
Bringing a new API to KiCad
Jon Evans

First, some background

The era of SWIG

The era of SWIG 😀

The era of SWIG 😅

The era of SWIG 😬

SWIG (in KiCad) Challenges

1. The interface is fragile

2. Modern C++ doesnʼt always play nice

3. Slows down the build

4. Python plugins can completely break KiCad

Packaging Challenges

1. wxPython and wxWidgets

2. Bundled Python interpreter

3. Dependency management

Developer Experience Challenges

1. Environment your code runs in is hard to
re-create in a development context

2. KiCad Python Console is… okay

How We Didnʼt Fix It

Make a real API layer in C++;
have SWIG wrap that.

● Minimal paradigm shift! Not that risky.

● Doesnʼt solve most of the problems ☹

Make a real API layer in C++;
have Pybind11 wrap that.

● (Maybe) solves a few more problems!

● Still doesnʼt solve the rest of them ☹

Introducing the IPC API

Key Principles

1. Be robust against code evolution in KiCad itself

2. API users should not have direct access to KiCad
internal state (run in external process)

3. Developer experience is important, both for the
KiCad team and API users

Protobuf
Messages

API Client
Library

NNG

OS (Socket/Pipe)

NNG

KiCad Internals

Protobuf
Messages

Transport: Why Nanomsg-NG (NNG)?

● Simple to implement

● Target native IPC mechanisms (UNIX sockets,
named pipes on Windows) with the same code

● Good availability across platforms and languages

● Also considered: ZeroMQ, gRPC, D-Bus

Protocol: Why Protocol Buffers (protobuf)?

● The API is the message definitions

● When used well, allows for API evolution over
time and cross-version compatibility

● Alternatives are either not as widely used and
supported, or donʼt solve the same problems

Plumbing it in to KiCad

Dispatcher Event Handler

Event Handler

Event Handler

Mouse Event

Key Event

Menu Event

KiCadʼs Event Handling, basically

Dispatcher Event Handler

Event Handler

Event Handler

Mouse Event

Key Event

Menu Event

API Event API Dispatcher

Dispatcher

PCB Handler

Shared Handler

getVersion

getNetClasses

getBoard

refillZones

Dispatcher

PCB Handler

Shared Handler

getVersion

getNetClasses

getBoard

refillZones
Dynamically
Registered!

Key Pressed

Button Clicked

Mouse Dragged

API Event

API Events Are
Synchronous!

● Plugins can control their own
undo/redo transactions

● The API will sometimes reject a
command and say “Iʼm busy”

Using the API from Python

https://gitlab.com/kicad/code/kicad-python

🤔

New Python plugin launching system

● Virtual environments per-plugin

● Automatic* dependency installation

● KiCad tells the plugin how to connect to the API

● Bonus: also supports non-Python plugins!

*as long as binary wheels for your platform are available 😅

New Python plugin launching system

● Virtual environments per-plugin

● Automatic* dependency installation

● KiCad tells the plugin how to connect to the API

● Bonus: also supports non-Python plugins!

Roadmap

● Footprint editor integration + wizards

● Plotting/exporting (use kicad-cli today)

● Headless operations

● Schematic and symbols

● Your idea here?

https://dev-docs.kicad.org

Questions?

@craftyjon@chaos.social @craftyjon.com

jon@craftyjon.com

