Static analysis of return code propagation

Asbjgrn Sloth Tgnnesen

February 2nd, 2025

Intro
e0

Last year
Brussels / 3 & 4 February 2024 News Sponsors Contact
FOSDEM 2024 / Schedule / Events Network

Flying higher: hardware offloading with BIRD

i A Track: Network devroom

| & Room: UB5.230

| @ Day: Saturday

» Start: 14:40

H End: 15:00

E Video only: ub5230

; M Chat: Join the conversation!

Offload IP forwarding to a SmartNIC/DPU with ..o

In order to conserve CPU cycles, it can be helpful to offload all or some of the Internet routing table, to the embedded switch within
modern network cards. Linux have good support for doing this through the t--s1cw=r(s) API, although it was originally aimed towards
OvSs-offloading, it's however also capable of IP forwarding.

In the first part of the talk we will go through how tc-1cwe:(8) can be used to offload IP forwarding onto a compatible SmartNIC/DPU,
by scripting some commands. In the second part of the talk we will introduce war-route , @ New daemon, which keeps a
hardware-offloaded ruleset in sync, with routing changes from a routing daemon like BIRD {or FRR, ...). Thereby attaining BGP-based

IP forwarding offload.

Intro
o]]

Kernel work

e Effect of TC bypass in v6.10 (047£340b)

|

. -Ld.&b-i!!é!l!“!é& - a-!a&a.l Lu! ﬁ!hjl al*L.:a‘!u.u;“’k“hw-’"‘ Y

The bugs
[leJe]e]

gede_parse_actions(...)

1 static int qede_parse_actions(...)

2 {

3 if (!flow_action_has_entries(flow_action))
4 return -EINVAL;

if (!flow_action_basic_hw_stats_check(flow_action, extack))
return -EOPNOTSUPP;

return O;

© 0w N o u

The bugs
[e] Te]e]

gede_add_tc_flower_fltr(...)

1 int qede_add_tc_flower_fltr(...)

2 A

3 if (qede_parse_actions (...))
4 return -EINVAL;

5 “ ..

6 return O;

The bugs
[e]e] o]

Review-ability

| found 3 bug, of this kind, in one driver.
3 additional static int calls were fixed.
Most had been hiding in the initial patch adding the code (2018).
One of the bugs was activated by this tree-wide patch (319a1d19):

@@ -1756,6 +1757,9 @@ static int qede_parse_actions (struct qede_dev
return -EINVAL;
X

if (!flow_action_basic_hw_stats_types_check(flow_action, ext
+ return -EOPNOTSUPP;

flow_action_for_each(i, act, flow_action) A{
switch (act->id) {
case FLOW_ACTION_DROP:

© 0 N o A W N
+

-
o

The bugs
[e]e]e])

Return code propagation research by University of Wisconsin

@ 2008: EIO: Error Handling is Occasionally Correct

@ 2009: Error Propagation Analysis for File Systems

@ 2010: Expect the Unexpected: Error Code Mismatches Between Documentation
and the Real World

@ 2011: Defective Error/Pointer Interactions in the Linux Kernel

@ 2011: Finding Error-Handling Bugs in Systems Code Using Static Analysis

@ Research performed by Haryadi S. Gunawi, Cindy Rubio Gonzalez, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben Liblit at University of
Wisconsin.

https://pages.cs.wisc.edu/~liblit/fast-2008/
https://pages.cs.wisc.edu/~liblit/pldi-2009-a/
https://pages.cs.wisc.edu/~liblit/paste-2010/
https://pages.cs.wisc.edu/~liblit/paste-2010/
https://pages.cs.wisc.edu/~liblit/issta-2011/
https://pages.cs.wisc.edu/~liblit/ghc-2011/

sparse
@0000

sparse is a C language semantic parser.

Designed to be “small and simple” and “easy to use”.

Main sparse binary is a static analyser.

Written for use with the Linux kernel, by Linus in 2003.

Multiple other binaries c2xml, cgcc, graph, etc.

Multiple test-* binaries, for example test-linearize and test-unssa.
MIT licensed.

http://sparse.wiki.kernel.org/

sparse
[¢] le]e]e}

initial commit

1 commit 3ece2ef7c0a3d5975f65aa09911e1944e4125c45
2 Author: Linus Torvalds <torvalds@home.transmeta.com>

3 Date: Thu Mar 13 12:53:56 2003 -0700

4

5 Yaah. I'm a retard, but I want to at least try to see how hard
6 it is to do a semantic parser that is smaller than gcc is.

7

8 Right now this is just the lexer, though, along with a test

9 app to print the results back out to verify the thing.

sparse
[e]e] lole}

Usage with the Linux kernel

@ make CHECK=sparse all
@ Highly interlinked memory structures.
@ Kbuild calls $CHECK once, per source file.

sparse
[e]e]e] lo}

gede_add_tc_flower fltr(...) as basic blocks

1 basic block .L1937

2 call.32 %r3730 <- qgede_parse_actions, %argl, %arg2, $0
3 cbr %r3730, .L1948, .L1949
4

5 basic block .L1948

6 copy .32 %r4057 <- $0xffffffea
7 br .L1918

8

9 basic block .L1949

10 copy .32 %r4057 <- $0

11 br .L1918

-
N

basic block .L1918
ret .32 %r4057

=
S~ W

A more complex register call

sparse
[e]e]e]e] }

basic block .L29
load .32
cbr

basic block .L28
load .32
load .32
add .32
load .32
call
br

%hr72
hr72,

%r75
hr77
%r78
%r82
%r82,
.L16

<- 0[%r68]
.L28, .L16

<- 0[%r65]
<- 4[%r65]

<- %hr77, $192
<- 16[%r72]
%r75, %Kr78

rccheck
[Je]

Methodology and current state

Serializing and deserializing
Resolving call graph, across files.
Finding entry points (*_ops structs)
Set of return values per function.
Minimizing false positives.

rccheck
oe

Future updates

@ Expecting to publish kernel-wide scans within a few weeks on
https://2e8.dk/rccheck/, including code for reproducing.
o Will properly do an update at BornHack 2025.

https://2e8.dk/rccheck/
https://bornhack.dk/

	Intro
	The bugs
	sparse
	rccheck

