
01.02.2025 1Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

THINGS ARE COMING
TOGETHER FOR FORTRAN

TOOLING
As experienced by Peter Arzt and Tim Heldmann

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

2Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

WHO ARE WE
● Peter Arzt

– PhD Student

● Tooling for performance analysis

– Automatic instrumentation selection for low-
overhead measurements

● Applied performance engineering

– Mostly in aerospace / space safety contexts

● Tim Heldmann

– PhD Student

● C++ Compiler Tooling

– Analysis

– Transformation

– Optimization

● Using both Clang-Tooling and IR-Passes

https://www.informatik.tu-darmstadt.de/sc/fg/people/details/peter_arzt.en.jsp
https://www.informatik.tu-darmstadt.de/sc/fg/people/details/tim_heldmann.en.jsp

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

3Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

● Program Analysis: MetaCG / CaGe, ALPACA

● Program Transformation: MiniApex

● Program Optimization: Recursion Elimination

● Program Instrumentation: PIRA [1], CaPI [2], (FLIP)

– These are all developed for C/C++, using Clang/LLVM

WHAT DO WE USUALLY DO

[1] Originally developed by JP Lehr

[2] Developed by Sebastian Kreutzer

https://github.com/tudasc/MetaCG
https://git.rwth-aachen.de/tim.heldmann/gencc
https://github.com/tudasc/Alpaca
https://git.rwth-aachen.de/tim.heldmann/CTUApex
https://github.com/tudasc/PIRA
https://github.com/tudasc/CaPI
https://jplehr.de/
https://www.informatik.tu-darmstadt.de/sc/fg/people/details/sebastian_kreutzer.en.jsp

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

4Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

IOHandler

FileOutput ConsoleOutput

matrixCondition

matrixSolve

prepareOutput

main

cleanUp

METACG/CAGE & PIRA
● Most of the tools use MetaCG in some capacity

– It is a callgraph handling library

– Can attach arbitrary metadata to a function node

– CaGe is the IR based client tool

● PIRA: Performance Instrumentation Refinement Automation

– Tries to find a instrumentation selection that minimizes overhead
and maximises information

– Is intended to do hotspot/kernel detection, load-imbalance detection

– Uses with Score-P for the actual performance messurements

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

5Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

WELL THEN: FORTRAN?
● First things first, we don’t know Fortran

– We are not the only ones

● Second things second, we never worked
with Fortran Frontend Tooling or MLIR

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

6Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

HOW WE EXPECTED IT TO GO
● We do have tools that only rely on IR, which we can get from flang-new

flang-new IR Tools Profit

CaGE PIRA

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

7Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

FORTRAN → IR
● A colleague from Aachen provided us with jukkr-kloop as a test code

● Load available flang-new and GO!

– Configure Failed: No Fortran compiler found
● flang-news compiler identification might not be recognized by the buildsystem

– Hack compiler identification into the build system

– Compile failed: Unsupported Intrinsic
● This was in January 2024, with LLVM 16
● LLVM-Trunk had a fix, that was merged in December 2023 → compile LLVM from source

● We got LLVM IR!

https://co-design.pop-coe.eu/programs/jukkr-kloop/index.html

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

8Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

IR → TOOLS
● With LLVM 18, we now have opaque pointer

– CaGe relied on typed pointers for some analysis (VTables mostly)
● We don’t need VTables for Fortan, just strip the whole logic

– CaGe now can provide Callgraphs for Fortran Codes

● Now use PIRA and Score-P to iteratively instrument the binary

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

9Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

● Profiling and tracing toolkit for parallel codes

● Multiple options for instrumentation

– -finstrument-functions and friends: Less fine grain control

– GCC plugin shipped with Score-P

● Since Score-P 9.0 (currently a release candidate): LLVM instrumentation plugin

– Works with flang-new!

● Load OpenMPI 4.1.4, run jukkr-kloop and profile

– mpif90 compiler wrapper is incompatible with flang-new

SCORE-P

https://gitlab.com/score-p/scorep

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

10Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

OPENMPI 5.0.5
● OpenMPI reads available compilerflags at compiletime

– You need to have all compilers available that you want to have supported

– OpenMPI 4.1.4 can not be compiled with flang-new
● But OpenMPI 5.0.5 can

– Compile your own OpenMPI, with flang-new

● Recompile Score-P because it is tied to a specific MPI version

● Run PIRA!

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

11Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

INSTRUMENTATION
 Performance measurement technique based

on inserting measurement hooks
 Here: Compiler instrumentation, function level

 Can produce precise, reliable measurements

 Introduces overhead
 Potentially slow-down > 1000x

Need to find
trade-off between coverage and overhead

18.11.2024

No instrumentation
 No overhead
 No coverage

Full instrumentation
 High overhead
 Perfect coverage

Instrumentation selection

Compiler instrumentation, e.g., using Clang/GCC’s -finstrument-functions

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

12Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

ITERATIVE REFINEMENT
AUTOMATION

● Find trade-off between
measurement coverage and
overhead by iteratively improving
instrumentation

Run

Analyze

Build

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

13Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

JUKKR-KLOOP
● Is intended to be compiled with intels fortran compiler and uses intel mkl

– hack mkl linking into the buildscript for flang-new, and:

IT WORKS!!!
● PIRA succesfully instruments and profiles the binary

● Correctly identifies hotspot

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

14Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

CONCLUSION
● You can use your LLVM-IR based tools with flang-new right now

– you might need to move to a newer version

– you might need to slightly modify some build scripts

– you might need to compile some things from source

● But you can do it

● We demonstrated this using jukkr-kloop

● Things are really coming together!

01.02.2025

F O R T R A N TO O L I N G | P E T E R A R Z T & T I M H E L D M A N N

15Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

OUTLOOK
● We rely solely on LLVM-IR when it comes to Fortran Tooling:

● Also do Sourcecode based analysis:

– Flang-new has a frontend-plugin interface
● similar to clang-compiler plugins

– currently under active development

● Improve heuristics PIRA heuristics for and profiling overhead

– Use FLIP for exact call counts and runtime estimation

● Maybe move to CaPI and XRAY to eliminate rebuilding step

https://flang.llvm.org/docs/FlangDriver.html#limitations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

