
Performance evaluation of the Linux kernel
eBPF verifier
Maxime Derri Julia Lawall Kahina Lazri
INRIA INRIA Orange

January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

January 31, 2025

1 Evolutions of the eBPF verifier
a. What is the eBPF verifier?
b. Performance evaluation

2 Comparion of the eBPF verifier and PREVAIL
a. Design comparison
b. Performance evaluation

3 Conclusion
4 Appendix

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Outline

1 Evolutions of the eBPF verifier
a. What is the eBPF verifier?
b. Performance evaluation

2 Comparion of the eBPF verifier and PREVAIL
a. Design comparison
b. Performance evaluation

3 Conclusion

4 Appendix

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

The eBPF verifier

Bytecode

Check CFG Check subprogs Check prog Instruction
rewriting

Fetch next
instruction

Modify the
verification state

Global function
is OK

REJECT

ACCEPT JIT compiler

Attached
eBPF program

Event

eBPF verifier

error

error

error

no more

instruction
one

instruction

attach
eBPF

program

trigger
eBPF

program

bpf syscall

Check if all the
instructions are

reachable

valid

Check capabilities
in case of

back-edges

CFG is OK

Figure: Overview of the Linux eBPF verifier

1/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

The eBPF program verification is complex

The verifier is getting complex
– New features
– Possible bugs
– Hard to assure the safety
– False positives

eBPF is an active research field
– Finding bugs dynamically (e.g. Syzkaller, Buzzer, SEV, BVF)
– Finding bugs statically (e.g. Agni)
– Isolation (e.g. BeeBox, MOAT, SafeBPF)
– Other verifiers (e.g. PREVAIL)

2/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

The eBPF program verification is complex

The verifier is getting complex
– New features
– Possible bugs
– Hard to assure the safety
– False positives

eBPF is an active research field
– Finding bugs dynamically (e.g. Syzkaller, Buzzer, SEV, BVF)
– Finding bugs statically (e.g. Agni)
– Isolation (e.g. BeeBox, MOAT, SafeBPF)
– Other verifiers (e.g. PREVAIL)

2/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Observe the eBPF verifier evolution

– Hard to understand how the eBPF verifier works
– Hard to track all the modifications made on the verifier
– Observe how the eBPF verifier behave:

- Verification time
- Memory footprint
- Program rejection

3/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Does the eBPF verifier evolution impact performance?
Setup

– Ubuntu 18.04 (kernel 4.19) to 24.04 (kernel 6.10)
– QEMU-KVM VMs
– The PLDI paper version of PREVAIL is used as a loader for the

eBPF verifier
– Memory footprint is obtained using mm_page_alloc and

mm_page_free tracepoints

Samples
– 192 pre-compiled eBPF programs from the PREVAIL repository
– Only 144 of the 192 programs are used (Linux kernel,

prototype-kernel, cilium_test, Cilium, Open vSwitch and Suricata)
– The remaining 48 programs are not used as program types can’t

be deduced from custom sections by general loaders

4/17 January 31, 2025

https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0
https://github.com/vbpf/ebpf-samples/tree/8307b929b2db298622a1e380b8610d5eebcdca32

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Verification time

2 21 33 49 81 174 1667 3593
Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ve

rif
ica

tio
n

tim
e

(s
ec

)
4.19:accepted
5.0:accepted
5.4:accepted
5.11:accepted
5.15:accepted
6.2:accepted
6.8:accepted
6.10:accepted

Figure: Average time (sec) vs instructions

Since the 5.0 kernel version, verifiers are faster due to branch management
improvements

5/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Memory footprint

2 21 33 49 81 174 1667 3593
Instructions

0

2500

5000

7500

10000

12500

15000

17500
M

em
or

y
fo

ot
pr

in
t (

kb
)

4.19:accepted
5.0:accepted
5.4:accepted
5.11:accepted
5.15:accepted
6.2:accepted
6.8:accepted
6.10:accepted

Figure: Maximal memory footprint (kb) vs instructions

Since the 5.0 kernel version, verifiers consume less memory due to branch
management improvements

6/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Programs accepted

4.19 5.0 5.4 5.11 5.15 6.2 6.8 6.10
Accepted programs (/144) 139 141 142 141 141 143 143 143
Complexity limit reached X
Helper not yet available X X
Bad kernel configuration X

Bad kernel version argument X

(perf_event program type)
Map pre-allocation disabled X X X X X

Lockdown mode X X X X X

Table: Programs accepted and causes of rejection per eBPF verifier version

Note
– Some Linux distributions disable the bpf syscall (e.g. Ubuntu

19.04) or add lockdown checks (e.g. Ubuntu 21.04)

7/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Programs accepted

4.19 5.0 5.4 5.11 5.15 6.2 6.8 6.10
143/144 144/144 144/144 144/144 144/144 144/144 144/144 144/144

Table: Accepted programs per eBPF verifier version

The verifier is not always the culprit!
– Solving the issues results in programs being accepted (except one

program where the complexity limit is reached)

8/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Outline

1 Evolutions of the eBPF verifier
a. What is the eBPF verifier?
b. Performance evaluation

2 Comparion of the eBPF verifier and PREVAIL
a. Design comparison
b. Performance evaluation

3 Conclusion

4 Appendix

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Design principles of the eBPF verifier and PREVAIL

eBPF verifier PREVAIL
Location Kernel-space User-space

domains
Abstract

tnum: (value, mask)
Interval: [a,b] Zone: (X - Y) ≤ c

Paths State pruning Join operator

Loops State pruning
Loop according to the condition

Widening and narrowing operators
Weak topological ordering

Join operator
Fixpoint computation

Termination
Infinite loop detection

Restrictions on loop usage
Max number of instructions

Widening and narrowing operators
Max number of instructions

Soundness
Hard to prove the verifier entirely

Some bugs might stay
Bugs were found

Not a lot of work on PREVAIL
Should be sound by design

Table: Differences between the eBPF verifier and PREVAIL

9/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

eBPF verifier vs PREVAIL

– Observe the evolution of the verification performance of two
verifier versions since 2019

– Observe how they perform with the set of eBPF objects provided
in the PREVAIL paper

10/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Performance comparison

Setup
– Ubuntu 18.04 (kernel 4.19) and 24.04 (kernel 6.10)
– QEMU-KVM VMs
– The PLDI paper version of PREVAIL is used as a loader for the

eBPF verifier
– The PLDI paper version of PREVAIL is used with the kernel 4.19
– The latest version of PREVAIL is used with the kernel 6.10
– Memory footprint is obtained from /proc/$pid/status, VmHWM

11/17 January 31, 2025

https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0
https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0
https://github.com/vbpf/ebpf-verifier

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Verification time of the eBPF verifier vs PREVAIL

2 21 33 49 81 174 1667 3593
Instructions

0

1

2

3

4

5

6

7

8

9

10

11
Ve

rif
ica

tio
n

tim
e

(s
ec

)
PREVAIL-4.19:accepted
PREVAIL-6.10:accepted
Linux-4.19:accepted
Linux-6.10:accepted

Figure: Average time (sec) vs instructions

The PREVAIL verification time increases with the number of instructions

12/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Memory footprint of the eBPF verifier vs PREVAIL

2 21 33 49 81 174 1667 3593
Instructions

0

2

4

6

8

10

12

14

M
em

or
y

fo
ot

pr
in

t (
kb

)
×105

PREVAIL-4.19:accepted
PREVAIL-6.10:accepted
Linux-4.19:accepted
Linux-6.10:accepted

Figure: Maximal memory footprint (kb) vs instructions

The PREVAIL memory footprint increases with the number of instructions

13/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Programs accepted by the eBPF verifier vs PREVAIL

4.19 6.10
Linux 143/144 144/144

PREVAIL 143/144 140/144

Table: Accepted programs per verifier1

−→ PREVAIL 4.19 PREVAIL 6.10 Linux 4.19 Linux 6.10
PREVAIL 4.19 1 1 1
PREVAIL 6.10 4 3 4

Linux 4.19 1 1 1
Linux 6.10 0 0 0

Table: Programs rejected from a verifier1 which are accepted by another verifier1

1PREVAIL+4.19 = PLDI version and PREVAIL+6.10 = Latest version
14/17 January 31, 2025

https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0
https://github.com/vbpf/ebpf-verifier

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Performance comparison with many paths

Samples
– double_strcmp template from the PREVAIL repository
– Performs two manual strcmp (two non-unrolled loops with if/else)
– The number of loop iterations is configurable
– Samples are compiled with Clang-8

15/17 January 31, 2025

https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0/counter/templates

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Comparison on loops

0 25 50 75 100 125 150 175 200
Loop iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
rif

ica
tio

n
tim

e
(s

ec
)

PREVAIL-4.19:accepted
PREVAIL-6.10:accepted
Linux-4.19:accepted
Linux-6.10:accepted
PREVAIL-4.19:rejected
Linux-4.19:rejected
Linux-6.10:rejected

(a) Average time (sec) vs iterations

0 25 50 75 100 125 150 175 200
Loop iterations

0

2000

4000

6000

8000

10000

12000

14000

M
em

or
y

fo
ot

pr
in

t (
kb

)

PREVAIL-4.19:accepted
PREVAIL-6.10:accepted
Linux-4.19:accepted
Linux-6.10:accepted
PREVAIL-4.19:rejected
Linux-4.19:rejected
Linux-6.10:rejected

(b) Maximal memory footprint (kb) vs iterations

Figure: Verification of programs built from the double_strcmp template with an increasing
number of loop iterations

PREVAIL is faster as it reached a fixpoint

16/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Outline

1 Evolutions of the eBPF verifier
a. What is the eBPF verifier?
b. Performance evaluation

2 Comparion of the eBPF verifier and PREVAIL
a. Design comparison
b. Performance evaluation

3 Conclusion

4 Appendix

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Conclusion

– The performance of the eBPF verifier has improved

– No regression has been found for the eBPF verifier

– The program rejection is not limited to the eBPF verifier

– PREVAIL proposes an interesting approach to bounded loop
verification

– The memory consumption of PREVAIL has decreased

– It seems that there is a regression with the latest version of
PREVAIL (requires further investigations)

17/17 January 31, 2025

Outline eBPF verifier eBPF verifier vs PREVAIL Conclusion Appendix

Outline

1 Evolutions of the eBPF verifier
a. What is the eBPF verifier?
b. Performance evaluation

2 Comparion of the eBPF verifier and PREVAIL
a. Design comparison
b. Performance evaluation

3 Conclusion

4 Appendix

A bit more on branches and pruning
Setup

– Ubuntu 18.04 (kernel 4.19), 19.04 (kernel 5.0), 20.04 (kernel 5.4)
– QEMU-KVM VMs
– The PLDI paper version of PREVAIL is used as a loader for the

eBPF verifier
Samples 1

– 144/192 pre-compiled eBPF programs from the PREVAIL
repository

Samples 2
– double_strcmp template
– Loops are unrolled
– Samples are compiled with Clang-8

1/6 January 31, 2025

https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0
https://github.com/vbpf/ebpf-samples/tree/8307b929b2db298622a1e380b8610d5eebcdca32
https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0/counter/templates

Changes in branches and pruning (1)

2 21 33 49 81 174 1667 3593
Instructions

0

2000

4000

6000

8000

Br
an

ch
es

 c
re

at
ed

 w
ith

 p
us

h_
st

ac
k(

)
4.19:accepted
5.0:accepted
5.4:accepted

Figure: Number of branches created with push_stack() vs instructions

The eBPF verifier in kernel 4.19 creates more branches than the one in 5.0

2/6 January 31, 2025

Changes in branches and pruning (2)

0 20 40 60 80 100
Loop iterations

0

2

4

6

8

10

12

14

16

Ve
rif

ica
tio

n
tim

e
(s

ec
)

4.19:accepted
5.0:accepted
5.4:accepted
4.19:rejected
5.0:rejected

Figure: Average time (sec) vs iterations

There are major changes between kernels 5.0 and 5.4 (precisely, in the kernel
5.3)

3/6 January 31, 2025

Impact of compilers and instruction sets

Setup
– Ubuntu 22.04.4 (kernel 6.8)
– Physical machine
– The PLDI paper version of PREVAIL is used as a loader for the

eBPF verifier
– Memory footprint is obtained using mm_page_alloc and

mm_page_free tracepoints

Samples
– double_strcmp template
– Samples are compiled with 3 versions of Clang (8, 14, 18) and 3

instruction sets (v2, v3, v4)

4/6 January 31, 2025

https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0
https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0/counter/templates

Impact on loops

0 25 50 75 100 125 150 175 200
Loop iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ve
rif

ica
tio

n
tim

e
(s

ec
)

clang-8_v2:accepted
clang-14_v2:accepted
clang-14_v3:accepted
clang-18_v2:accepted
clang-18_v3:accepted
clang-18_v4:accepted
clang-8_v2:rejected
clang-14_v2:rejected
clang-14_v3:rejected
clang-18_v2:rejected
clang-18_v3:rejected
clang-18_v4:rejected

(a) Average time (sec) vs iterations

0 25 50 75 100 125 150 175 200
Loop iterations

0

500

1000

1500

2000

M
em

or
y

fo
ot

pr
in

t (
kb

)

clang-8_v2:accepted
clang-14_v2:accepted
clang-14_v3:accepted
clang-18_v2:accepted
clang-18_v3:accepted
clang-18_v4:accepted
clang-8_v2:rejected
clang-14_v2:rejected
clang-14_v3:rejected
clang-18_v2:rejected
clang-18_v3:rejected
clang-18_v4:rejected

(b) Maximal memory footprint (kb) vs iterations

Figure: Verification of programs built from the double_strcmp template with an increasing
number of loop iterations

More loop iterations are verified when programs are compiled with Clang-8

5/6 January 31, 2025

Impact on loops

for i = 1; i ≤ 200; ++i
i = 1 i = 2 i ≥ 3

+ v2
Clang-8 31 55 55

+ v2
Clang-14

(-32.26%)

21
(+23.64%)

68
(+9.09%)

60

+ v3
Clang-14

(-32.26%)

21
(+16.36%)

64
(+1.82%)

56

+ v2
Clang-18

(-35.48%)

20
(+23.64%)

68
(+9.09%)

60

+ v3
Clang-18

(-35.48%)

20
(+16.36%)

64
(+1.82%)

56

+ v4
Clang-18

(-35.48%)

20
(+16.36%)

64
(+1.82%)

56

Table: Number of instructions of programs built from the double_strcmp template

6/6 January 31, 2025

	Outline
	Evolutions of the eBPF verifier
	What is the eBPF verifier?
	Performance evaluation

	Comparion of the eBPF verifier and PREVAIL
	Design comparison
	Performance evaluation

	Conclusion
	Appendix
	Appendix

