
Imposing memory safety in C
while not rewriting to Rust

Maria Matejka · Feb 02, 2025

The Quest

years old C codebase
memory safety concerns
better rewrite to Rust?

1/17 · Imposing memory safety in C · Maria Matejka

Requirements

keep what works
automatable refactoring
lead developers the right way
allow footguns but make them obvious

It should be hard to write bad code that passes … but not impossible.

2/17 · Imposing memory safety in C · Maria Matejka

What should happen with unsafe code

obvious build error
static analyzer error
unit test error
stick out in plain sight

3/17 · Imposing memory safety in C · Maria Matejka

What should happen with unsafe code

obvious build error
static analyzer error
unit test error
stick out in plain sight

Innocent return must be actually innocent.

3/17 · Imposing memory safety in C · Maria Matejka

The easy part: defaults

local is good, global is bad
const everywhere (what about adding mutable to C, SC22/WG14?)
nonpure function must have a reason to exist
no void *, anywhere

4/17 · Imposing memory safety in C · Maria Matejka

Getting rid of globals

context → pass it as a context in an argument
read-only global info → explicit access
really shared data → locked explicit access

5/17 · Imposing memory safety in C · Maria Matejka

Void pointer eradication

use unions instead
generated code is safer than void * (hello, M4)
own linked list / hashtable / … type for every member type
no plain typecast, anywhere (pack these into macros)

6/17 · Imposing memory safety in C · Maria Matejka

Locally acquired resources

explicit releasing is unreliable (return from a locked context)
cleanup hooks → can be packed in macros
end-of-task hooks
different types for different allocation scopes
marking stack-allocated data by naming convention

7/17 · Imposing memory safety in C · Maria Matejka

Example: unlock macro usage

int table_get_size(rtable *tpub) {
 // unlocked, tpriv not available
 int raw_size;
 LOBJ_LOCKED(tpub, tpriv, rtable, rtable) {
 // locked, tpriv available
 raw_size = tpriv->size;
 if (trivial_case) return raw_size;
 }
 // unlocked, tpriv not available
 return table_size_adjusted(raw_size);
}

8/17 · Imposing memory safety in C · Maria Matejka

Example: unlock macro definition

#define CLEANUP(fun) __attribute__((cleanup(fun)))

#define LOBJ_LOCKED(_obj, _pobj, _stem, _level) \
 for (CLEANUP(LOBJ_UNLOCK_CLEANUP_NAME(_stem)) \
 struct _stem##_private *_pobj = LOBJ_LOCK_SIMPLE(_obj, _level); \
 _pobj ? (_pobj->locked_at = &_pobj) : NULL; \
 LOBJ_UNLOCK_CLEANUP_NAME(_stem)(&_pobj), _pobj = NULL)

9/17 · Imposing memory safety in C · Maria Matejka

Example: unlock cleanup hook

#define LOBJ_UNLOCK_CLEANUP(_stem, _level) \
 static inline void LOBJ_UNLOCK_CLEANUP_NAME(_stem)(struct
_stem##_private **obj) { \
 if (!*obj) return; \
 ASSERT_DIE(LOBJ_IS_LOCKED((*obj), _level)); \
 ASSERT_DIE((*obj)->locked_at == obj); \
 (*obj)->locked_at = NULL; \
 UNLOCK_DOMAIN(_level, (*obj)->lock); \
 }

10/17 · Imposing memory safety in C · Maria Matejka

Memory allocation strategy

use what fits your project
BIRD: hierarchical pools keeping track of everything
tmp_alloc = gets freed at end of task

11/17 · Imposing memory safety in C · Maria Matejka

Temporarily getting a global resource

find / reference / allocate it
schedule an end-of-task event to release it
safe to use, not safe to store
currently: too much explicit code

12/17 · Imposing memory safety in C · Maria Matejka

Arrays and their items

always store the array lengths and check ranges
macros and simple libs can do this easier
checkable by static analysis and plain sight (and grep)

13/17 · Imposing memory safety in C · Maria Matejka

The Event Loop

an infinite cycle around poll()
yes, we have a custom one
end-of-task = run after the current block of events
ensures temporary resource cleanup

14/17 · Imposing memory safety in C · Maria Matejka

Global data structures

full references (backpointers) → allows for proper checks
usecounting is hard to check
cleanup hooks to auto-unref on deallocation
expecting an awful lot of M4-generated code in future

15/17 · Imposing memory safety in C · Maria Matejka

Where to see this

BIRD Internet Routing Daemon version 3
not yet completely imposed
working on a split of the BIRDlib for public use
https://gitlab.nic.cz/labs/bird/tree/stable-v3.0
also LibUCW https://www.ucw.cz/libucw/

16/17 · Imposing memory safety in C · Maria Matejka

https://gitlab.nic.cz/labs/bird/tree/stable-v3.0
https://www.ucw.cz/libucw/

Ad Hominem

Maria Matejka, CZ.NIC
maria.matejka@nic.cz
Expert in C, performance, multithreading
developer / maintainer / team leader

17/17 · Imposing memory safety in C · Maria Matejka

mailto:maria.matejka@nic.cz

:wq⏎

Maria Matejka · Feb 02, 2025

