
Copyright(c)2025 NTT Corp. All Rights Reserved. 1 

Running QEMU Inside Browser

Kohei Tokunaga, NTT Corporation

FOSDEM 2025 (Feb. 2)

Copyright(c)2025 NTT Corp. All Rights Reserved.

Summary

2 

● QEMU Wasm is QEMU experimentally ported to browser
○ Runs unmodified softwares (e.g. Linux) inside browser
○ Supports TCG(JIT compiler), networking and mount

● Demos
○ Linux VM, containers, Raspberry Pi inside browser

Copyright(c)2025 NTT Corp. All Rights Reserved.

Why porting apps to browsers?

3 

● Leveraging existing apps on browser (dev environment, playground,
building block, etc)
○ Ruby.wasm
○ VSCode Python for the web
○ Sqlite3 on browser
○ Postgres on browser (PGLite)
○ Swift on browser
○ Clang in browser

https://github.com/ruby/ruby.wasm
https://code.visualstudio.com/docs/python/python-web
https://sqlite.org/wasm/doc/trunk/index.md
https://supabase.com/blog/database-build-live-share
https://swiftwasm.org/
https://wasmer.io/posts/clang-in-browser

Copyright(c)2025 NTT Corp. All Rights Reserved.

But, porting apps to browsers is hard

4 

● Existing softwares (e.g. Linux apps) need re-implementation to run
inside browsers
○ Recompilation to Wasm (or JS)
○ Some syscalls (e.g. fork/exec) might be unavailable

● Can we run unmodified applications inside browsers?

Copyright(c)2025 NTT Corp. All Rights Reserved. 5 

QEMU Wasm

Copyright(c)2025 NTT Corp. All Rights Reserved.

QEMU Wasm

6 

● Experimentally ported QEMU to
browser, using emscripten

● Supports x86_64, AArch64,
RISCV64 guests

● Supports TCG(JIT compiler), mount
and networking, etc.

https://github.com/ktock/qemu-wasm Example: x86_64 Linux on browser

https://github.com/ktock/qemu-wasm

Copyright(c)2025 NTT Corp. All Rights Reserved.

Configuring flags

7 

Module['arguments'] = [
 '-nographic', '-m', '512M', '-accel', 'tcg,tb-size=500',
 '-L', '/pack/',
 '-drive', 'if=virtio,file=/pack/rootfs.bin',
 '-kernel', '/pack/bzImage',
 '-append', 'console=ttyS0 root=/dev/vda',
];

● Pass flags to QEMU via emscripten’s Module object in JS

● In the repo, examples are available for NW (-netdev), mount
(-virtfs), migration (-incoming) flags

Example configuration

https://github.com/ktock/qemu-wasm/tree/master/examples

Copyright(c)2025 NTT Corp. All Rights Reserved.

Demo

8 

● x86_64 Alpine Linux inside browser
● Demo page: https://ktock.github.io/qemu-wasm-demo/

https://ktock.github.io/qemu-wasm-demo/

Copyright(c)2025 NTT Corp. All Rights Reserved. 9 

How it works?

Copyright(c)2025 NTT Corp. All Rights Reserved.

How it works?

10 

● QEMU (qemu-system-*) is compiled using emscripten

● Dependencies (e.g. kernel and rootfs) are packaged using
emscripten’s --preload

● Relies on browser APIs for JIT and networking (described later)

Copyright(c)2025 NTT Corp. All Rights Reserved.

QEMU TCG (Tiny Code Generator)

11 

● JIT binary translator of QEMU

● IR: Intermediate Representation
○ Frontend translates guest binaries to IR
○ Backend translates IR to the host arch

● Utilizes multi cores with MTTCG
(Multi-Threaded TCG)

x86 ARM RISC-V

x86 ARM RISC-V

Frontend

Backend

Guest

Host

･･･

･･･

TCG IR

Copyright(c)2025 NTT Corp. All Rights Reserved.

Wasm TCG backend

12 

● Wasm can’t execute code generated on memory

● Browser’s APIs are used for compilation and execution
○ WebAssembly.Module compiles wasm code
○ WebAssembly.Instance makes it executable
○ Similar technique as used in other emulators e.g. v86,

Qemu.js (32bit guests and no multi-thread core though)

● Enabled emscripten’s pthread to enable MTTCG

TCG IR

Frontend

Wasm
Backend

Wasm
module

Guest
code

https://github.com/copy/v86
https://github.com/atrosinenko/qemujs

Copyright(c)2025 NTT Corp. All Rights Reserved.

TCG IR to Wasm translation

13 

add_i64 t0, t1, t2

global.get $t1
global.get $t2
i64.add
global.set $t0

IR Instruction Wasm

● Translates each TB of IR to a Wasm module
○ TB=Translation Block; unit of instructions to translate

● Translates an IR instruction to Wasm instruction(s)
○ Added also 64bit IR instructions to enable 64bit guests and MTTCG

● QEMU’s memory and helper functions are imported to TB module

Copyright(c)2025 NTT Corp. All Rights Reserved.

Mitigation for limitations of compiling modules

14 

● Considerations for creating Wasm modules for each TB
● Compilation overhead of modules
● Browsers aren’t capable of creating thousands of modules

simultaneously

● Enabled both of TCI (built-in IR interpreter; slow) and Wasm backend
○ TBs run on TCI by default
○ TBs running many times (e.g. 1500) are compiled to Wasm

Copyright(c)2025 NTT Corp. All Rights Reserved.

Performance

15 

● Measured duration of compressing 10MB random data using pigz on
emulated x86_64 guest
○ pigz is gzip implementation with multi processor support[1]

● Compared QEMU Wasm and Bochs ported to browser[2]
○ Bochs is a portable x86 emulator with interpreter approach

■ we’ve ported this to browser using emscripten

● Browser: Chrome 130.0.6723.58
● Host: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz (8 cores)
● Script:

https://github.com/ktock/container2wasm/commit/07260a2297ffc4ff40ca07dc6c558e4a8f56c154

[1] http://zlib.net/pigz/
[2] https://github.com/ktock/Bochs/tree/c2w-wasm

https://github.com/ktock/container2wasm/commit/07260a2297ffc4ff40ca07dc6c558e4a8f56c154
http://zlib.net/pigz/
https://github.com/ktock/Bochs/tree/c2w-wasm

Copyright(c)2025 NTT Corp. All Rights Reserved.

pigz on emulators inside browser

16 

(smaller is better)

Copyright(c)2025 NTT Corp. All Rights Reserved.

Mounting filesystem

17 

● Emscripten provides its own filesystem as FS API in JS

● QEMU Wasm can mount FS to the guest

$ mount -t 9p share0 /mnt/
$ cat /mnt/file
test

Guest

QEMU Wasm

JS (emscripten)

-virtfs local,path=/share,mount_tag=share0…

FS.writeFile('/share/file', 'test');

Copyright(c)2025 NTT Corp. All Rights Reserved.

Networking

18 

Two approaches are available

● WebSocket-based approach
○ Runs NW stack outside of browser

● Fetch API-based approach
○ Runs NW stack inside of browser

Copyright(c)2025 NTT Corp. All Rights Reserved.

Networking utilizing WebSocket

19 

● QEMU and the NW stack on the host are
connected via WebSocket

● Pros: Destinations aren’t limited by
browser

● Cons: Maintenance cost of NW stack
daemon on the host

QEMU
Wasm

JS
(emscripten)

Guest

browser

NW stack
(c2w-net)

forwards packets

WebSocket

host

destination

Copyright(c)2025 NTT Corp. All Rights Reserved.

Networking utilizing Fetch API

20 

QEMU Wasm

JS (emscripten)

Guest

browser

NW stack
(c2w-net-proxy)

Fetch API

destination

● NW stack inside browser proxies HTTP(S)
connection using Fetch API

● Pros: Easy to maintain (no daemon on the
host)

● Cons: HTTP(S) only. Restrictions by Fetch API
○ Limited destination by CORS
○ Forbidden Headers can’t be controlled

Forwards packets

https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name

Copyright(c)2025 NTT Corp. All Rights Reserved. 21 

Demos

Copyright(c)2025 NTT Corp. All Rights Reserved.

Raspberry Pi emulation on browser

22 

● Variety of machines (e.g. boards)
are available thanks to QEMU

● Example: Raspberry Pi emulation

Copyright(c)2025 NTT Corp. All Rights Reserved.

Demo

23 

● Raspberry Pi inside browser
● Demo page: https://ktock.github.io/qemu-wasm-demo/

https://ktock.github.io/qemu-wasm-demo/

Copyright(c)2025 NTT Corp. All Rights Reserved.

Containers on browser with container2wasm

24 

● container2wasm is a converter of a
container to a Wasm blob

● Provides --to-js flag for enabling
QEMU Wasm (>=v0.8)

$ c2w --to-js ubuntu:22.04 ./out/

container Wasm

https://github.com/ktock/container2wasm

https://github.com/ktock/container2wasm

Copyright(c)2025 NTT Corp. All Rights Reserved.

Demo

25 

● Running a container inside browser
● Docs:

https://github.com/ktock/container2wasm/tree/v0.8.0/examples/em
scripten

https://github.com/ktock/container2wasm/tree/v0.8.0/examples/emscripten
https://github.com/ktock/container2wasm/tree/v0.8.0/examples/emscripten

Copyright(c)2025 NTT Corp. All Rights Reserved.

Future works

26 

● Performance & stability improvement for Wasm backend
○ Still slower than other backends. Further improvement is needed.

● Integration with more QEMU features
○ More guest architectures, machines, graphics…
○ User mode QEMU

● Integration with ecosystem
○ Accessing package repos (e.g. apk, apt, ...) and container registries from

browser (w/ CORS restriction)

Copyright(c)2025 NTT Corp. All Rights Reserved.

Related works

27 

● v86: https://github.com/copy/v86
○ x86-compatible on-browser CPU emulator by Fabian Hemmer
○ Supports wide variety of guest OSes (including Windows)
○ Supports JIT translation using browser APIs
○ No support for x86_64 guests

● Qemu.js: https://github.com/atrosinenko/qemujs
○ QEMU ported to browser by Anatoly Trosinenko
○ Supports JIT translation (TCG) using browser APIs
○ Single-threaded, no support for 64bit guests

https://github.com/copy/v86
https://github.com/atrosinenko/qemujs

Copyright(c)2025 NTT Corp. All Rights Reserved.

Summary

28 

● QEMU Wasm is QEMU experimentally ported to browser
○ Runs unmodified softwares (e.g. Linux) inside browser
○ Supports TCG(JIT compiler), networking and mount

● Demos
○ Linux VM, containers, Raspberry Pi inside browser

