
Lessons learned from 15 years
of open source robotics

Infra for Drones

(Still) an individual contributor

10+ years working in aerial robotics

Co-Lead ROS Aerial Robotics CWG

Co-Lead Space Grade Linux SIG

whoami
Ramón Roche

General Manager
Dronecode / Linux Foundation

The Dronecode Foundation, marked its 10th
anniversary in 2024, we are part of the Linux
Foundation.

In simple words, we are a non-profit formed to
safeguard open source projects, promote
collaboration, standardization, and support the
commercial adoption of the open source projects.

● Neutral home for open source projects
● Promoting open collaboration
● Help set standards to accelerating innovation
● Supporting commercial and research use

What the hell is Dronecode Foundation

The Dronecode Ecosystem

https://github.com/mavlink/qgroundcontrol/

Member Community
These are the member companies that play an
integral role in shaping the future of the industry.

2009
Birth of Pixhawk

2011
Birth of PX4 Autopilot

2014
Birth of Dronecode

2016
Birth of MAVSDK

2019
First PX4 Developer Summit

2021
Birth of Pixhawk Open
Standards

2023
+11k Contributors

2024
10y of Dronecode
+13k Contributors

2034
20y of Dronecode

Brief Timeline

● $1B Project Value
● 59.72M Total Lines of Code
● 13,307 Total Unique

Contributors

Putting things into perspective

● 1,900 Contributors in 2024
● 100+ Git Repositories
● 20 Dronecode Members
● 5 Top-Level Open Source

Projects

2009

http://www.youtube.com/watch?v=83YR15vf718

2011

http://www.youtube.com/watch?v=zy-BiNiVw0E

Today

http://www.youtube.com/watch?v=nsPkQYugfzs

16

How are these varied applications
possible with the same codebase?

● Flight Modes provide a set of helpers to
control autonomy

● Flight Tasks allowing developers to
extend flight modes

● Parameter database exposing
functionality back to users

● Events interface giving developers a
system-wide API for notifications

● Control allocation translates thrust and
torque commands into actuator
commands which control motors and
servos
○ Controllers do not require special

handling for airframe geometry
● Native ROS 2 Support through DDS

PX4 Autopilot - ✅ The Answer

Autonomy Stack originally developed for Aerial Robotics,
primarily Multi Rotors, over time extended to support
Fixed-Wing, VTOL, and Over & Under Surface Vehicles.

Main Characteristics:

● Runs realtime on top of Apache NuttX RTOS
● 100% C++ based
● Modular architecture with a DDS-compatible

middleware (uORB)
● Modules are fully parallelized, and thread safe
● Great hardware support
● Support for custom builds, trim what you don’t

need
● More than 1M vehicles using PX4
● More than 13k developers

● Support for more than 80 boards from
30+ manufacturers

● Drivers for more than 100+ sensors
○ IMU, Baro, Actuators, GPS, INS, CAN,

UWB… etc.
● Main Architectures Supported

○ STM32 - STMicro
○ iMX - NXP Semiconductors
○ RISCV-V

PX4 Autopilot - Hardware Support

Pixhawk Hardware

Open Hardware & Open Standards

Started as a flight controller open hardware
project with the first versions of Pixhawk’s

Evolved into an Open Standard for

● Flight controllers
● Payloads (Gimbals)
● Smart Batteries
● Connectors
● Debuggers

PX4 Autopilot + QGroundControl - Autonomous Missions

Define waypoints with customizable actions
that allow you to control the behavior of
vehicles.

Standardized mission protocol trough
MAVLink

● Thanks to uORB middleware
we can communicate
directly with the ROS 2
middleware (XRCE-DDS
based)

● PX4 internal modules can
share data with ROS 2
nodes

● Agent / Client approach
● Ethernet and Serial support
● ROS 2 QoS Supported
● We are ready for the switch

to Zenoh!

PX4 Autopilot - ROS 2 Support

PX4 Autopilot - Simulation

Gazebo is our default simulation agent, we
support both classic and modern gazebo, with
multiple worlds and models to choose from.

Other Simulation Engines Supported

● Gazebo Classic
● AirSim
● Flight Gear
● jMAVSim

Gazebo Simulation Docs

https://docs.px4.io/main/en/sim_gazebo_gz/

How to even begin testing PX4?

End User Testing

● Flashing / Installing
● Setting Up
● Tuning
● Manual Flight
● Autonomous Flight
● Validation of Testing

Let’s split the problem into tiny problems

Developer Testing

● Unit Tests
● Integration Tests / Simulation Tests
● Hardware In the Loop Tests

End User Testing

● Flashing / Installing
● Setting Up
● Tuning
● Manual Flight
● Autonomous Flight
● Validation of Testing

How to even begin testing PX4?

Developer Testing

● Unit Tests
● Integration Tests / Simulation Tests
● Hardware In the Loop Tests

Can be run in CI

End User Testing

● Flashing / Installing
● Setting Up
● Tuning
● Manual Flight
● Autonomous Flight
● Validation of Testing

How to even begin testing PX4?

Developer Testing

● Unit Tests
● Integration Tests / Simulation Tests
● Hardware In the Loop Tests

Needs humans in the loop

Tests in the Cloud
*or at least initiated by the cloud

Builds

● Releases
● Pull Requests

What can be run in CI?

Developer Testing

● Unit Tests
● Integration Tests / Simulation Tests
● Hardware In the Loop Tests*

Unit Tests

● We run unit tests as frequently as
possible

● Our coverage is less than ideal < 60%
● It’s super hard to incentivise

contributors to write more
● Tests run in around 7mins
● You can select to run some or all

Unit Tests

Integration Tests

● Builds and runs PX4 in
simulation mode

● Controls PX4 via API calls
using the SDK

● Happens faster than realtime
● Tests are written in C++
● The most fragile of our tests

○ A python script is
orchestrating the whole
thing

○ Frequent timeouts between
process comms

Integration Tests

Integration Tests

PX4 GazeboTest
Runner

● Failure Injection
● Land if GPS Lost
● Takeoff and Land
● Fly a square
● Fly straight

Simulation EngineFaster than Realtime
Execution

Each test launches a new PX4
and Gazebo instance

Integration Tests

Integration Tests

Hardware In The Loop

● Linux Desktop
○ Jenkins Slave

● USB Hub
● FTDI to Hardware
● Flashes and Runs Tests
● 20+ Hardware Boards
● Lives in one of the

maintainers house
● No longer running

○ Too fragile, Timeouts,
interrupts

○ We have plans for a new
version

○ Not all supported
hardware was found

Hardware In The Loop

Builds builds builds

Example

$ make px4_fmu-v6x

● You always need to specify the
hardware target

● We support more than 80 boards

When do we need to build?

● On every PR so we can guarantee the
code at least builds
○ but also so we can fly it (when needed)

● On releases so we can produce the
release artifacts

Context

● Our primary development environment
supported is Ubuntu LTS, currently
24.04

● Our GCC toolchain is arm cross build gcc
○ v9.3.1 (arm-none-eabi-gcc)

● Dependencies can be installed by a
helper script
○ ./Tools/setup/ubuntu.sh

How do we test builds for all hardware?

Step 1

We run a python script that finds all board
definitions, and grabs some metadata so we
can build.

Step 2

Group hardware by architecture, and by
manufacturer. Currently around 20+ groups

Step 3

Build each, and upload artifacts

Builds builds builds

Builds builds builds

Builds builds builds

Builds builds builds

● Running on self hosted runners
● Hosted in AWS
● Using RunsOn
● < 20 min total run time

https://runs-on.com

Summary of CI

Summary of CI

Human In the Loop Tests

End User Testing - Pilots Flying Hardware!

● We rely on our community for tests
flights

● One of our member companies is
providing recurrent tests

● Other community members also pitch in
● We wrote “Test Cards” with instructions

for pilots to follow
● Github Project for tracking of PRs or

Issues that require testing
● Pilots upload logs from flights to our

servers

https://docs.google.com/file/d/1QKC7koof8IAU2_TlT8JUByw6Qxh0SAPs/preview

PX4 Log Review

PX4 Log Review

PX4 Log Review

PX4 Log Review

PX4 Log Review

● PID Tracking Performance
● Vibration
● Actuator Controls
● Acceleration Power Spectral Density
● Raw Acceleration
● Raw High-rate IMU Data Plots
● Actuator Outputs
● GPS Uncertainty
● GPS Noise & Jamming
● Thrust and Magnetic Field
● Sampling Regularity of Sensor Data
● Logged Messages
● etc..

How does this work?

Conclusion

Learn More &
Get involved

● Github: PX4, Pixhawk,
MAVLink, MAVSDK,
QGroundControl

● Documentation
● Forums
● Discord
● Calendar

GitHub / Docs / Forums /
Discord / Weekly Calls

https://github.com/px4/
https://github.com/pixhawk
https://github.com/mavlink
https://github.com/mavlink/mavsdk
https://github.com/mavlink/qgroundcontrol/
https://docs.px4.io/main/en/index.html
https://discuss.px4.io
https://discord.gg/dYGPnVdx
https://dronecode.org/calendar/

Enjoy Brussels
Thank You

