Less overhead, strong isolation: Running containers in minimal specialized Linux VMs

Charalampos Mainas, Georgios Ntoutsos, Anastassios Nanos {cmainas,gntouts,ananos}@nubificus.co.uk

About us

- Young SME (inc. 2020) doing research in virtualization systems
- Involved in Research/Commercial and Open Source projects •
- Focus on systems software
 - Hypervisors and container runtimes Ο
 - Optimize application execution Ο
 - Bring cloud-native concepts to Edge / Far-Edge devices Ο

FOSDEM 2025, Feb 1-2, Brussels

About us

- Team of Researchers
 & engineers
- Based in the UK & GR

Apostolos Giannousas Software Engineer agian@nubificus.co.uk

llias Lagomatis Systems Software Engineer ilago@nubificus.co.uk

Anastassios (Tassos) Nanos Systems Researcher ananos@nubis-pc.eu

Maria-Rafaella Gkeka Research Engineer mgkeka@nubificus.co.uk

Charalampos (Babis) Mainas Research Engineer cmainas@nubificus.co.uk

Georgios Ntoutsos Software & Systems Engineer gntouts@nubis-pc.eu

Maria Goutha Software Engineer mgouth@nubificus.co.uk

Panos Mavrikos Software Engineer / K8s pmavrikos@nubificus.co.uk

Kostis Papazafeiropoulos Systems Researcher papazof@nubis-pc.eu

FOSDEM 2025, Feb 1-2, Brussels

Overview

- Containers isolation
- Kata-containers
- Reverse the isolation boundaries
- Stripping down the Linux kernel
- Run containers over minimal Linux VMs
- Early evaluation

Containers: packaging and isolation

- The de-facto application packaging/deployment:
 - Lightweight
 - Fast spawn times
 - Easy to use
 - Rich ecosystem

Containers: packaging and isolation

- The de-facto application packaging/deployment:
 - Lightweight
 - Fast spawn times
 - Easy to use
 - Rich ecosystem
- Main isolation mechanisms:
 - Process-level isolation
 - Based on kernel mechanisms
 - Shared kernel

Sandboxing containers

- Provide an extra level of isolation
 - Container runs inside a sandbox
 - Interact with intermediate layer
 - Restricted access to host kernel
- Mechanisms:
 - Software-based
 - Hardware-assisted

FOSDEM 2025, Feb 1-2, Brussels

Sandboxing containers

- Provide an extra level of isolation
 - Container runs inside a sandbox
 - Interact with intermediate layer
 - Restricted access to host kernel
- Mechanisms:
 - Software-based
 - Hardware-assisted

HW-assisted sandbox

The case of Kata-containers

- Use of VMs as the additional layer
 - One VM per pod
 - Seamless integration
- Side effects
 - Spawn overhead
 - Storage / Memory footprint
 - Complicated stack

A closer look to Kata-containers

- Create a VM with:
 - Kata Linux kernel
 - Kata rootfs

A closer look to Kata-containers

- Create a VM with:
 - Kata Linux kernel
 - Kata rootfs
- Create Pod with sidecar containers

A closer look to Kata-containers

- Create a VM with:
 - Kata Linux kernel
 - Kata rootfs
- Create Pod with sidecar containers
- Create user container

What if we do the opposite?

Redrawing the isolation boundaries

FOSDEM 2025, Feb 1-2, Brussels

Urunc: The runc of unikernels*

- **CRI-compatible** runtime written in Go
- Extensible, easy to add support, without modifications for guest kernels & hypervisors
- Key differences
 - Spawns app directly inside the VM
 - Treats VMs as processes
 - One VM per container

Urunc: Comparison with other container runtimes

FOSDEM 2025, Feb 1-2, Brussels

Urunc: Integration with k8s

- Sidecar containers
 - Forward to generic container runtime
- Sandbox only the user container
 - Untrusted, rest of stack is trusted

FOSDEM 2025, Feb 1-2, Brussels

Demo: Containers over a Linux VM

Kata-containers' Linux kernel

- Default configuration
 - Cgroups
 - Namespaces
 - User management
 - o Seccomp
 - Device hotplug
 - o ACPI
 - Xtables
 - And many more..
- Specialization is vital for
 - Overhead/footprint
 - Performance
 - Security

Stripping down to the essentials

Kata Linux

- Generic LInux
 configuration
- Compatible with all applications
- Quite big

A lot of features are not required for an app

Stripping down to the essentials

Kata Linux

- Generic LInux
 configuration
- Compatible with all applications
- Quite big

A lot of features are not required for an app

Stripping down to the essentials

Kata Linux

- Generic LInux
 configuration
- Compatible with all applications
- Quite big

A lot of features are not required for an app

Not reinventing the wheel

- Linux is highly customizable
- Create a config specialized for an app
- Compatibility

Unikernels

- Specialized for one application
- Very small
- Hard to port

To provide compatibility, we end up with a Linux clone

Lupine: Linux in unikernel clothing

- Convert Linux to a unikernel
 - Strip-down Linux using configuration options
 - Patches to run app in kernel space
- Key findings
 - Small Linux kernels
 - Boot as fast as unikernels
 - System call overhead:
 - i. 4% macro benchmarks
 - ii. 40% microbenchmarks

Source: https://dl.acm.org/doi/10.1145/3342195.3387526

Create Linux kernels for a container

- Analyze user container
 - Identify requirements from the Linux kernel
- Create app-specific configuration
 - Starting from the bare minimum and adding up
- Analyze user input
 - Identify framework, dependencies, app language

Demo: Containers over Minimal Linux VMs

Early evaluation

- Measure size of kernel image
- Measure start time of container for each runtime
 - Combined with various guests for urunc
- Testbed:
 - CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
 - RAM: 376G

Kernel image size

- Targeting Nginx
 - Sizes in MiB
 - Lower is better
- Kernels:
 - Kata Linux v6.12.8
 - Unikraft v0.18.0
 - Unikraft v0.18.0 HTTP
 - Lupine Linux v4.0.0-rc1
 - Linux v6.12.8

Container start time

- Using Nginx
 - Start time in **ms**
 - Lower is better
- Runtimes/Guests
 - Runc
 - Kata
 - Urunc Unikraft
 - Urunc Llnux

This work is partially funded through Horizon Europe Research and Innovation actions, MLSysOps (GA: 101092912) and EMPYREAN (GA: 101136024)

Summary

- Containers are great, but lack isolation
- Sandbox execution for stronger isolation
- Alternative sandbox mechanisms enforce overhead
- Reduce runtime overhead with urunc
- Strip down the Linux kernel for even lower overhead and attack surface

Summary

- Containers are great, but lack isolation
- Sandbox execution for stronger isolation
- Alternative sandbox mechanisms enforce overhead
- Reduce runtime overhead with urunc
- Strip down the Linux kernel for even lower overhead and attack surface

Check out the code on github:

- https://github.com/nubificus/urunc
- https://github.com/nubificus/bunny

Check out our WASM talk: <u>WASM meets unikernels: Secure and Efficient</u> <u>Cloud-Native Deployments</u>

