
MASTERING
OBSERVABILITY
WITH SIGNOZ

Angeles MORA

FOSDEM 2025

02.022025

WELCOME TO MY
FIRST IT_TALK EVER

🙈�😬

T H E N 2 0 1 3

 N O W 2 0 2 5

ABOUT ME

A N G E L E S M O R A

Frontend Development

UX/UI RESEARCH
Monitoring

Observability

TABLE OF
CONTENT

01

02

OBSERVABILITY VS MONITORING

HOW TO INSTALL SIGNOZ USING THEIR EASY
INSTALLATION SCRIPT.

A BRIEF OVERVIEW OF OPENTELEMETRY AND WHY CODE
INSTRUMENTATION IT’S ESSENTIAL FOR OBSERVABILITY.

EXPLORING SIGNOZ CLOUD TOGETHER

03

04

05

06

DEMO OF SELF-HOSTED SIGNOZ SOLUTION “IN DEPTH”

Q&A �

Imagine Observability Like
Cooking

Logs Metrics

Traces

THE OBSERVABILITY
JOBS TO BE DONE

Identify 🔍
Determine what needs to be observed (key metrics, logs, traces).
Define key performance indicators (KPIs) and service-level objectives (SLOs).
Understand system dependencies and critical paths.

Collect 📊
Gather relevant data from logs, metrics, and distributed traces.
Use telemetry tools like OpenTelemetry, Prometheus.
Ensure data is structured, timestamped, and contextually rich.

Do (Act & Analyze)⚡
Correlate and analyze the collected data to detect anomalies.
Implement alerts and automated responses for faster issue resolution.
Continuously improve the system using insights from observability data.

INTALLING SIGNOZ
What do we need to have Self-Hosted?

Ensure your system is Linux or macOS.
For macOS, manually install Docker Engine
On Linux, the install script will handle it.
Minimum 4GB of memory allocated to Docker.
Open ports: 3301, 4317, and 4318.
Git client installed.

git clone -b main https://github.com/SigNoz/signoz.git &&
cd signoz/deploy/ ./install.sh

git clone -b main https://github.com/SigNoz/signoz.git && cd
signoz/deploy/docker docker compose up -d --remove-orphans

CONTAINERS RUNNING
AFTER THE INSTALL

INSTRUMENTATION
WITH
OPENTELEMETRY

API:
PYTHON + FLASK

FRONTEND:
NEXT.JS

BACKEND:
NEST.JS

INSTRUMENTATION OF FRONTEND -> NEXT.JS

INSTRUMENTATION OF API ->
PYTHON + FLASK

INSTRUMENTATION OF BACKEND -> NEST.JS

🚀 Debugging Auth Errors with Observability (SigNoz + OpenTelemetry)
While testing my login API, I noticed some failures by using SigNoz

tracing to get real insights.

<NG>
 Imagine trying to cook a perfect dish without seeing, smelling, or tasting, just hoping it turns out right.
 That’s what debugging without observability feels like!
</NG>

I instrumented my backend with SigNoz + OpenTelemetry, and boom 💥 instead of blindly guessing
why logins failed, I got � :

Precise error tracking (invalid credentials spotted instantly)
Step-by-step execution flow (no more black-box debugging)
Real-time insights to fix issues fast

🔍 Observability isn’t a luxury, it’s the recipe for reliable systems. No more guesswork, just data-driven
fixes!

CONCLUSION
Debugging Without Observability is Like Cooking Blindfolded >.<

SELF-HOSTED DEMO
ALERTS, LOGS, METRICS, TRACES, EXCEPTIONS, DASHBOARDS

SIGNOZ
DASHBOARDS

LET’S EXPLORE
SIGNOZ CLOUD

TOGETHER!

(?)
Q&A SESH

THANKS
♥

@NGIE-MP

