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The Quest

years old C codebase
memory safety concerns
better rewrite to Rust?
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Requirements

keep what works
automatable refactoring
lead developers the right way
allow footguns but make them obvious

It should be hard to write bad code that passes … but not impossible.
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What should happen with unsafe code

obvious build error
static analyzer error
unit test error
stick out in plain sight

3/17 · Imposing memory safety in C · Maria Matejka



What should happen with unsafe code

obvious build error
static analyzer error
unit test error
stick out in plain sight

Innocent return must be actually innocent.
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The easy part: defaults

local is good, global is bad
const everywhere (what about adding mutable to C, SC22/WG14?)
nonpure function must have a reason to exist
no void *, anywhere
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Getting rid of globals

context → pass it as a context in an argument
read-only global info → explicit access
really shared data → locked explicit access
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Void pointer eradication

use unions instead
generated code is safer than void * (hello, M4)
own linked list / hashtable / … type for every member type
no plain typecast, anywhere (pack these into macros)
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Locally acquired resources

explicit releasing is unreliable (return from a locked context)
cleanup hooks → can be packed in macros
end-of-task hooks
different types for different allocation scopes
marking stack-allocated data by naming convention
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Example: unlock macro usage

int table_get_size(rtable *tpub) {
  // unlocked, tpriv not available
  int raw_size;
  LOBJ_LOCKED(tpub, tpriv, rtable, rtable) {
    // locked, tpriv available
    raw_size = tpriv->size;
    if (trivial_case) return raw_size;
  }
  // unlocked, tpriv not available
  return table_size_adjusted(raw_size);
}
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Example: unlock macro definition

#define CLEANUP(fun) __attribute__((cleanup(fun)))

#define LOBJ_LOCKED(_obj, _pobj, _stem, _level) \
  for (CLEANUP(LOBJ_UNLOCK_CLEANUP_NAME(_stem)) \
  struct _stem##_private *_pobj = LOBJ_LOCK_SIMPLE(_obj, _level); \
      _pobj ? (_pobj->locked_at = &_pobj) : NULL; \
      LOBJ_UNLOCK_CLEANUP_NAME(_stem)(&_pobj), _pobj = NULL)
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Example: unlock cleanup hook

#define LOBJ_UNLOCK_CLEANUP(_stem, _level) \
  static inline void LOBJ_UNLOCK_CLEANUP_NAME(_stem)(struct 
_stem##_private **obj) { \
    if (!*obj) return; \
    ASSERT_DIE(LOBJ_IS_LOCKED((*obj), _level)); \
    ASSERT_DIE((*obj)->locked_at == obj); \
    (*obj)->locked_at = NULL; \
    UNLOCK_DOMAIN(_level, (*obj)->lock); \
  }
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Memory allocation strategy

use what fits your project
BIRD: hierarchical pools keeping track of everything
tmp_alloc = gets freed at end of task
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Temporarily getting a global resource

find / reference / allocate it
schedule an end-of-task event to release it
safe to use, not safe to store
currently: too much explicit code
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Arrays and their items

always store the array lengths and check ranges
macros and simple libs can do this easier
checkable by static analysis and plain sight (and grep)
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The Event Loop

an infinite cycle around poll()
yes, we have a custom one
end-of-task = run after the current block of events
ensures temporary resource cleanup
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Global data structures

full references (backpointers) → allows for proper checks
usecounting is hard to check
cleanup hooks to auto-unref on deallocation
expecting an awful lot of M4-generated code in future
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Where to see this

BIRD Internet Routing Daemon version 3
not yet completely imposed
working on a split of the BIRDlib for public use
https://gitlab.nic.cz/labs/bird/tree/stable-v3.0
also LibUCW https://www.ucw.cz/libucw/
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