THINGS ARE COMING S&==%5%
TOGETHER FOR FORTRAN
TOOLING

As experienced by Peter Arzt and Tim Heldmann

Oh, yeah. It’s all coming together.

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann 1

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN

S73 TECHNISCHE
G/~ UNIVERSITAT
P~ DARMSTADT

WHO ARE WE SICE= e

* Peter Arzt
- PhD Student

* Tim Heldmann
- PhD Student

* Tooling for performance analysis * C++ Compiler Tooling

— Automatic instrumentation selection for low- — Analysis

overhead measurements .
- Transformation

* Applied performance engineering - Optimization

- Mostly in aerospace / space safety contexts * Using both Clang-Tooling and IR-Passes

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

https://www.informatik.tu-darmstadt.de/sc/fg/people/details/peter_arzt.en.jsp
https://www.informatik.tu-darmstadt.de/sc/fg/people/details/tim_heldmann.en.jsp

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN > TECHNISCHE
'_ / UNIVERSITAT
Y9r DARMSTADT
WHAT DO WE USUALLY DO S8 =
* Program Analysis: MetaCG / CaGe, ALPACA
* Program Transformation: MiniApex
* Program Optimization: Recursion Elimination
* Program Instrumentation: PIRAT1], CaPI[2], (FLIP)

— These are all developed for C/C++, using Clang/LLVM

[1] Originally developed by JP Lehr

[2] Developed by Sebastian Kreutzer

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann 3

https://github.com/tudasc/MetaCG
https://git.rwth-aachen.de/tim.heldmann/gencc
https://github.com/tudasc/Alpaca
https://git.rwth-aachen.de/tim.heldmann/CTUApex
https://github.com/tudasc/PIRA
https://github.com/tudasc/CaPI
https://jplehr.de/
https://www.informatik.tu-darmstadt.de/sc/fg/people/details/sebastian_kreutzer.en.jsp

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN 7 TECHNISCHE

&, UNIVERSITAT
DARMSTADT

METACG/CAGE & PIRA SE =

-~
/.

7

* Most of the tools use MetaCG in some capacity

— ltis a callgraph handling library

— Can attach arbitrary metadata to a function node

- (CaGe is the IR based client tool

prepareOutput
IOHandler
ConsoleOutput

* PIRA: Performance Instrumentation Refinement Automation

Tries to find a instrumentation selection that minimizes overhead
and maximises information

Is intended to do hotspot/kernel detection, load-imbalance detection

Uses with Score-P for the actual performance messurements

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN TECHNISCHE

UNIVERSITAT
DARMSTADT

WELL THEN: FORTRAN?

* First things first, we don’t know Fortran

kkkkkhkkhkkkkkhhkhhkkhkkhkhkkhkkkkhhkikkhhhkhhhhkd

* NRLMSIS-00 *
NEUTRAL TERMOSPHERIC MODEL *
* *

— We are not the only ones

kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkhkhkkkhkkrkkkhikkkk

COPTED FROM ORIGINAL SOURCE, TREATED AS BLACK BOX..~ONLY

CHANGES INIKRUUUCED INTERFACE WITH NAPEOS AND
MANTRA:

Frontend driver libs

flangFrontend
flangFrontendTool
...

[] I : .
Second thlngS Second’ we never worked (fgrg?gs) — .f95 — Parse Tree Parse Tree MLIR MLIR — LLVM IR LLVM IR —.s/.0
with Fortran Frontend Tooling or MLIR | Forsranparser FIialect

N FortranSemantics FIRAnalysis MLIRTransforms Core
. FortranEvaluate FIRBuilder MLIRLLVMToLLVMIRTranslation MC
FortranCommon FIRCodeGen MLIRSCFToStandard Analysis
FortranLower FIRTransforms ... Support
...0
Flang MLIR LLVM

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann 5

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN 7 TECHNISCHE

&, UNIVERSITAT
DARMSTADT

HOW WE EXPECTED IT TO GO =

S

7

* We do have tools that only rely on IR, which we can get from flang-new

flang-new | —— > IR > Tools > Profit

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN TECHNISCHE

UNIVERSITAT
DARMSTADT

yb\ /-
P
E C SCIENTIFIC
—) COMPUTING

* A colleague from Aachen provided us with jukkr-kloop as a test code

* Load available flang-new and GQO!

— Configure Failed: No Fortran compiler found
* flang-news compiler identification might not be recognized by the buildsystem

— Hack compiler identification into the build system

— Compile failed: Unsupported Intrinsic
* This was in January 2024, with LLVM 16

* LLVM-Trunk had a fix, that was merged in December 2023 — compile LLVM from source

12%] Building Fortran object CMakeFiles/test_kloop.x.dir/source/KKRhost/invsupercell.f90.0
20%] Building Fortran object CMakeFiles/test_kloop.x.dir/source/KKRhost/surfgf.f90.o0
20%] Building Fortran object CMakeFiles/test_kloop.x.dir/source/KKRhost/invslab.f90.0

b We g Ot I_ I_V M I R' error: loc(" ... /sourc ernal /NPY-for-Fortrar py.F90":49:9): ... /clang/16.0.6/
1lvm-project/flang/lib/Lower/IntrinsicCall.cpp:1643: yet implemented: intrinsic:
execute command _line

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann 7

https://co-design.pop-coe.eu/programs/jukkr-kloop/index.html

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN

IR - TOOLS

* With LLVM 18, we now have opaque pointer

CaGe relied on typed pointers for some analysis (VTables mostly)

* We don't need VTables for Fortan, just strip the whole logic

CaGe now can provide Callgraphs for Fortran Codes

* Now use PIRA and Score-P to iteratively instrument the binary

01.02.2025

Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

TECHNISCHE
UNIVERSITAT
DARMSTADT

E C SCIENTIFIC
COMPUTING

&7

N /’A
i}@)/

7

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN

SCORE-P

Profiling and tracing toolkit for parallel codes

TECHNISCHE
UNIVERSITAT
DARMSTADT

E C SCIENTIFIC
COMPUTING

Multiple options for instrumentation
- -finstrument-functions and friends: Less fine grain control

— GCC plugin shipped with Score-P

Since Score-P 9.0 (currently a release candidate): LLVM instrumentation plugin

— Works with flang-new!

Load OpenMPI 4.1.4, run jukkr-kloop and profile

- mpif90 compiler wrapper is incompatible with flang-new

https://gitlab.com/score-p/scorep

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN

OPENMPI 5.0.5

* OpenMPI reads available compilerflags at compiletime

You need to have all compilers available that you want to have supported

— OpenMPI 4.1.4 can not be compiled with flang-new
* But OpenMPI 5.0.5 can
— Compile your own OpenMPI, with flang-new

* Recompile Score-P because it is tied to a specific MPI version

* Run PIRA!

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann

TECHNISCHE
UNIVERSITAT
DARMSTADT

E C SCIENTIFIC
COMPUTING

g&?ﬂz«

7

=

10

TECHNISCHE
UNIVERSITAT
DARMSTADT

INSTRUMENTATION

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN

" Performance measurement technique based el vt | il divliont Bt lon Ry Wi |
]) __cyg_profile_func_exit(void *current_func, void *callsite);
on inserting measurement hooks 3
4 int square(int num) {
" Here: Compiler instrumentation, function level 5 __cyg_profile func_enter(square, 0);
6 int res = num*num;
" Can produce precise, reliable measurements L | ———
9 3}
" Introduces overhead 10
) 11 int main() {
" Potentially slow-down > 1000x 12 __cyg_profile_func_enter(main, 0);
13 int res = square(42);
14 __cyg_profile_func_exit(main, 0);
15 return res,;
> Need to find 5 3

Compiler instrumentation, e.g., using Clang/GCC’s -finstrument-functions

trade-off between coverage and overhead

No instrumentation Instrumentation selection Full i.nstrumentation
= No coverage ~ Perfect coverage

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN

ITERATIVE REFINEMENT

AUTOMATION

* Find trade-off between
measurement coverage and

Whole-Program

overhead by iteratively improving
instrumentation

Build

\

Analyze

Run

TECHNISCHE
UNIVERSITAT
DARMSTADT

S
g
=4
2

Q)

E C SCIENTIFIC

COMPUTING

Call-Graph Extract
MetaCG
Build Target | Instrumented Run Target
Application Binary Application

L—p

Instrumentation | Filter

Score-PlProﬁle

Analyze

1. Annotate MetaCG w/ Profile Information
2. Evaluate Heuristics for Instr. Filter

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN TECHNISCHE

UNIVERSITAT
DARMSTADT

JUKKR-KLOOP 5

* Is intended to be compiled with intels fortran compiler and uses intel mkl

— hack mkl linking into the buildscript for flang-new, and:

IT WORKS!!

* PIRA succesfully instruments and profiles the binary

* Correctly identifies hotspot ' Call tree i Flat tree

-l 0.00 test_kloop.x
vl 0.35_QQmain

& 5.36 _QMmod_bz_integrand_helperPget_integrand
> 28.82 QMmod_inversionPinversion

01.02.2025 Department for Computer Science, TU Darmstadt | Institute for Scientific Computing | Peter Arzt & Tim Heldmann 13

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN TECHNISCHE

UNIVERSITAT
DARMSTADT

CONCLUSION

* You can use your LLVM-IR based tools with flang-new right now

— you might need to move to a newer version
— you might need to slightly modify some build scripts

— you might need to compile some things from source

* But you can do it

* We demonstrated this using jukkr-kloop

* Things are really coming together!

FORTRAN TOOLING | PETER ARZT & TIM HELDMANN TECHNISCHE

UNIVERSITAT
DARMSTADT

OUTLOOK

We rely solely on LLVM-IR when it comes to Fortran Tooling:

Also do Sourcecode based analysis:
— Flang-new has a frontend-plugin interface
* similar to clang-compiler plugins

— currently under active development

Improve heuristics PIRA heuristics for and profiling overhead

— Use FLIP for exact call counts and runtime estimation

Maybe move to CaPl and XRAY to eliminate rebuilding step

https://flang.llvm.org/docs/FlangDriver.html#limitations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

