Il ClickHouse

Fuzzing databases is difficult

Pedro Ferreira - QA Engineer at ClickHouse

What is ClickHouse?

e Open-source OLAP column store database written in C++.

e Can be self hosted or managed in ClickHouse Cloud.

e \Very fast and resource efficient from one node to hundreds of nodes.

System & Machine Relative time (lower is better)

Testing with Fuzzers

e Fuzzers are a hot research topic in many fields including databases.

e ClickHouse has embraced many Fuzzers over the years.

e The fuzzers include: SQLancer, AST Fuzzer, WINGFUZZ, AFL, libFuzzer and now
BuzzHouse.

e All of them have their strengths and weaknesses.

Testing databases

e Databases do many operations: query and storage optimization, ACID properties,
multiplex client connections.

e SQL language is extensive.

e State is kept between queries.

e Databases have to run for a long time without interruptions.

e Ensure correct results are returned.

e Evaluate performance.

What do we need?

e Attempt to write correct SQL statements by following grammar rules.

e Keep catalog information, in order to extend correctness.

e Update the catalog with changes on it.

e Don't forget to provide random inputs sometimes. Too many rules make the
fuzzer strict on what it can generate.

e Use oracles to find wrong results.

AST Fuzzer

Developed by the ClickHouse team.

e Swaps internal Abstract Syntax Trees in the client before sending to the server.

The input can be a test file, or user input from the terminal.

https://clickhouse.com/blog/fuzzing-click-house

AST Fuzzer

CREATE TABLE test (c0 String,) ENGINE = MergeTree() ORDER BY tuple();

SELECT £.c0 FROM L WHERE c0O = .

SELECT DISTINCT test.cO

FROM test
WHERE c0® = materialize('a')

EXPLAIN PIPELINE

SELECT DISTINCT test.cO
FROM test

WHERE cO = 'a'

SELECT DISTINCT
test.cO,
test.cO

FROM test
ALL INNER JOIN test AS alias® ON c@ = alias0.c0

WHERE c0O = 'a'

Designing a fuzzer

SELECT
n_name, sum(l_extendedprice * (1 - l_discount)) AS revenue
FROM
customer, orders, lineitem, supplier, nation, region
WHERE
c_custkey = o_custkey AND 1_orderkey = o_orderkey AND 1_suppkey = s_suppkey
AND c_nationkey = s_nationkey AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey
AND r_name = 'ASIA’
AND o_orderdate >= DATE '1994-01-81' AND o_orderdate < DATE '1994-061-01' + INTERVAL '1' year
GROUP BY
n_name
ORDER BY

revenue DESC;

llll: ClickHouse

Let's design a fuzzer

if 10% probability

else

else

else

else

else

CREATE TABLE statement

if 20% probability

INSERT INTO a random table
if 5% probability

DELETE FROM a table

if 10% probability

ALTER TABLE statement

if 5% probability

DROP TABLE statement

Run SELECT query

llll: ClickHouse

What are the issues?

e Atevery 20 statements, a DROP statement will be generated.

e The CREATE statement is generally more complex than DROP, so it's more likely
to fail and we may end without tables in the catalog!

e A table won't last long in the catalog. In real life, a table stays forever!

e Some DELETES may clear tables completely, so we have to make sure tables

contain data most of the time.

Il ClickHouse

So | came up with
BuzzHouse

BuzzHouse by the humbers

24k 125+ 20+

Lines of code Issues found Engineers busy

BuzzHouse in action

e Create a few tables during start, until the desired number of tables is reached.
e Generate queries based on successful catalog queries.

e Always keep a minimum number of tables in the catalog.

e Set alimit on the query size.

e Generate insert queries with values based on column types.

e Dump the session seed to reproduce it later.

What BuzzHouse generates

SELECT
L (

SELECT '-5705509103000988089"', 'Int256')[4
) 0.c1.' @, cl.'"®),

: op 2 : 2 2 e 3

FROM
(
SELECT
t 4] As <o,
: ‘ As <1,
OVER () AS
FROM t15 AS
INNER JOIN c0.t4 AS ON (t0dl. = t1dl.c1) AND (1
WHERE t0d1. ; 1 (780
) AS
GLOBAL ANTI RIGHT JOIN 25 AS ON t1do. R
LEFT ARRAY JOIN ©1d0. c2 AS
WHERE (10, ; , €0, 62, , S 1*) NOT IN
SELECT NULL AS
FROM t25 AS
CROSS JOIN 15 AS
CROSS JOIN AS
ALL FULL OUTER JOIN d0.t4 AS ON
ORDER BY ALL ASC

©2025 CLICKHOUSE INC., FOSDEM 2025

BuzzHouse findings

e Crashes

e Logical errors
e Wrong results
e OOM kills

e Never ending queries

©2025 CLICKHOUSE INC., FOSDEM 2025

® 770pen ./ 56 Closed Author ~ Label ~ Projects Milestones ~ Assignee ~ Sort v

© INSERT INTERVAL SEGV bug | crash [fuzz & 2
#74299 opened 1 hour ago by PedroTadim

(CTE + INSERT UNION SEGV (bug | crash (fuzz) (v24.10-affected) (v24.11-affected) (v24.12-affected & Q1

#74276 opened 20 hours ago by PedroTadim

© Logical error: Part ... intersects previous part.... It is a bug or a result of manual intervention

experimental feature | | fuzz

#74265 opened yesterday by PedroTadim

bug

© Alter freeze with transactions CANNOT_OPEN_FILE error bug

#74262 opened yesterday by PedroTadim

experimental feature) | fuzz

© SEGV on CollapsingMergeTree merge ' bug ' crash | (fuzz {1 €
#74219 opened 2 days ago by PedroTadim

© Protobuf format with empty tuple assertion error | bug ' (fuzz
#74214 opened 2 days ago by PedroTadim

© Logical Error: Invalid number of columns in chunk pushed to OutputPort ' bug ' (fuzz
#74211 opened 2 days ago by PedroTadim

© Assertion on client with JSON with duplicate values bug ' (experimental feature) | fuzz f1 g

#74164 opened 5 days ago by PedroTadim

Finding wrong results

e Dump atable and read it back again. Tests data formats.

e Run and compare equivalent queries using an oracle. This strategy was
pioneered by SQLancer.

e Run the same query with different settings, such as the number of threads.

e Use a peer table from another database, and then compare computation results

with the same ordering clause or global aggregate.

The combinations are too many!

e Many types including: Integers, Strings, Arrays, Tuples, Enums, the new JSON
and Dynamic types.

e More than 1000 SQL functions and tunable settings.

e More than 30 table engines including MergeTree and its variations, Memory
tables, S3 tables, tables from external databases such as MySQL.

e Tables have partition, ordering, TTL, compression and other parameters.

e ClickHouse supports replication and sharding.

BuzzHouse issues

e Most of the queries (>95%) still fail, mostly due to typing issues.

e Tables are not large enough to benchmark performance.

e Some of the oracles may give false positives, then disabled by default.
e Probabilities are static.

e No SELECT 1 FROM idontexist;” queries.

e No code coverage, although this makes query generation slower.

More design questions

e What about running clients in parallel?

e Fuzzing the server? Distributed setting?

e Size of the queries generated?

e Quality of the error messages thrown?

e For how long a table should stay in the catalog?

e Detect slow queries in a legitimate way?

The verdict

e There won't be a fuzzer that finds all the issues.
e Fuzzers follow the law of diminishing return.
e | can add more features to BuzzHouse but:
o The codebase becomes more complex, then more subjective to bugs.
o Finding issues in fuzzers is not trivial, because it's not generated output.

o More combinations, means less probability to find corner cases, then new
bugs.

What's the solution?

e Use multiple fuzzers to test different properties of a database.

e Build invariants with oracles to find more issues.

e Reuse code between them if possible, eg. use BuzzHouse extensive CREATE
TABLE options with AST fuzzer.

e Use a separate testing script for the server.

Use a combination of fuzzers

e AFL and libFuzzer for code coverage-guided fuzzing.

e SQLsmith () for large query generation.

e SQLancer () for query correctness.

e Pstress () for heavy load.

e Sysbench () for long workloads (>1h).

e AST fuzzer to mutate queries from tests, or inputs from other fuzzers.

e BuzzHouse for randomly generated catalog-backed queries.

https://github.com/anse1/sqlsmith
https://github.com/sqlancer/sqlancer
https://github.com/Percona-QA/pstress
https://github.com/akopytov/sysbench

Details at blog post

e More information at the engineering blog post:

Blog / Engineering

BuzzHouse: Bridging the database fuzzing gap for
testing ClickHouse

‘- Pedro Ferreira
& Jan 21, 2025 - 11 minutes read

Fuzzing has become a scorching research topic in the last few years to find issues in software, including
crashes, bad output, and security vulnerabilities. Databases are no exception, and many research tools
have been developed.

ClickHouse is also actively tested with fuzzers - over the years, several fuzzers, including SQLancer,
SQLsmith, AST fuzzer, and, more recently, WINGFUZZ fuzzer, have been used to test ClickHouse.

Since | joined ClickHouse, | have been reviewing the existing testing infrastructure in ClickHouse and
noticed a notorious gap in their fuzzers. None of them was capable of generating a wide complexity of
queries while keeping query correctness in mind.

https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for-testing-clickhouse
https://clickhouse.com/blog/buzzhouse-bridging-the-database-fuzzing-gap-for-testing-clickhouse

||| ClickHouse

FOSDEM
Dinner with
ClickHouse

Brussels Belgium, Saturday Feb 1st from 19:00-23:00pm

L'Ultime Atome
Rue Saint-Boniface 14, 1050 Ixelles, Belgium

Il ClickHouse

Thank you
Time for Q&A

