
Rust for Linux

Miguel Ojeda
ojeda@kernel.org

What is Rust for Linux?

“Rust for Linux is the project adding support
for the Rust language to the Linux kernel.”

What is Rust for Linux?

Our goal has always been:

Full integration of Rust into the kernel as the second main programming language.

First-class support for the language.

Focused on in-tree, not out-of-tree.

Not limited to loadable modules.

Shared infrastructure, e.g. standard library.

Not limited to drivers or “leaf modules”.

Not limited to kernelspace code.

Always with the aim to upstream it.

Who uses Rust for Linux?

Upstreamed users:

PHY drivers: Asix PHYs (first “Rust reference driver”) and AMCC QT2025 PHY.

Null Block driver.

DRM panic screen QR code generator.

Users targeting upstream:

Android Binder driver.

Apple AGX GPU driver.

NVMe driver.

Nova GPU driver.

...and other efforts (e.g. tarfs, erofs, PuzzleFS, codec libraries, regulator driver, DSI panel driver...).

— https://rust-for-linux.com‘s “Users” section
— https://rust-for-linux.com/rust-reference-drivers

https://rust-for-linux.com
https://rust-for-linux.com/rust-reference-drivers

Why?

And why Rust?

Is this function correct?

/// Returns whether the integer pointed by `a`
/// is equal to the integer pointed by `b`.
bool f(int *a, int *b) {
 return *a == 42;
}

Is this function correct?

/// Returns whether the integer pointed by `a`
/// is equal to the integer pointed by `b`.
bool f(int *a, int *b) {
 return *a == *b;
}

/// Returns whether the integer pointed by `a`
/// is equal to the integer pointed by `b`.
bool f(int *a, int *b) {
 return *a == 42;
}

bool f(const int *a, const int *b) {
 return *a == *b;
}

bool f(const int *a, const int *b) {
 return *a == 42;
}

Incorrect

Correct

bool f(const int *a, const int *b) {
 return *a == *b;
}

bool f(const int *a, const int *b) {
 return *a == 42;
}

fn f(a: &i32, b: &i32) -> bool {
 *a == *b
}

fn f(a: &i32, b: &i32) -> bool {
 *a == 42
}

Incorrect

Correct

bool f(const int *a, const int *b) {
 return *a == *b;
}

bool f(const int *a, const int *b) {
 return *a == 42;
}

fn f(a: &i32, b: &i32) -> bool {
 *a == *b
}

fn f(a: &i32, b: &i32) -> bool {
 *a == 42
}

Incorrect

Correct

Unsafe Safe

bool f(const int *a, const int *b) {
 return *a == *b;
}

bool f(const int *a, const int *b) {
 return *a == 42;
}

fn f(a: &i32, b: &i32) -> bool {
 *a == *b
}

fn f(a: &i32, b: &i32) -> bool {
 *a == 42
}

unsafe fn f(a: *const i32, b: *const i32) -> bool {
 unsafe { *a == *b }
}

Incorrect

Correct

unsafe fn f(a: *const i32, b: *const i32) -> bool {
 unsafe { *a == 42 }
}

Unsafe Safe

?

?bool f(const int *a, const int *b) {
 return *a == *b;
}

bool f(const int *a, const int *b) {
 return *a == 42;
}

fn f(a: &i32, b: &i32) -> bool {
 *a == *b
}

fn f(a: &i32, b: &i32) -> bool {
 *a == 42
}

unsafe fn f(a: *const i32, b: *const i32) -> bool {
 unsafe { *a == *b }
}

Incorrect

Correct

unsafe fn f(a: *const i32, b: *const i32) -> bool {
 unsafe { *a == 42 }
}

Unsafe Safe

“Goals

By using Rust in the Linux kernel, our hope is that:

‒ New code written in Rust has a reduced risk of memory safety bugs, data races and
logic bugs overall, thanks to the language properties mentioned below.

‒ Maintainers are more confident in refactoring and accepting patches for modules
thanks to the safe subset of Rust.

‒ New drivers and modules become easier to write, thanks to abstractions that are
easier to reason about, based on modern language features, as well as backed by
detailed documentation.

‒ More people get involved overall in developing the kernel thanks to the usage of a
modern language.

‒ By taking advantage of Rust tooling, we keep enforcing the documentation guidelines
we have established so far in the project. For instance, we require having all public APIs,
safety preconditions, `unsafe` blocks and type invariants documented.”

Original Rust for Linux RFC
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/

2013 2014 2015 2016 2017 2018 2019 2020

2013 2014 2015 2016 2017 2018 2019 2020

Taesoo Kim’s
rust.ko

Rust 1.0.0

2013 2014 2015 2016 2017 2018 2019 2020

Taesoo Kim’s
rust.ko

Rust 1.0.0

Alex Gaynor & Geoffrey Thomas
fishinabarrel’s linux-kernel-module-rust

Rust 1.26.0

2013 2014 2015 2016 2017 2018 2019 2020

Taesoo Kim’s
rust.ko

Rust 1.0.0

Alex Gaynor & Geoffrey Thomas
fishinabarrel’s linux-kernel-module-rust

Rust 1.26.0

Out-of-tree
approaches

2013 2014 2015 2016 2017 2018 2019 2020

Rust for Linux
GitHub Organization

Taesoo Kim’s
rust.ko

Rust 1.0.0

Alex Gaynor & Geoffrey Thomas
fishinabarrel’s linux-kernel-module-rust

Rust 1.26.0

Out-of-tree
approaches

2020 2021 2022 2023 2024 2025

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR

RFC

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR

Zulip

linux-next

Mailing list

RFC v10

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Merge

1st Kangrejos

1st
Rust MC

Zulip

linux-next

Mailing list

RFC v10

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Merge

1st Kangrejos

1st Minimum Rust
Supported Version

1st
Rust MC

rust-for-linux.com

rust.docs.kernel.org

Zulip

linux-next

Rust CI

Mailing list
Increased

collaboration with
upstream Rust

Collaboration with Rust

Since February, regular meetings between Rust and Rust for Linux.

Thanks a lot to Josh, Niko and Sid for helping to set them up.

Rust for Linux was a flagship Rust Project goal for 2024H2.

Closing the largest gaps that block building Linux on stable Rust.

Including language, library, compiler, CI...

See also Niko’s and my RustConf 2024 keynote.

— https://rustconf.com/schedule/
— https://blog.rust-lang.org/2024/08/12/Project-goals.html

— https://rust-lang.github.io/rust-project-goals/2024h2/rfl_stable.html

https://rustconf.com/schedule/
https://blog.rust-lang.org/2024/08/12/Project-goals.html
https://rust-lang.github.io/rust-project-goals/2024h2/rfl_stable.html

Linux in Rust’s and bindgen’s CI

One result that happened very quickly was including Rust for Linux in the
per-merge Rust CI.

That is, every Rust PR now build-tests the Linux kernel.

Both projects hope to avoid unintentional changes to Rust that break the
kernel.

Thus, in general, apart from intentional changes, the upcoming Rust compiler
versions should generally work.

bindgen will also include Linux in its CI.

— https://rust-for-linux.com/rust-version-policy
— https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html

https://rust-for-linux.com/rust-version-policy
https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html

Declaring a minimum Rust version (unpinning)

Having Linux in Rust’s and bindgen’s CI helped us unpin the Rust version.

In Linux v6.11, a minimum Rust version was declared.

Our “Minimum Supported Rust Version” is currently 1.78.0.

How often will we upgrade it?

When there is a good reason for that.

For instance, Debian Trixie has been requested to provide Rust 1.85 for
Edition 2024. If it happens, we may migrate to it.

— https://rust-for-linux.com/rust-version-policy
— https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html

— https://alioth-lists.debian.net/pipermail/pkg-rust-maintainers/2024-July/044870.html

https://rust-for-linux.com/rust-version-policy
https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html
https://alioth-lists.debian.net/pipermail/pkg-rust-maintainers/2024-July/044870.html

Distributions support

Declaring a minimum Rust version allowed us to start supporting distributions.

This was a top requirement.

Distributions that should generally work out of the box:

Arch Linux.

Debian Testing and Unstable (outside the freeze period).

Fedora Linux.

Gentoo Linux.

Nix (unstable channel).

openSUSE Slowroll and Tumbleweed.

Ubuntu 24.04 LTS and 24.10.

— https://docs.kernel.org/rust/quick-start.html#distributions
— https://rust-for-linux.com/rust-version-policy#supported-toolchains

https://docs.kernel.org/rust/quick-start.html#distributions
https://rust-for-linux.com/rust-version-policy#supported-toolchains

RFC v10

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Merge

1st Kangrejos

1st Minimum Rust
Supported Version

1st
Rust MC

rust-for-linux.com

rust.docs.kernel.org

Zulip

linux-next

Rust CI

Mailing list
Increased

collaboration with
upstream Rust

RFC

Linux
v6.6
LTS

v10

Linux
v6.1
LTS

2020 2021 2022 2023 2024 2025

Linux
v6.12
LTS

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Rust
1.46.0

Merge

Rust
1.62.0

Rust
1.71.1

Rust
1.78.0

1st Kangrejos

1st Minimum Rust
Supported Version

1st
Rust MC

rust-for-linux.com

rust.docs.kernel.org

Zulip

linux-next

Mailing list

Who is the team?

RFC v10

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Merge

1st Kangrejos

1st Minimum Rust
Supported Version

1st
Rust MC

rust-for-linux.com

rust.docs.kernel.org

Rust CI
Boqun Feng

Gary Guo

Björn Roy Baron

Benno Lossin

Andreas Hindborg

Alice Ryhl

Trevor Gross

Danilo Krummrich
Wedson

Almeida Filho

linux-next

Wedson Almeida Filho is the original author of many of the
initial abstractions, drivers and prototypes that others then went
to work into, including:

‒ Android Binder driver.
‒ 9p server and Async Rust.
‒ NVMe driver.
‒ Read-only FS abstractions and tarfs.
‒ GPIO driver.

Without him, the project would have taken much longer to get
bootstrapped.

It was a pleasure to work with him.

When you got interested/started in the project?

“I cannot remember the exact month, but I think it should be year 2020, I vaguely remember I
was interested and knew the project even before the talk about Rust in LPC, so it should be
before Aug, 2020 ;-)”

What got you interested/started in the project, i.e. why you joined?

“As some one who worked in Linux kernel and system programming for a few years, I was
always interested to see how type system (and even formal proof) can help in the area, and
Rust is just the perfect match for this purpose, so when people (mostly Miguel ;-)) figured out
how to build the Linux kernel with Rust enabled, I felt it's the time for me to chime in ;-)”

What are you working on? Anything else that you may want to share?

“I'm currently working on:

‒ develop and review Rust code in my focus areas: core kernel, atomic/locking/RCU.
‒ support Rust-for-Linux community, such as a) follow up email/zulip discussion with

GitHub issues, b) organize and host online meetings, c) organize zulip discussion.
‒ help more talents from Microsoft, my employer, find their way in Rust-for-Linux project.”

Boqun Feng
Microsoft

When you got interested/started in the project?

“That would have been all the way back in
https://github.com/Rust-for-Linux/linux/pull/52#pullrequestreview-567163056, so January
13th 2021.”

What got you interested/started in the project, i.e. why you joined?

“As someone who has been working on the rust compiler I noticed that RfL has many
dependencies on unstable features and some one rustc implementation details. I've been
trying to reduce these dependencies and to steer away from using unstable features that
are less likely to get stabilized. And doing unsafe code reviews has also been fun.”

Anything else that you may want to share?

“I'm not really active anymore as you may have noticed. Now that I've got a full time job, I
don't have as much spare time anymore as I used to. I'm still available for answering
(rustc) questions.”

Björn Roy Baron

https://github.com/Rust-for-Linux/linux/pull/52#pullrequestreview-567163056
https://github.com/Rust-for-Linux/linux/pull/52#pullrequestreview-567163056

When you got interested/started in the project?

“I think I started getting involved after the first RFC hits the list?”

What got you interested/started in the project, i.e. why you joined?

“I am interested because of prior experience of both the Rust and the
Linux kernel.”

Anything else that you may want to share?

“I don't have any interesting status update to share, as what I was
working on recently have very little to do with RfL. My involvement
nowadays is quite limited, with just occasional code reviews and weekly
meetings and I just don't have enough time...”

Gary Guo

“I got interested in the project at the end of 2021. One of my friends at university told me that
Rust would be added to the Linux kernel. In that year, I just learned Rust and was very excited,
talking a lot about it to my friends.

After my friend told me about it, I decided to take a look at the code in the github repository. I
didn't know anything at all about the kernel back then (aside from "it's the kernel, it does
hardware stuff") and I just opened random files until I found the `rust/kernel` folder. There I
looked around for something familiar and I managed to find the synchronization primitives. It
was with some shock that I discovered that the `new` functions were `unsafe`!

This discovery motivated me to try to find a solution, first I looked around for some issues and
PR fixes, but I did not find anything that solved it in a nice way. The next few months I hacked
away at the problem and eventually opened my first issue explaining my issue and my initial
solution.

Then one thing lead to another and now my solution for this problem is upstream and ensuring
that we don't have to write (as much) `unsafe` initialization code!

Nowadays, I am working on field projections, a general solution to many problems that have
been coming up again and again in Rust for Linux. Additionally, I am maintaining the
`pinned-init` library and I have a patch series on the back burner about untrusted data. Lastly I
had an idea about abstracting the intrusive-data-pattern into a library similar to `pinned-init`,
but I haven't had the time to do so.”

Benno Lossin

https://github.com/Rust-for-Linux/linux/issues/772
https://github.com/rust-lang/rfcs/pull/3735

“I think I started looking at the project around 22Q1.

I started working for a systems group at Western Digital. In a previous position I had learned
Rust and used it for user space and embedded micro controller firmware. At WD I kept
pushing for Rust as implementation language for new projects - so I quickly became "the
Rust guy". One of my colleagues was organizing Lund Linux Conference, and he had heard
about the Rust for Linux project. He thought it would be great to have a presentation about
Rust for Linux at LLC. Since I was the Rust guy, he asked me if I could give such a
presentation.

I thought that could be fun - but since I did not have any association with the Rust for Linux
project, I decided to look into it to do some research for my presentation. I started interacting
with the project via the GitHub issues list. This rather quickly became a full time thing.

I am currently working towards providing a fully featured API for writing block device drivers in
Rust. To that end I am building a Rust version of the C null block driver. The C null block
driver has quite a few dependencies on other kernel APIs, such as module parameters,
timers, xarray, configfs. So to build this Rust version of configfs, I have to make all these APIs
consumable from Rust. I am currently working on making configfs available.”

Andreas Hindborg
Samsung

“I think I started working on the project around August 2022. Maybe the
month before, but that's the earliest evidence I can find. I think the history
for how I ended up working on Rust for Linux goes like this:

‒ I was working on async Rust with Tokio.

‒ My first task at Google was to add async Rust support to Android's
userspace Binder library.

‒ When I finished that, we wanted to improve the kernel driver to make
the userspace async support better.

‒ We found that to be really difficult in the C driver, and that's when I
decided to work on the Rust driver, since I thought it would be easier
to adjust for better async support.”

Alice Ryhl
Google

“Trevor Gross has been involved with the Rust for Linux project for
more than a year now. He has been active reviewing Rust code in the
mailing list, and he already is a formal reviewer of the Rust PHY
library and the two PHY drivers.

In addition, he is also part of several upstream Rust teams:
compiler-contributors team (contributors to the Rust compiler on a
regular basis), libs-contributors (contributors to the Rust standard
library on a regular basis), crate-maintainers (maintainers of official
Rust crates), the binary size working group and the Rust for Linux
ping group.

His expertise with the language will be very useful to have around in
the future if Rust keeps growing within the kernel, thus add him to the
`RUST` entry as a reviewer.”

What got you interested/started in the project, i.e. why you joined?

“As mentioned in my talk at Kangrejos and LPC, Nouveau has a lot of problems
(GSP firmware abstractions, very complicated and undocumented lifetime and
locking architecture, missing documentation, etc.).

A fair number of those issues especially improve with Rust (GSP firmware
abstraction with proc macros, lifetime management, memory safety).

Obviously, those problems are not specific to nouveau. Hence, the motivation is
not only limited to solve Nouveau's issues with Nova in Rust, but also motivated
by improving the whole kernel making use of Rust's capabilities.”

What are you working on? Anything else that you may want to share?

“I'm working on:

‒ leading the Nova driver efforts as a successor of Nouveau.
‒ driving and working on the enablement of the required Rust infrastructure

for Nova (e.g. device / driver, PCI, I/O abstractions, ALLOC API, etc.).
‒ helping to enable and grow Rust infrastructure in the kernel in general as

one of Nova's explicit goals.”

Danilo Krummrich
Red Hat

What about GCC?

gccrsrustc_codegen_gcc

2022

linux-next

RFC v10

2020 2021 2023 2024 2025

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Merge

1st Kangrejos

1st Minimum Rust
Supported Version

1st
Rust MC

rust-for-linux.com

rust.docs.kernel.org

rustc_codegen_gcc’s
first recorded commit

...can run libcore's tests and pass most of them

...can bootstrap rustc

...can compile Rust code on a target not supported by LLVM at the time (m68k)

...can compile Rust for Linux

linux-next

RFC v10

2020 2021 2022 2023 2024 2025

1st
LPC talk

1st PR v5

1st
Maintainers Summit

Merge

1st Kangrejos

1st Minimum Rust
Supported Version

1st
Rust MC

rust-for-linux.com

rust.docs.kernel.org

GCC 14.1
Philip Herron is hired to
work on gccrs full-time

 Added as an official
experimental frontend;

available from GCC 13.1

gccrs started in 2014
Hopefully compiling
core in GCC 15.1

All mistakes and bolding are mine.

What kernel developers think about Rust?

Let’s take a look...

“2025 will be the year of Rust GPU drivers. I am confident that a
lot will be achieved once the main abstractions are in place, and so
far, progress has been steady, with engineers from multiple
companies joining together to tackle each piece of the puzzle.
DRM maintainers have been very receptive too, as they see a clear
path for Rust and C to coexist in a way that doesn’t break their
established maintainership processes. In fact, given all the buy-in
from maintainers, companies and engineers, I’d say that Rust
is definitely here to stay in this part of the kernel.”

Daniel Almeida
Kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What
features do you think will be useful for kernel development, especially around your area? Do you think it
will be hard to learn for other kernel developers?

“I think it's great that Linux is demonstrating how to integrate Rust
into existing large C programs. The challenge of writing correct
and idiomatic bindings is nontrivial and can indeed pose
problems for developers that are less versed in Rust; but Linux is
showing that it's possible and I'm sure that other projects will
follow.”

Paolo Bonzini
Kernel maintainer

“I think the introduction of Rust in the kernel is one of the most
exciting development experiments we've seen in a long time.

Beyond the well-known technical benefits, particularly around safety
and memory management, one of the most interesting aspects, in
my view, is the potential to attract a new generation of
developers to the kernel, that could bring fresh ideas and new
perspectives.

That said, many open questions remain, especially around tooling,
integration with the existing kernel subsystems, long-term
maintenance and how Rust will be adopted for core kernel
development.

The enthusiasm from some parts of the kernel community is
undeniable, so it seems almost inevitable that we will continue to
see more Rust code merged upstream. However, like any big
change in the kernel, broader adoption will probably take time.”

Andrea Righi
Kernel developer

“Rust for Linux (RfL) is on a good shape and makes quite good
progress - each kernel cycle's pull summary gives a impressive
overview of the details. Recently the RfL project made a big step
with Danilo's device patches. And with Viresh's property_present() a
first step for device tree handling is done. Which will be needed to
give the ARM support a big push. Additionally, getting the support
from some core kernel developers like Greg helps the project a lot!

On the other hand the RfL project needs to be careful to not become
a victim of its own success. The interest and the number of people
working on Rust for Linux is growing. And with this the number of
discussions, proposals and patches increase. The project needs to
be careful to not overload the maintainers and distribute the
increasing workload to more shoulders.”

Dirk Behme
Kernel developer

“The Rust-for-Linux project is groundbreaking but built on solid ground.
It's groundbreaking because Rust offers security guarantees that Linux
has never enjoyed before, and solidly built because changes to the
kernel itself are made slowly and with extreme care.

Still, the project faces unique challenges. Rust's biggest weakness, as
a language, is that relatively few people speak it. Indeed, Rust is not a
language for beginners, and systems-level development complicates
things even more. That said, the Linux kernel project has historically
attracted developers who love challenging software -- if there's an open
source group willing to put the extra effort for a better OS, it's the kernel
devs.”

Would you like to see standard C or its implementations get memory-safety-related features, especially following
Rust's ones?

“Personally, I don't love the idea of trying to make 'standard' C completely
memory-secure; a good knife should be sharp enough to cut you!”

Carlos Bilbao
Kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What
features do you think will be useful for kernel development, especially around your area? Do you think it
will be hard to learn for other kernel developers?

“Started with rust around 1-2 years prior that I started with the RfL
work. At this time I would guess that user space rust is helpful but
also not too much when using both a custom alloc and no-std.
Kinda depends on the projects but the overall way of writing the
language will of course apply.”

Do you think Rust will continue growing in the kernel? Do you think it should?

“I sure hope so, but also genuinely think it will, not in all subsystems
for now but it feels helpful to have rust manage lifetimes and also
scope some things when written in rust.”

Fiona Behrens
Kernel developer

If your company is using Rust for kernel-related tasks (perhaps internally), could you share any thoughts
about it? If not, have you had any conversations internally about it?

“I’m the only person in my team at my company that does kernel
development at all. There, I usually write C drivers (LED drivers
for hardware that don’t have mainline support). But now, I am
currently translating one of those drivers to rust with the idea
to also mainline it and if that is successful just bin the C one
(which is at this point less complete then the rust one).”

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“Well, it mostly attracted me. I did some C patches before but the
work I do in the kernel is mostly rust. It just feels easier to use as
the documentation is IMHO a bit better (though that also makes
writing abstractions harder because you have to come up with
documentation for C functions that are abstracted in rust, where the
C function often is lacking documentation).”

Fiona Behrens
Kernel developer

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones?

“Could be fun, but also don’t see to much reason it in. For me the
two languages just have different concepts. I still use both
languages as some other projects (zephyr) don’t have rust support,
and stuff like how zephyr handles the device tree would for now just
be a pain in rust. Adding memory safety would be rather nice,
but I fear that it would more likely destroy the language and
make it less usable than actually help.”

Fiona Behrens
Kernel developer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language?

“The language is interesting, and I have no real opinion about it
the syntax. I played a little with it in user space, and I just
absolutely hate the cargo concept. It is like pip and to me I hate
having to pull down other code that I do not trust. At least with
shared libraries, I can trust a third party to have done the build and
all that. Also, if you have a large library it does bloat the applications
that use it.”

What features do you think will be useful for kernel development, especially around your area?

“The obvious one is the memory safety it gives. That's really
the downfall of C. And probably some of the template like features
of C++ that it brings.”

Steven Rostedt
Kernel maintainer

Do you think it will be hard to learn for other kernel developers?

“Yes ;-)

It requires thinking differently, and some of the syntax is a little
counter intuitive. Especially the use of '!' for macros, but I did get
use to it after a while.”

Do you think Rust will continue growing in the kernel? Do you think it should?

“Yes and yes. Although, I also see things like cleanup.h making C
more robust, and if a subset of C becomes as safe as rust, it
may make rust obsolete. But it requires the thread of rust to
push that. So even if rust doesn't become the defacto language
and something else takes over, I believe rust would have played a
large role in moving that way.”

Steven Rostedt
Kernel maintainer

If your company is using Rust for kernel-related tasks (perhaps internally), could you share any thoughts
about it? If not, have you had any conversations internally about it?

“I'm sure my company uses it, as I see patches from people in my
company. But not in my department (chromebooks) is more about
just making the kernel stable and not really about new development.
Although, we do new development for the scheduler and other core
code, but core code is not yet a candidate for rust code.”

Steven Rostedt
Kernel maintainer

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“I think you can answer that better than I can. I'm too old school to
know ;-)

But I feel rust is more of a language that younger developers
want to learn, and C is their dad's language.”

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones?

“Heh, I wrote the above before seeing this. And yes, I would love C
to get better features. This is why I'm now a big user of the
cleanup.h code. I hope that C gets even more memory safety
features! And as I said previously, I do believe that push is due to
the introduction of rust.”

Steven Rostedt
Kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What features do you think will be useful for
kernel development, especially around your area? Do you think it will be hard to learn for other kernel developers?

“In my opinion, Rust is the biggest advance in systems programming languages in
decades, perhaps since C.

To put this in some historical and future context, my dream for a far off future is for a
systems programming language where embedded, compiler checked correctness proofs
are practical and ergonomic.

We know, from Rice's theorem, that practical correctness checking has to come from type
system improvements, and the future that's evolving now in research languages is looking
like dependent types.

But the first thing that had to be solved, for systems languages, was effective and
practical checking of memory references: hence the borrow checker, part of the type
system in Rust.

That immediately solves the biggest issue with C, and it even improves upon other memory
safe languages by constraining side effects (mutable ^ shared references) in a way that
gets us some of the desirable properties of pure functional languages.”

Kent Overstreet
Kernel maintainer

Do you think Rust will continue growing in the kernel? Do you think it should?

“Yes, and I very much look forward to that.”

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“I believe so. It's getting harder and harder to find good C
programmers among the younger generation, much the same as
with assembly a few decades ago. And C, and even more so
kernel C, have an enormous learning curve which Rust helps a
great deal with.”

Kent Overstreet
Kernel maintainer

Would you like to see standard C or its implementations get memory-safety-related features, especially following Rust's ones?

“I would much rather see those engineering resources put towards increased adoption of
Rust.

The security story with C has actually gotten dramatically better over the past
decade or so, with the most recent advance being widespread practical effective fuzz
testing. We're well into the "long tail" of how secure we can make C, further
improvements will require bigger investments for smaller gains.

But we're potentially not that far from being able to write most new code in Rust instead
of C, especially if we can get past some of the process issues that have been slowing
things down.

The kernel, by default, tends to be rather slow and nitpicky: dot every i and cross every t.
But there's a time and a place for that, and in the early stages of a project's lifecycle -
like Rust in the kernel - we should be prioritizing experimentation and rapid
iteration. Also, Rust is dramatically easier and safer to refactor than C - meaning it's
easier to go back and fix mistakes.”

Kent Overstreet
Kernel maintainer

Any impressions you had over the course of the history of the project...

“Rust people, in my experience, have been universally great to work
with. It's a wide open field, with lots of interesting technical
problems still to be solved and cool work waiting to be done.
There's a lot to be optimistic about :)”

Kent Overstreet
Kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What
features do you think will be useful for kernel development, especially around your area? Do you think it
will be hard to learn for other kernel developers?

“On the kernel side, I've been mostly just watching but I've been
using rust quite a bit (as much as I can actually) in userspace
projects including sched_ext schedulers. I think memory safety
and more structured design and programming which are
encouraged and enforced by the language would be beneficial
for kernel (while also being an obstacle to adoption that is).
The standard containers and other crates add a lot of convenience
but I'm unsure how well they can translate to kernel due to control
over memory allocation and locking.”

Tejun Heo
Kernel maintainer

Do you think Rust will continue growing in the kernel? Do you think it should?

“I sure hope so.”

If your company is using Rust for kernel-related tasks (perhaps internally), could you share any thoughts
about it? If not, have you had any conversations internally about it?

“Nothing directly on kernel but a lot of, if not most, new things
around kernel are switching to rust.”

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“I don't know. Both have pretty steep learning curves after all, but it
seems clear that there will be more programmers who are
familiar with rust going forward.”

Tejun Heo
Kernel maintainer

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones?

“I don't think I know enough to have a strong opinion here and
maybe smarter people can come up with a clean-ish way to
integrate memory safety into C but I'm skeptical that the end
result would be able to maintain the positive aspects of both
languages especially given that how thorough memory safety's
impact on rust language itself and code written on it seems.”

Any impressions you had over the course of the history of the project...

“Looks like an uphill battle but I hope you guys persevere as there
are substantial long-term gains to be had here.”

Tejun Heo
Kernel maintainer

“I can't yet write a single Rust program, yet I'll be considering it for
anything new and serious for the kernel provided we get gcc
support. I recently learned that the way in which we can leverage
Coccinelle rules for APIs in the kernel for example are not needed
for Rust -- the rules to follow APIs are provided by the compiler for
us. Similarly formal verification may actually be easier with Rust
than in C, and in the future we may be able to embed preconditions
and postconditions as part of routines which may include unsafe
functions to assist with formal verification. All this makes Rust
extremely appealing towards the future.

I'd recommend however for Rust *kernel* folks to work on public
OKRs to more easily and collaboratively prioritize work and
requirements by the community. Not being able to use gcc with
Rust makes it currently a deal breaker for built-in code. To me that's
O1 for getting Rust into any serious part of the Linux kernel.”

Luis Chamberlain
Kernel maintainer

“Although I support the idea of introducing Rust to the kernel, I still
have mixed feelings about it. I believe Rust is the language we need
to make low-level development safer, including kernel development.
I enjoy programming in Rust, as its structure allows us to build more
powerful abstractions. However, I still have doubts about the best
way to move the kernel in this direction. With more than 30 years
of history, the kernel has deeply rooted values and structures,
making it difficult to change its course. While some might
suggest developing a new kernel, I still believe in RfL. Our
community has the maturity to discuss, find compromises, and work
toward a shared goal. For Rust to succeed in the kernel, it
cannot be a second-class citizen; it must be a first-class
citizen, the gold standard for developing new drivers.”

Maíra Canal
Kernel maintainer

“Using rust code in the kernel is an interesting development and I
expect we will see more use over time. If/when I can make the
time for it I definitely want to look into using rust for e.g.
device-drivers myself.”

Hans de Goede
Kernel maintainer

Do you think it will be hard to learn for other kernel developers?

“In my case, it is. I am really open to including Rust and trying out
what benefits it brings. Yet personally, I have zero bandwidth to
learn it and no customer I have will pay me for learning it. I
watched some high level talks about Rust in Linux and am positive
about it. But I still have no experience with the language.”

Do you think Rust will continue growing in the kernel? Do you think it should?

“Yes and yes. Like Linus said at the Maintainers Summit 2023, we
can always revert it if it fails ;) But frankly, I don't think this will
happen.”

Wolfram Sang
Kernel maintainer

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“I think it has to, otherwise it will fail. The biggest problem I see is
with reviewing Rust code. I simply cannot review a driver
written in Rust. Especially given that a reviewer should ideally
have larger experience with the language than the contributor. So, I
need assistance from someone who is able to do that. I can
assist then with my subsystem specific knowledge and,
hopefully, it will work out. Probably learning Rust bit-for-bit this way.
It kinda worked for DT bindings in YAML. We will have to see if this
can be a blueprint for Rust.

I know you guys are aware of the problem. Maybe it is not a
problem now because the amount of Rust code can easily be
handled. I don't know.”

Any impressions you had over the course of the history of the project...

“I like your constant effort of getting feedback from all of the Kernel
community. Making sure everybody gets heard and can provide
input. Kudos!”

Wolfram Sang
Kernel maintainer

“I should confess that I'm not a big fan of Rust. I once tried to read
an online book for Rust years ago. My impression was that it
feels more complicated than I wanted, so I stopped reading the
book, and haven't tried Rust at all so far.

I'm optimistic about Rust for Linux in long term, though. I believe
the project is continuously getting attraction from many developers,
and it is well maintained with good culture. I believe it will make
Linux not only memory-safer, but also helps attract newer and better
contributors. I'm particularly convinced with Miguel's announcement
of the Rust for Linux experiment success, which was made at LPC
2024.

After the announcement, I started planning to use Rust on
DAMON, to make it memory safer and attract more developers.
My plan is to start from writing DAMON sample modules. Also, a
developer recently reached out to me with their plan to write Rust
bindings for DAMON. No real progress is made so far, but I'm
optimistic about the future of Rust for Linux and DAMON.”

SeongJae Park
Kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What features do you think will be useful for kernel development,
especially around your area? Do you think it will be hard to learn for other kernel developers?

“I've used Rust a little bit in personal userspace projects, but the kernel has been where I've spent most of
my time. This is not the easiest path into Rust, as it hits all of the nasty bits of unsafe code, and complex
behaviour. Spending a bunch of time writing userspace projects first would probably help, though
this can be hard to justify for a busy maintainer, especially since some of the userspace Rust
(particularly 3rd-part crates) won't apply in the kernel.

Favourite feature: the enum type.
Scariest feature: proc macros.”

Do you think Rust will continue growing in the kernel? Do you think it should?

“Yes, I think Rust will continue to eke out a bigger place in the kernel. I suspect there are some parts of
the kernel which will adopt Rust more quickly and completely, and some which will need to remain
C-only for a long time, in order to support systems (or people) who are not ready for Rust yet.”

David Gow
Kernel maintainer

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“Probably yes to both, but it's a bit of a frustrating path: the projects have some significant differences in
style and opinion, and working on the kernel involves using some of the most difficult bits of Rust, and
working with Rust bindings involves touching some of the more subtle bits of the kernel. This will hopefully
get easier with time, but everyone involved will still need to make compromises.”

Would you like to see standard C or its implementations get memory-safety-related features, especially following Rust's ones?

“I'd definitely love to see C pick up more memory safety features: both as core parts of the language,
and as implementation features and tools like sanitizers. Kees' work in the kernel has been a really good
example of how to do this well, I think.”

David Gow
Kernel maintainer

Any impressions you had over the course of the history of the project...

“Some random impressions:

‒ Kernel Rust has a different flavour to idiomatic userspace Rust (different APIs, different build system,
failable allocations, no dependencies, etc). This isn't necessarily a _bad_ thing (and kernel C is different
to standard C as well), and we shouldn't be too afraid to let kernel Rust diverge a bit.

‒ Rust as a language is evolving very quickly. This is great, because blockers which are making kernel
code difficult/impossible are being resolved quickly, but also really annoying because it's necessary to
update tools all of the time. The wider compiler version support introduced recently has been a great help
here, but it's not a perfect solution, as new versions are regularly introducing new warnings which need
fixing, so testing on lots of versions is required anyway. This will hopefully settle down a bit over time.

‒ Support for more architectures is important, and it's making great progress. The Rust roadmap is
exciting here, as is work on gccrs and rustc-backend-gcc.

‒ Making these structural changes in the kernel project has a very high latency, but moves quickly once it
really gets going. I think Rust-for-Linux is starting to pick up momentum, and the fact that progress can
seem slow (particularly for people used to the Rust project's fast pace) may seem discouraging, but I
think we're starting to see some really tangible progress, and it'll only get faster from here.”

David Gow
Kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What
features do you think will be useful for kernel development, especially around your area? Do you think it
will be hard to learn for other kernel developers?

“I find any sufficiently complex Rust codebase is largely
unreadable without rust-analyzer. This makes reviewing patches
more painful since I need to import them into an enabled editor,
even for patches touching code I'm familiar with, instead of
reviewing inline with the patch thread. So reviews from my phone
when I'm on the go are not always possible.”

Do you think Rust will continue growing in the kernel?

“Yes.”

Do you think it should?

“Neutral.”

Anonymous kernel maintainer

If your company is using Rust for kernel-related tasks (perhaps internally), could you share any thoughts
about it? If not, have you had any conversations internally about it?

“Not really kernel, but we use Rust as the user space component
with the vfio kernel driver. They're generally pretty good. I know
many people have said this, but it's also my experience that
developing new features in Rust tends to require more time
fighting the compiler, but much less time debugging runtime
failures. Sometimes crazy complex stuff runs correctly the very first
time, and that's a pretty interesting experience compared to
developing similarly complex implementations in C.”

Anonymous kernel maintainer

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“We need younger people interested and involved with Linux kernel,
and in my experience, fewer college grads are learning C. The
Rust language supposedly adds to the pool of talent that would
otherwise not readily be able or want to contribute, so I guess that's
good.”

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones?

“I think it would be difficult to get Standard C to do such things. More
likely would get GNU and LLVM to make extensions targeting
specific cases. The auto cleanup seems like a step in the right
direction.”

Any impressions you had over the course of the history of the project...

“It seems unnecessarily controversial.”

Anonymous kernel maintainer

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What
features do you think will be useful for kernel development, especially around your area? Do you think it
will be hard to learn for other kernel developers?

“I've been using Rust mostly in userspace so far. Using it seriously
inside the kernel is for a while one my TODO, but at my dayjob
there was so far no opportunity and in my spare time I'm busy with
other things.

On learning Rust: If you know OCaml or Haskell, Rust feels more or
less familiar. On the other hand, from a pure C background
thinking in Rust can be a tough job.”

Do you think Rust will continue growing in the kernel? Do you think it should?

“Yes, it will and I deserves a fair chance. Resistance from some
subsystems or individuals is expected, but that's okay.”

Anonymous kernel maintainer #2

If your company is using Rust for kernel-related tasks (perhaps internally), could you share any thoughts
about it? If not, have you had any conversations internally about it?

“Sadly at my dayjob I've touched Rust only in userspace.”

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“For sure! It important for a project like Linux to gain new people
and new ideas. On the other hand, newbies need to understand that
kernel maintainers are super careful and often don't see the benefit
of maintaining a second language. But time will resolve all these
issues.”

Anonymous kernel maintainer #2

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones?

“Yes! I really hope that C will gain sooner or later such features.
The __counted_by attribute is such an example, I hope to see more
soon.”

Any impressions you had over the course of the history of the project...

“I think Rust guys don't really know that they have already won.
Both Linus and GregKH want to give Rust a chance, that a
huge win. Sure, the progress is slow, much slower than some
guys expected. But Linux is a huge and complicated project with
many individuals involved.”

Anonymous kernel maintainer #2

“I'm a strong supporter of Rust in the kernel, although I do worry that it will make it even
more difficult to make pervasive treewide changes in the future. I have been meaning to get
more involved with Rust for Linux, and I am subscribed to the mailing list, and hopefully I will be
able to engage more in the near future.

I am reasonably familiar with Rust. I wrote and maintain a Rust implementation of EFI for arm64
virtual machines in QEMU [0], which is based on an efiloader crate which I wrote for this
purpose. I also co-maintain the aarch64-paging crate with a fellow googler, which is another
effort that originated in my firmware implementation.

One of the things on my personal to-do list is actually to run this EFI code inside the kernel,
which will be useful for securely booting EFI payloads such as systemd UKI images.
Integrating a Rust crate in that manner is going to create all kinds of challenges, I expect,
so I'll surely come and find you and the team for advice.

[0] https://github.com/ardbiesheuvel/efilite

I wrote this as a proof-of-concept, to prove that -on arm64- booting a QEMU/kvm VM with
minimal firmware is actually faster than booting a VM with no firmware at all. I won't bore you
with the details, but some people love to hate EFI for being slow, and so having a fast (and
safe!) implementation that is actually faster than nothing was quite useful.”

Ard Biesheuvel
Kernel maintainer

https://github.com/ardbiesheuvel/efilite

If you have tried Rust so far, perhaps in userspace, what are your impressions of the language? What
features do you think will be useful for kernel development, especially around your area? Do you think it
will be hard to learn for other kernel developers?

“The jury is still out, but I suspect that the safety features will
be useful -- and also hard to learn for many developers.”

Do you think Rust will continue growing in the kernel? Do you think it should?

“Slowly at first, with later results depending on experience.”

Will Rust in the kernel attract more contributors (to Rust or to the kernel)?

“Rust appears to be the new hotness in universities, so perhaps
it will attract more new-college graduates to the kernel. Success
stories would of course attract existing kernel developers to Rust,
especially in parts of the kernel that have suffered from
memory-safety issues.”

Paul E. McKenney
Kernel maintainer

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones?

“I believe that there will be memory-safety features in C++,
maybe later in C, but I would not be surprised if they ended up
differing significantly from those of Rust in order to (1) support
legacy C++/C code, (2) to better address specific existing use
cases, and (3) to also handle other safety issues. I do not expect
any of this to be free from spirited discussions and other forms
of controversy. ;-)”

Any impressions you had over the course of the history of the project...

“The patience and persistence has been good, and will likely be
required going forward. (Hey, do you want to change the world or
don't you?)”

Paul E. McKenney
Kernel maintainer

“I've been working exclusively in Rust for the last 3 months, and I don't ever want to go back to C
based development again.

Rust makes so many of the things I think about when writing C a non-issue. I spend way less
time dealing with stupid bugs, I just have to get it to compile.

The lifetime rules make everything so nice, there's way less details to get wrong. I've been writing C
code in the linux kernel for 20 years and I still make the same stupid mistakes during development.

Rust enables me to be faster, more accurate, more bugfree, so I can focus on the actual important
part of my job, solving problems.

I have enjoyed some of the RAII things that Peter has added to give us some more modern lifetime
features in C, but I think that unless C makes some pretty fundamental, radical changes it will never
be able to compete with Rust when it comes to safety and ease of use.

I wish Rust were more successful in the linux kernel, and it will be eventually. Unfortunately I
do not have the patience to wait that long, I will be working on other projects where I can utilize Rust.
I think Rust will make the whole system better and hopefully will attract more developers.”

Josef Bacik
Kernel maintainer

On 2eff01ee2881 ("Merge tag 'char-misc-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc"):

“...

– rust misc driver bindings and other rust changes to make misc drivers
actually possible.

I think this is the tipping point, expect to see way more rust
drivers going forward now that these bindings are present. Next
merge window hopefully we will have pci and platform drivers working,
which will fully enable almost all driver subsystems to start accepting
(or at least getting) rust drivers.

This is the end result of a lot of work from a lot of people, congrats to
all of them for getting this far, you've proved many of us wrong in the
best way possible, working code :)

...”
Greg Kroah-Hartman

Kernel maintainer

“In my mind, the Rust for Linux project has already achieved an
important goal: proving that Rust is indeed a viable and
desirable language for kernel development. I think that the
discussion on whether we should go that way has run its course; as
they say, it's all over but the shouting. Of course, this is the kernel
community, so we should expect a fair amount more shouting
still. This work is important for the long-term viability of Linux,
and I am glad that it is succeeding.”

Jonathan Corbet
LWN editor and kernel maintainer

What other stakeholders think?

Let’s also take a look...

All mistakes and bolding are mine.

“Personally, I quite like Rust as a language. I'm a programming
language enthusiast, and seeing affine types used in a production
language has been really interesting. Integrating it into a large
existing project like the kernel is a ton of work, though. I think it will
be many years until Rust is fully integrated, if it ever is.”

Daroc Alden
LWN editor

“I am very happy and proud to see Rust used in the Linux kernel. :)
I think R4L has pushed Rust towards stabilizing features that
will also be useful elsewhere and that would have taken a lot
longer to materialize otherwise (e.g. the smart pointer work), which
is good, though we have to be a bit careful to avoid an unhealthily
narrow focus here. It's also been a great challenge for Rust as
the kernel has quite special needs, stretching Rust's desire to
provide safety by default into new domains (I am thinking of the
entire "target modifier" project here) -- but I think this, too, will
benefit Rust in other low-level / embedded domains. I didn't mean to
become an expert in "terrible flags that can break your code if you
use them incorrectly", but I am grateful that the R4L folks are taking
this concern seriously and investing the time and effort to find
Rust-y solutions to these challenges.”

Ralf Jung
Rust t-opsem & t-miri lead

“Rust for Linux is a big deal for Rust. It helps us validate the bare
metal and kernel space use case and bring it to maturity. It also
helps us focus our efforts on features that people have been
wanting for a long time. The working group has felt very
collaborative and I've enjoyed working with everyone in it.”

Would you like to see standard C or its implementations get memory-safety-related features, especially
following Rust's ones? Or better interop?

“Yes! I think adding memory safety and interop features would
be an extremely positive direction for C. It's still the lingua franca
ABI, and the more we can safely express across that ABI, the better
off everyone will be.”

Tyler Mandry
Rust t-lang lead

“For me, RfL is the proof of Rust potential. It's very biased but GCC
support is one of the last key blockers for having Rust
everywhere. In addition to that, a lot of (old/esoteric) platforms are
not supported. Once the GCC backend is done, hopefully RfL
will get a (big) step closer to succeed.

I don't think adding Rust support in the Linux kernel will increase the
number of contributors, but it will hopefully bring new blood.”

Guillaume Gomez
Rust t-rustdoc lead

“In the past year, collaboration between RfL and the Rust
project has increased substantially, enabling stabilisation of
parts of the language and toolchain that would otherwise not
have seen much progress. Given RfL's low-level requirements,
these interactions are particularly meaningful and mutually
beneficial, ultimately strengthening both projects.”

Urgau
Rust t-compiler member

“I believe the integration of Rust into the Linux kernel represents a significant
milestone for both Rust and the kernel community. Rust's emphasis on memory
safety and concurrency could not only enhance the kernel's reliability but also
set a precedent for how other systems programming languages might evolve.
The collaboration between Rust developers and kernel maintainers has been
exemplary, showcasing how open-source communities can work together to push
technological boundaries. This partnership could serve as a model for future
integrations of innovative technologies into established systems.

Regarding GCC support, it will be really important to have because this can
drive the community to have another group of people to implement the Rust
language, which helps to resolve hidden bugs that we may not have discovered yet,
simply because no one has tried digging inside the implementation of the compiler.

As for C, incorporating memory-safety features inspired by Rust would be
really nice to see what could be built on an existing language where the
'memory-safety features' are hidden inside the expertise of the developer, and try to
make these features more accessible to everyone!”

Vincenzo Palazzo
Rust wg-macros lead

“My experience with voluntary work in between Rust-for-Linux and
Rust team has still been rather short-termed. In spite of this, from a
personal perspective of mine, a healthy interaction between the
two organisations is being developed under the stewardship of
both the organisations and individual team members, through the
aid of which I have had the chance to gather support and
assistance, wherever and whenever possible.

In addition, this journey has provided a healthy amount of
assurance and courage that has greatly kindled my interest in
exploring areas of the Linux kernel. I would say that the feeling is
not particularly technically driven but rather culturally motivated. It is
about exchange of knowledge and ideas for the betterment. I firmly
believe that the outlook of attracting contributors onto both of
the projects is becoming ever more promising.

Somehow it reminds me of what is written in Go West from Village
Boys. Together we will love the beach, learn and teach, change our
pace of life and work and strive.”

Xiang Fei Ding
Rust contributor

“I think Rust in the kernel is a net positive for both the Linux project and the Rust programming
language. I think it will help show unconvinced people that Rust can and should be used for serious
engineering and low-level programming. Features adapted to the language in order to create
Rust-for-Linux will definitely be useful for other projects, I think particularly in areas with important
restrictions on memory.

I believe that GCC support is an important step for Rust, be that through rustc_codegen_gcc,
Rust to C backends, or gccrs. GCC supports a lot of targets, some very old but still in use. Users of
these targets deserve to be able to enjoy writing Rust, and having wider reach is a net positive for the
language in my opinion.

I would like for C to get safer, but I'm not sure that it can realistically be done. If you look at Sean
Baxter's efforts to bring a borrow-checker to the C++ programming language, you'll see that extra
syntax is required, and that the existing C++ standard library would not work with borrow-checking. The
cost to add safety features to languages which weren't designed with them in mind seems really high to
me. On the other hand, hands-on studies have shown that vulnerabilities will often come from new
code, not old one - focusing on FFI and inter-operability between Rust and C/C++ seems like the
correct path to me. It would enable slowly adding Rust components to existing C/C++ programs, which
would improve safety on newer code.”

Arthur Cohen
gccrs

“Rust has an extremely extremely(2x) welcoming community, especially for
beginners. Though starting it is daunting with the borrow checker and lifetimes, it
definitely allows people with low experience in C such as myself make less errors. In
my opinion such things accumulate over time leading to a safer codebase in general.

The amazing Rust for Linux team is working very efficiently to make Rust a reality in
the Linux kernel, and it would only be a matter of time before we start seeing it in
more complex, critical systems. There is plenty of information on the internet about
how great the build system and community is.

We have been working on Coccinelle For Rust for more than 2 years now and
started with very little knowledge in Rust, but the communities on Zulip and the
mailing lists were very helpful with its development and very clear about the
problems they are facing currently.

In my opinion Rust could potentially lower the bar for entry into memory and safety
critical systems while still maintaining the quality of code, as one does not have to
make as many considerations as one does with C.”

Tathagata Roy
Coccinelle for Rust

What about companies?

“Samsung employs a full-time engineer to work on
Rust for Linux.”

“In the context of the Nova project Red Hat
dedicates three fulltime positions to the Rust for
Linux project.”

“The Linux kernel provides the security foundation for many of Google's
products such as Android. More than just about any other component, it's
important that the kernel provide robust security, and itself be robust
against security vulnerabilities. Using the memory safe language Rust is a
crucial step in fortifying the kernel against vulnerabilities and bolstering its
overall security posture. We are already working on multiple Rust drivers.”

Lars Bergstrom
Director of Engineering

Google Android

“Rust Community’s contribution to Linux stands tall as a hopeful
example of a true inclusive global open-source collaboration that is
paving the way toward a future in which safe, open and secure
computing can serve all of humanity. We are grateful to Miguel and
the rest of ‘Rust for Linux' team for their dedication and relentless
pursuit of building a better tomorrow.”

Sid Askary
Technical Director of Open-Source

Futurewei Technologies

Sponsors & Industry support

— https://rust-for-linux.com/sponsors
— https://rust-for-linux.com/industry-and-academia-support

— https://www.memorysafety.org/initiative/linux-kernel/
— https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

https://rust-for-linux.com/sponsors
https://rust-for-linux.com/industry-and-academia-support
https://www.memorysafety.org/initiative/linux-kernel/
https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

How to contribute?

How to contribute?

https://rust-for-linux.com/contributing

https://rust-for-linux.com/contributing

Kangrejos 2022, Oviedo, Spain

Kangrejos 2023, Gijón, Spain
— https://kangrejos.com

https://kangrejos.com

Kangrejos 2024, Copenhagen, Denmark
— https://kangrejos.com

https://kangrejos.com

Rust for Linux

Miguel Ojeda
ojeda@kernel.org

Backup slides

Linux in perspective

One can think of Linux as a project with lots of subprojects.

In the v6.10 cycle (9 weeks), around:

13,312 non-merge commits were pulled.

1,918 developers contributed.

242 made their first kernel contribution.

203 companies supported work in the kernel.

1,800 unique kernel maintainers are listed.

— https://lwn.net/Articles/981559/

https://lwn.net/Articles/981559/

What is Rust for Linux?

Is Rust for Linux a Rust project?

No, although some of us collaborate in Rust or are part of teams there.

Is Rust for Linux a kernel project?

Yes, we are part of the kernel.

However, the project is not really only about kernel changes.

Rust for Linux is really a project involving a few other projects.

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Safe Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

bindgen

bindings
crate

Rust tree Linux tree

“We are still focused on getting the Rust standard library to compile with gccrs. To that end, we undertook a
massive rewrite of our name resolution pass which is paying off and enabling us to handle the complex
import and export structure within the Rust `std` crate. We are currently working on missing language
features for handling the standard library, such as compiling the question-mark operator (`<expr>? `) and
for-loops. This required a big re-engineering of our AST and HIR data structures in order to accept "lang
item paths", paths that refer to a specific, compiler-known item which is used for desugaring and codegen -
things like the `Sized` trait, or `Result::Err`, or the `IntoIterator::into_iter` function. We also added support
for auto-traits, which are required for properly handling the well-known `Send` and `Sync` traits in the
standard library, among other auto traits.

We continue to fix bugs in our codegen pass and in our type system, which we are discovering as time
passes. We feel very close to compiling the Rust `core` library, and are hoping to be able to do so
with the release of GCC 15.1 this spring. This will enable us to start experimenting with
Rust-for-Linux, which we would like to be able to test during the summer 2025.

On the social side of things, we got a blogpost published on the official Rust blog with the intent of
clarifying the relationship between the official Rust project, the Rust community, and gccrs. It was very well
received, and mentions some of the technical changes we are making to the compiler to permit reusing
rustc components such as the polonius borrow-checker, or, in the future, the next-gen trait solver.”

Arthur Cohen
gccrs

https://blog.rust-lang.org/2024/11/07/gccrs-an-alternative-compiler-for-rust.html

“One big update since February last year is that we added initial support
for debug information in rustc_codegen_gcc. [1]”

“There's some progress towards rustup distribution.”

[1] https://blog.antoyo.xyz/rustc_codegen_gcc-progress-report-31

Antoni Boucher
rustc_codegen_gcc

https://blog.antoyo.xyz/rustc_codegen_gcc-progress-report-31

Growing Community

536 subscribers in the rust-for-linux mailing list.

From ~460 last year.

— https://subspace.kernel.org/vger.kernel.org.html

https://subspace.kernel.org/vger.kernel.org.html

Growing Community

● 754 users in the Zulip instance (i.e. chat).

From ~530 last year.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● ~30 daily active users in the Zulip instance (i.e. chat).

From ~25 last year.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● ~25k messages sent in the Zulip instance (i.e. chat).

From ~12k last year.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Aakash Sen Sharma
Alexander Pantyukhin
Alexey Dobriyan
Alex Mantel
Alice Ryhl
Anders Roxell
Andrea Righi
Andreas Hindborg
Andrew Ballance
Andrey Konovalov
Antonio Hickey
Ariel Miculas
Arnaldo Carvalho de Melo
Asahi Lina
Aswin Unnikrishnan
Ayush Singh
Bagas Sanjaya
Ben Gooding
Benno Lossin
Björn Roy Baron
Boqun Feng
Bo-Wei Chen
Breno Leitao
Carlos Bilbao
Charalampos Mitrodimas
Christian Marangi
Christian Schrefl
Christina Quast
Conor Dooley

Doubled the patch series submitters
Costa Shulyupin
Daniel Almeida
Danilo Krummrich
David Gow
David Rheinsberg
Dirk Behme
Ethan D. Twardy
Felipe Alves
Filipe Xavier
Fiona Behrens
Francesco Zardi
FUJITA Tomonori
Gary Guo
Guillaume Plourde
Helen Koike
Hridesh MG
Ian Rogers
Jamie Cunliffe
Jiapeng Chong
Jiaxun Yang
Jiri Olsa
Jocelyn Falempe
John Hubbard
Jon Mulder
Jubilee Young
Laine Taffin Altman
Laura Nao
Lyude Paul
Maíra Canal

Manmohan Shukla
Martin Rodriguez Reboredo
Masahiro Yamada
Mathys-Gasnier
Matteo Croce
Matt Gilbride
Matthew Leach
Matthew Maurer
Michael Ellerman
Michael Vetter
Michal Rostecki
Michele Dalle Rive
Miguel Ojeda
Mika Westerberg
Mitchell Levy
Neal Gompa
Nell Shamrell-Harrington
Nick Desaulniers
Obei Sideg
Olof Johansson
Paran Lee
Patrick Blass
Patrick Miller
Pierre Gondois
Qingsong Chen
Roland Xu
Roy Matero
Sami Tolvanen
Sarthak Singh

SeongJae Park
Sergio González Collado
Siddharth Menon
Suren Baghdasaryan
Thomas Bamelis
Thomas Bertschinger
Thorsten Blum
Timo Grautstück
Trevor Gross
TruongSinh Tran-Nguyen
Valentin Obst
Vinay Varma
Vincent Woltmann
Vincenzo Palazzo
Viresh Kumar
Vlastimil Babka
WANG Rui
Wedson Almeida Filho
Wei Liu
Wu XiangCheng
Yang Yingliang
Yanteng Si
Yiyang Wu
Yutaro Ohno
Zehui Xu
Zheng Yejian
Zigit Zo

Latest developments
6.8: Rust 1.74.1, LoongArch, srctree-relative links, Kbuild improvements, Rust PHY abstractions and Asix PHY
“Rust reference driver” (first one)...

6.9: Rust 1.76.0 (2 less unstable features), arm64, container_of! macro, time module, CondVar methods,
documentation cleanup series, first Rust Kselftest...

6.10: Rust 1.78.0 (1 less unstable feature), RISC-V, dropped alloc in-tree fork (~30 language and ~60 library
less unstable features), DWARFv5 and zlib/zstd support, GFP allocation flags support in Box/Vec/Arc... (1 less
unstable feature), Ktime abstraction, methods for CStr/CString/Arc/ArcBorrow, #[pin_data] support for
default values...

6.11: Support for multiple Rust and bindgen versions (thus support for distribution toolchains), uaccess module,
page module, device module, firmware module, LLVM+Rust toolchains...

6.12: KCFI, KASAN and SCS support, MITIGATION_* and objtool support, RUSTC_VERSION, helpers split,
list module (ListArc, AtomicTracker, ListLinks, List, Iter, Cursor, ListArcField), rbtree
module (RBTree, RBTreeNode, RBTreeNodeReservation, Iter, IterMut, Cursor),
https://rust.docs.kernel.org, Trevor joins, AMCC QT2025 PHY driver...

6.13/RFCs/WIP: generic Allocator (custom alloc crate, KBox/VBox/KVBox, KVec/VVec/KVVec), File
abstractions, lints improvements and #[expect], MIPS, shrinker abstraction, global lock support, Untrusted,
custom FFI integer types, kernel (generic?) atomics, safety standard, hrtimer, codecs, tracepoints, third-party proc
macro support (e.g. syn), #[test] KUnit support, new build system (kernel split, visibility, declarative)...

https://rust.docs.kernel.org

— https://docs.kernel.org/rust/quick-start.html

https://docs.kernel.org/rust/quick-start.html#distributions

Other toolchains support

In addition, of course, we still support rustup toolchains.

Including beta and nightly.

Very useful for development.

And the official Rust standalone installers too.

https://forge.rust-lang.org/infra/other-installation-methods.html

— https://docs.kernel.org/rust/quick-start.html
— https://rust-for-linux.com/rust-version-policy#supported-toolchains

https://forge.rust-lang.org/infra/other-installation-methods.html#standalone
https://docs.kernel.org/rust/quick-start.html
https://rust-for-linux.com/rust-version-policy#supported-toolchains

Other toolchains support

Nathan Chancellor kindly set up LLVM+Rust toolchains too.

https://mirrors.edge.kernel.org/pub/tools/llvm/rust/

These are based on the slim and fast LLVM builds provided in kernel.org.

Two sets are provided:

Latest LLVM: latest stable version of the major version of LLVM that Rust
uses under the hood.

Matching LLVM: a matching version of LLVM that Rust uses under the
hood, so that features such as cross-language LTO that may have subtle
issues without the same LLVM version can be experimented with.

— https://docs.kernel.org/rust/quick-start.html
— https://rust-for-linux.com/rust-version-policy#supported-toolchains

https://mirrors.edge.kernel.org/pub/tools/llvm/rust/
https://docs.kernel.org/rust/quick-start.html
https://rust-for-linux.com/rust-version-policy#supported-toolchains

Collaboration with Rust
Adrian Taylor
Alona Enraght-Moony
Amanieu d'Antras
Antoni Boucher
Arthur Cohen
Boxy
Christian Poveda Ruiz
Ding Xiang Fei
Ed Page
Emilio Cobos Álvarez
Erik Jonkers
Guillaume Gomez
Jakub Beránek
Josh Triplett
Jubilee
Jynn Nelson
Krishna Sundarram
Lukas Wirth
Mara Bos
Mark Rousskov

Michael Goulet
Nell Shamrell-Harrington
Nikita Popov
Niko Matsakis
Pietro Albini
Ralf Jung
Rémy Rakic
Santiago Pastorino
Serial-ATA
Sid Askary
Travis Cross
Tyler Mandry
Urgau
Vincenzo Palazzo
Waffle Maybe
Weihang Lo
Wesley Wiser

...and more!

Kangrejos

● The Rust for Linux Workshop

● An event where people involved in the
Rust for Linux discussions can meet in
a single place before LPC.

● https://kangrejos.com

● https://lwn.net/Archives/ConferenceIndex/
#Kangrejos

https://kangrejos.com
https://lwn.net/Archives/ConferenceIndex/#Kangrejos
https://lwn.net/Archives/ConferenceIndex/#Kangrejos

