
© NTT, Inc. 2026

gomodjail: library sandboxing for
Go modules
Akihiro Suda, NTT

https://github.com/AkihiroSuda/gomodjail

FOSDEM (Feb 1, 2026)

https://github.com/AkihiroSuda/gomodjail
https://fosdem.org/2026/schedule/event/37NC8K-gomodjail/

1© NTT, Inc. 2026

•Open source is under attack

•Malicious libraries everywhere

•gomodjail puts untrusted Go modules into the jail

Overview

require (

 example.com/module v1.0.0 // gomodjail:confined

)

Just add a directive comment in go.mod,
and run the program with gomodjail

© NTT, Inc. 2026 2

Demo

© NTT, Inc. 2026 3

Background

4© NTT, Inc. 2026

•Nowadays it is practically impossible to write software without depending
on third-party libraries

•Docker CLI v29: 94 dependencies

•Docker daemon v29: 239 dependencies

•Kubernetes v1.35: 208 dependencies

•Bad actors have been trying to inject malicious dependencies

Open source is under attack

5© NTT, Inc. 2026

•CVE-2024-3094: a backdoor was injected to xz (liblzma) by a maintainer
(not by the original author)

•The culprit had been making harmless contributions for 2+ years;
suddenly injected the backdoor and faded out from the community

•Even widely adopted libraries can be compromised

•Even maintainers cannot be trusted 😞
•This case was not about Go, but similar attacks could happen with Go

xz/liblzma backdoor incident (2024)

https://research.swtch.com/xz-timeline

https://research.swtch.com/xz-timeline
https://research.swtch.com/xz-timeline

6© NTT, Inc. 2026

•In the spring of 2025, hundreds of fake Go modules were published on
GitHub

•The repos looked genuine but contained malicious wget|bash code

•For some repos, the numbers of the GitHub stars ⭐ even exceeded
those of the genuine repos

•Most repos seem now banned, but some of them are still alive

Fake Go modules (2025-)

https://socket.dev/blog/wget-to-wipeout-malicious-go-modules-fetch-destructive-payload

https://socket.dev/blog/wget-to-wipeout-malicious-go-modules-fetch-destructive-payload

7© NTT, Inc. 2026

•AI coding agents may hallucinate to inject malicious dependencies with
plausible package names

•Even when an LLM itself doesn’t hallucinate, it can be still deceived by
fake sites on the Internet via the web search tool

› Some sites are just slops
› Some sites are published with malice

“Slopsquatting”

“Importing Phantoms: Measuring LLM Package Hallucination Vulnerabilities” (A.Krishna et al., 2025)
https://arxiv.org/html/2501.19012v1

🤖 Here is a code to store passwords securely...

import securehashlib

https://arxiv.org/html/2501.19012v1

8© NTT, Inc. 2026

“Slopsquatting”

Contains a plausible installation script of
“Kubernetes 2.0 private beta”

that does not even exist

FAKENEWS

9© NTT, Inc. 2026

“Slopsquatting”

The chat session was shared by a Twitter user @longer_n (Jan 22, 2026)
https://x.com/longer_n/status/2014335971505123760

Microsoft Copilot was actually
deceived to suggest downloading

7-zip from a fake “official” site
Fake: 7zip[.]com
Real: 7-zip.org

”7zip download method windows11”
(Japanese)

FAKE

https://x.com/longer_n/status/2014335971505123760

10© NTT, Inc. 2026

•Everybody knows that they should do so

•But who can actually do?

Review all the dependencies!

https://xkcd.com/2347/

https://xkcd.com/2347/

11© NTT, Inc. 2026

•A genre of technology to confine capabilities of a library

•Similar to containers (as in Docker containers), but in finer granularity

› process granularity vs library granularity

•Several designs are possible
› Seccomp
› WebAssembly
› Compilation-time assertion

Library sandboxing

12© NTT, Inc. 2026

•Wraps C/C++ library calls using Linux seccomp and namespaces

•A function caller and a callee are executed in separate processes that
communicate with each other via IPC

•Adoption does not seem straightforward, as it requires massively
modifying the source codes and the build scripts

•Does not seem widely adopted outside Google

Similar work: Google Sandboxed API

https://developers.google.com/sandboxed-api/

https://developers.google.com/sandboxed-api/

13© NTT, Inc. 2026

•Wraps C library calls using WebAssembly

•Adopted in Firefox since 2021

› libgraphite, libogg, libhunspell, libexpat, libwoff2, libsoundtouch, …
•Adoption does not seem straightforward either

› “On average, sandboxing a library takes only a few days”
"Retrofitting Fine Grain Isolation in the Firefox Renderer" (S. Narayan et al., 2020)
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

Similar work: RLBox

https://rlbox.dev

https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://rlbox.dev/

14© NTT, Inc. 2026

•Wraps nodejs library calls using another instance of v8 engine

•Adopted by Fly, Algolia, Tripadvisor, etc.

•Adoption is relatively wide, but not really easy to get started

› Several host functions have to be manually exposed to an isolated instance
of v8 engine

Similar work: isolated-vm

https://github.com/laverdet/isolated-vm

https://github.com/laverdet/isolated-vm

15© NTT, Inc. 2026

•A linter to enforce an allowlist/denylist of Go modules

•Widely adopted via golangci-lint

•Too strict: no way to allow a module with limited capabilities

•Yet another similar linter: gomodguard

› Not to be confused with my gomodjail

Similar work: depguard

https://github.com/OpenPeeDeeP/depguard
https://github.com/ryancurrah/gomodguard

https://github.com/OpenPeeDeeP/depguard
https://github.com/ryancurrah/gomodguard

16© NTT, Inc. 2026

•No modification to the source code

•Little modification to the build script etc.

•Caveats may apply, as a trade-off for simplicity

Goal: make it easy to get started

© NTT, Inc. 2026 17

gomodjail

18© NTT, Inc. 2026

•Focuses on simplicity

•Applicable in just two steps

•Step 1: Add gomodjail:confined comment to go.mod

•Step 2: Run the target program with gomodjail run

gomodjail: library sandbox for Go

require (

 example.com/module v1.0.0 // gomodjail:confined

)

gomodjail run --go-mod=go.mod -- ./prog

https://github.com/AkihiroSuda/gomodjail

Confined modules
are disallowed to

open or execute files

https://github.com/AkihiroSuda/gomodjail

19© NTT, Inc. 2026

•Hooks “dangerous” syscalls

› File: open(), creat(), mkdir(), unlink(), ...
› Process: execve(), posix_spawn(), ...
› Network: connect(), listen(), ...

•Unwinds the call stack to identify the Go function that invoked the syscall

› The .gopclntab ELF section contains symbols, even when stripped

•If the function belongs to a confined module, blocks the syscall

How it works

20© NTT, Inc. 2026

How it works

/usr/bin/myapp

execve(“/something/weird”)

func example.com/leftpad.Leftpad(string) string

require (

 example.com/leftpad v1.0.0 // gomodjail:confined

)

gomodjail unwinds the call stack

gomodjail checks whether
the module is “confined”

21© NTT, Inc. 2026

How it works

/usr/bin/myapp

execve(“/something/weird”)

func example.com/leftpad.Leftpad(string) string

require (

 example.com/leftpad v1.0.0 // gomodjail:confined

)

gomodjail unwinds the call stack

gomodjail checks whether
the module is “confined”

errno = EPERM

22© NTT, Inc. 2026

•linux/amd64

•linux/arm64

•darwin/amd64 (no support for stripped binaries)

•darwin/arm64

Supported GOOS and GOARCH

23© NTT, Inc. 2026

•SECCOMP_RET_TRACE is used to hook syscalls

•PTRACE_PEEKDATA is used to unwind the call stack

•FAQ: why not SECCOMP_USER_NOTIF ?

› Because it lacks the frame pointer information
•FAQ: why not use Landlock ?

› Because no way to associate Go modules with threads to be
landlocked

Implementation for Linux

24© NTT, Inc. 2026

•DYLD_INSERT_LIBRARIES to hook syscalls

› Equates to LD_PRELOAD on glibc/Linux
› No need to support static binaries on macOS

» System calls are always invoked via libSystem

•libgomodjail_hook_darwin.dylib unwinds the stack using
_dyld_get_image_vmaddr_slide()

› Unlike on Linux, unwinding is quite complicated as the call stack switches when
calling libSystem

» Fetches struct g that represents the goroutine (See the next slide)

» Parses g->m.libcallsp , g->m.libcallpc etc.

Implementation for macOS

25© NTT, Inc. 2026

•How to fetch the pointer to the struct g
› Fetch the value of the runtime.tls_g variable (see below)
› Read the TLS register (ARM: tpidrro_el0, Intel: %gs:0x30)
› g is located at tls_base + runtime.tls_g

•How to fetch the value of the runtime.tls_g
› Non-stripped: symbols of global variables are available

» Just find the pointer to the runtime.tls_g variable in __gosymtab
› Stripped: symbols of functions are still available

» Find the pointer to func runtime.load_g() in __gopclntab
» Call the function
» runtime.tls_g is “leaked” into a temporary register x27

Implementation for macOS

26© NTT, Inc. 2026

•Applied gomodjail to Docker CLI (not to daemon)

•Workload: docker run --rm hello-world

Benchmark

Normal With gomodjail
Linux 119.5 ± 9.2 ms 124.6 ± 7.6 ms

(overhead: 4.27%)

macOS 124.4 ± 6.8 ms 135.7 ± 7.1 ms
(overhead: 9.08%)

Measured mean ± σ, 100 times
gomodjail v0.3.0, Docker v29.1.5, Ubuntu 24.04.3, macOS 26.2 (both ARM64)

27© NTT, Inc. 2026

•Not applicable to a Go binary built by non-trustworthy
thirdparty

› The symbol information might be faked

•No isolation of file descriptors across modules

› A confined module can still read/write an existing FD

•The target binary must not be replaced during execution

Caveats

28© NTT, Inc. 2026

•Not applicable to a module that imports:

› unsafe
› reflect
› plugin
› //go:linkname
› C
› asm

Caveats

29© NTT, Inc. 2026

Static analyzer to detect incompatible
imports

$ gomodjail analyze ./...

golang.org/x/sys@v0.39.0/execabs/execabs.go:22:2:

 unsafe or cgo-related package imported: "unsafe"

30© NTT, Inc. 2026

•Adopted in several projects under my own maintainership

› Lima (https://lima-vm.io)

» Linux VM, optimized for containers and AI agents

› nerdctl (https://github.com/containerd/nerdctl)

» contaiNERD CTL

› Alcoholless Homebrew (https://github.com/AkihiroSuda/alcless)

» Homebrew with User ID isolation for security

•Looking for wider adoptions

Adoption status of gomodjail

https://lima-vm.io/
https://github.com/containerd/nerdctl
https://github.com/AkihiroSuda/alcless

31© NTT, Inc. 2026

Packing gomodjail with target program for
easier distribution

$ gomodjail pack –-go-mod=go.mod ./program

$./program.gomodjail

© NTT, Inc. 2026 32

Side topics

33© NTT, Inc. 2026

• Run-time sandboxing is fragile and has lots of caveats

• The future plan is to introduce the compilation-time mode

› Would lint/translate the source code to control accessing dangerous functions
› Any chance to get it accepted in the upstream Go compiler?
› Maybe reuse AspectGo (2016) ? https://github.com/AkihiroSuda/aspectgo

» Aspect-Oriented Programming framework for Go

» Similar to AspectJ (Java)

Future work: compilation-time mode

https://github.com/AkihiroSuda/aspectgo

34© NTT, Inc. 2026

• The threat to the software supply chain is not specific to Go

• Just began with Go because it is the primary language in the Cloud
Native communities

• Other language ecosystems need improvements in supply chain
security too

Future work: support other languages

35© NTT, Inc. 2026

•gosocialcheck: social reputation checker for Go modules

› Checks whether dependencies have been already adopted by matured
projects (CNCF Graduated projects)

» Caveat: even Graduated maintainers may overlook malicious packages

› Future version may add more reputation checks
» e.g., check OpenSSF Scorecard?

» GitHub Stars will never be counted, as they can be faked up with bot accounts

› Social approaches are complementary to tech approaches such as gomodjail

Another approach to prevent supply
chain attacks

https://github.com/AkihiroSuda/gosocialcheck

https://github.com/AkihiroSuda/gosocialcheck

36© NTT, Inc. 2026

•Open source is under attack

•Malicious libraries everywhere

•gomodjail puts untrusted Go modules into the jail

Recap

require (

 example.com/module v1.0.0 // gomodjail:confined

)

Just add a directive comment in go.mod,
and run the program with gomodjail

