
Expanding GGML Hardware Support using the
Vulkan API

Ruben Ortlam
Low-level AI Engineering and Hacking

FOSDEM

2 February 2025

1 / 23

Overview

1. whoami

2. llama.cpp and GGML

3. Problem

4. Solution

5. Obstacles

6. GGML community

2 / 23

Background

• 2022 - Computer Science, M.Sc., Otto-von-Guericke-Universität Magdeburg

• Full time software engineer since then

• Focus on C++ and Python

3 / 23

llama.cpp

• Started by Georgi Gerganov to run Llama models on Apple MacBooks

• At first fully focused on CPU inference

• Acts as ”playground” for GGML development

4 / 23

GGML

• Tensor library fully written in C/C++

• Optimized for various CPUs with intrinsics or assembly

• Based on forming a compute graph and executing it with multiple threads

• Can offload parts of or the whole graph to GPUs

5 / 23

Early llama.cpp troubles (2023)

Prompt processing

Very slow

Text generation

Very fast

6 / 23

Solution

Use a GPU to speed up matrix multiplications

7 / 23

GPU APIs

• CUDA (Nvidia)

• ROCm (AMD)

• OneAPI (Intel)

• OpenCL

• SYCL

• Vulkan

8 / 23

First attempt: OpenCL

• Existing BLAS library: CLBlast by Cedric Nugteren

• Relatively simple to implement

↓
But various driver and API limitations in OpenCL

9 / 23

First attempt: OpenCL

• Existing BLAS library: CLBlast by Cedric Nugteren

• Relatively simple to implement

↓
But various driver and API limitations in OpenCL

9 / 23

Second attempt: Vulkan

• Very compatible

• Better hardware support than OpenCL

• A lot of complexity, but much can be avoided without the graphics part

• Operate close to hardware, while being very compatible

• Small binaries

10 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Example: First steps

1. Initialize a vk::ApplicationInfo struct

2. Pick instance extensions

3. Initialize a vk::InstanceCreateInfo struct

4. Create instance

5. Query physical devices

6. ...

→Solution: Hide boilerplate code in simple functions

11 / 23

First Obstacle: Boilerplate

Some examples:

• Instance initialization

• Buffer creation

• Shader loading

• Command buffer and queue handling

• Data copying between host and device

• Shader invocation

• ...

A lot of work!

12 / 23

Second Obstacle: Porting kernels to GLSL

• CUDA, ROCm and SYCL allow writing device code as C++ functions

• OpenCL and Vulkan require SPIR-V device code

• Compiled from shader code written in GLSL, embedded in the application

• No pointers in (base) GLSL

13 / 23

Second Obstacle: Porting kernels to GLSL

• Lots of variability in hardware feature support, handled using Vulkan extensions

• 16-bit float arithmetic extension

• Cooperative Matrix extension for Tensor Core support

• Multiple shader variants needed to accommodate hardware

• Support back to AMD GCN1, Nvidia Kepler and Intel ARC

14 / 23

Third Obstacle: Fast Matrix Multiplication is hard

No BLAS library for Vulkan

↓

I have to do this myself

15 / 23

Third Obstacle: Fast Matrix Multiplication is hard

Matrix multiplication optimization on GPU, by Simon Boehm
https://siboehm.com/articles/22/CUDA-MMM

16 / 23

https://siboehm.com/articles/22/CUDA-MMM

6 months later

It works (with some bugs)!

17 / 23

Driver troubles

Vulkan code is completely vendor-agnostic, right? ... right?

18 / 23

Testing devices

Figure: Nvidia, AMD and Intel in one server

19 / 23

Always more to do

20 / 23

Community

• All interaction happens on Github

• Communication with Issues and Discussions

• Contributions through Pull Requests
• Various kinds of contributors

• Base team of maintainers
• Backend maintainers
• Various smaller contributors

21 / 23

Contributions welcome!

Lots of new contributions recently, for example:

• Shader optimizations and improved hardware support by Jeff Bolz (Nvidia)

• AMD GCN optimizations by netrunnereve

• Further quantization method support by remyoudompheng

22 / 23

Thank you

You can reach me on:

• Matrix (@occam_razor:matrix.org)

• Discord (_occam)

• Github (https://github.com/0cc4m/)

23 / 23

https://github.com/0cc4m/

	whoami
	llama.cpp and GGML
	Problem
	Solution
	Obstacles
	GGML community

