
Fuzzing databases is difficult
Pedro Ferreira - QA Engineer at ClickHouse

FOSDEM Feb 1st 2025



©2025 CLICKHOUSE INC., FOSDEM 20252

What is ClickHouse?

● Open-source OLAP column store database written in C.

● Can be self hosted or managed in ClickHouse Cloud.

● Very fast and resource efficient from one node to hundreds of nodes.



©2025 CLICKHOUSE INC., FOSDEM 20253

Testing with Fuzzers

● Fuzzers are a hot research topic in many fields including databases.

● ClickHouse has embraced many Fuzzers over the years.

● The fuzzers include: SQLancer, AST Fuzzer, WINGFUZZ, AFL, libFuzzer and now 

BuzzHouse.

● All of them have their strengths and weaknesses.



©2025 CLICKHOUSE INC., FOSDEM 20254

Testing databases

● Databases do many operations: query and storage optimization, ACID properties, 

multiplex client connections.

● SQL language is extensive.

● State is kept between queries.

● Databases have to run for a long time without interruptions.

● Ensure correct results are returned.

● Evaluate performance.



©2025 CLICKHOUSE INC., FOSDEM 20255

What do we need?

● Attempt to write correct SQL statements by following grammar rules.

● Keep catalog information, in order to extend correctness.

● Update the catalog with changes on it.

● Donʼt forget to provide random inputs sometimes. Too many rules make the 

fuzzer strict on what it can generate.

● Use oracles to find wrong results.



©2025 CLICKHOUSE INC., FOSDEM 20256

AST Fuzzer

● Developed by the ClickHouse team.

● Swaps internal Abstract Syntax Trees in the client before sending to the server.

● The input can be a test file, or user input from the terminal.

● https://clickhouse.com/blog/fuzzing-click-house 

https://clickhouse.com/blog/fuzzing-click-house


©2025 CLICKHOUSE INC., FOSDEM 20257

AST Fuzzer



©2025 CLICKHOUSE INC., FOSDEM 20258

Designing a fuzzer

SELECT

n_name, sum(l_extendedprice * (1 - l_discount)) AS revenue

FROM

customer, orders, lineitem, supplier, nation, region

WHERE

c_custkey = o_custkey AND l_orderkey = o_orderkey AND l_suppkey = s_suppkey

AND c_nationkey = s_nationkey AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND r_name = 'ASIA'

AND o_orderdate >= DATE '1994-01-01' AND o_orderdate < DATE '1994-01-01' + INTERVAL '1' year

GROUP BY

n_name

ORDER BY

revenue DESC;

 



©2025 CLICKHOUSE INC., FOSDEM 20259

Letʼs design a fuzzer

if 10% probability

- CREATE TABLE statement

else if 20% probability

- INSERT INTO a random table

else if 5% probability

- DELETE FROM a table

else if 10% probability

- ALTER TABLE statement

else if 5% probability

- DROP TABLE statement

else

- Run SELECT query

 



©2025 CLICKHOUSE INC., FOSDEM 202510

What are the issues?

● At every 20 statements, a DROP statement will be generated.

● The CREATE statement is generally more complex than DROP, so itʼs more likely 

to fail and we may end without tables in the catalog!

● A table wonʼt last long in the catalog. In real life, a table stays forever!

● Some DELETES may clear tables completely, so we have to make sure tables 

contain data most of the time.



So I came up with 
BuzzHouse



©2025 CLICKHOUSE INC., FOSDEM 202512

24k
Issues found

125
Engineers busy

20

BuzzHouse by the numbers

Lines of code



©2025 CLICKHOUSE INC., FOSDEM 202513

BuzzHouse in action

● Create a few tables during start, until the desired number of tables is reached.

● Generate queries based on successful catalog queries.

● Always keep a minimum number of tables in the catalog.

● Set a limit on the query size.

● Generate insert queries with values based on column types.

● Dump the session seed to reproduce it later.



©2025 CLICKHOUSE INC., FOSDEM 202514

What BuzzHouse generates



©2025 CLICKHOUSE INC., FOSDEM 202515

BuzzHouse findings

● Crashes

● Logical errors

● Wrong results

● OOM kills

● Never ending queries



©2025 CLICKHOUSE INC., FOSDEM 202516

Finding wrong results

● Dump a table and read it back again. Tests data formats.

● Run and compare equivalent queries using an oracle. This strategy was 

pioneered by SQLancer.

● Run the same query with different settings, such as the number of threads.

● Use a peer table from another database, and then compare computation results 

with the same ordering clause or global aggregate.



©2025 CLICKHOUSE INC., FOSDEM 202517

The combinations are too many!

● Many types including: Integers, Strings, Arrays, Tuples, Enums, the new JSON 

and Dynamic types.

● More than 1000 SQL functions and tunable settings.

● More than 30 table engines including MergeTree and its variations, Memory 

tables, S3 tables, tables from external databases such as MySQL.

● Tables have partition, ordering, TTL, compression and other parameters.

● ClickHouse supports replication and sharding.



©2025 CLICKHOUSE INC., FOSDEM 202518

BuzzHouse issues

● Most of the queries 95%) still fail, mostly due to typing issues.

● Tables are not large enough to benchmark performance.

● Some of the oracles may give false positives, then disabled by default.

● Probabilities are static.

● No `SELECT 1 FROM idontexist;` queries.

● No code coverage, although this makes query generation slower.



©2025 CLICKHOUSE INC., FOSDEM 202519

More design questions

● What about running clients in parallel?

● Fuzzing the server? Distributed setting?

● Size of the queries generated?

● Quality of the error messages thrown?

● For how long a table should stay in the catalog?

● Detect slow queries in a legitimate way?



©2025 CLICKHOUSE INC., FOSDEM 202520

The verdict

● There wonʼt be a fuzzer that finds all the issues.

● Fuzzers follow the law of diminishing return.

● I can add more features to BuzzHouse but:

○ The codebase becomes more complex, then more subjective to bugs.

○ Finding issues in fuzzers is not trivial, because itʼs not generated output.

○ More combinations, means less probability to find corner cases, then new 

bugs.



©2025 CLICKHOUSE INC., FOSDEM 202521

Whatʼs the solution?

● Use multiple fuzzers to test different properties of a database.

● Build invariants with oracles to find more issues.

● Reuse code between them if possible, eg. use BuzzHouse extensive CREATE 

TABLE options with AST fuzzer.

● Use a separate testing script for the server.



©2025 CLICKHOUSE INC., FOSDEM 202522

Use a combination of fuzzers

● AFL and libFuzzer for code coverage-guided fuzzing.

● SQLsmith (https://github.com/anse1/sqlsmith) for large query generation.

● SQLancer (https://github.com/sqlancer/sqlancer) for query correctness.

● Pstress (https://github.com/Percona-QA/pstress) for heavy load.

● Sysbench (https://github.com/akopytov/sysbench) for long workloads 1h.

● AST fuzzer to mutate queries from tests, or inputs from other fuzzers.

● BuzzHouse for randomly generated catalog-backed queries.

https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer
https://github.com/Percona-QA/pstress
https://github.com/akopytov/sysbench


©2025 CLICKHOUSE INC., FOSDEM 202523

Details at blog post
● More information at the engineering blog post: 

https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for

-testing-clickhouse 

https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for-testing-clickhouse
https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for-testing-clickhouse


24

L'Ultime Atome
Rue Saint-Boniface 14, 1050 Ixelles, Belgium



Thank you
Time for Q&A 


