads in each runqueue 

belonging to the cgroup with per-CPU counters 
within each CPU cgroup.

● Count the total number of used CPUs in a global 
counter within the cgroup.

● Keep track of the set of used CPUs in a cpumask 
within the cgroup.



February 1st, 2025 FOSDEM 2025 8

ABI Error Handling (Limit Cases)
● If sched_setaffinity(2) or cpuset(7) are used within the 

cgroup to add a thread affinity constraint that would require 
the scheduler to go beyond concurrency limits (e.g. disjoint 
affinity set), fail with EINVAL.

● Decreasing cpu.max.concurrency to a value that would 
not have any task placement solution due to the current 
affinity or cpuset limits fails with EINVAL.

● Increasing cpu.max.concurrency should never fail.


	Limiting Memory Use of Userspace Per-CPU Data Structures in Containers
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

