FOSDEM (Feb 1, 2026)

ONTT

gomodijail: library sandboxing for
Go modules

Akihiro Suda, NTT
https://github.com/AkihiroSuda/gomodiail

© NTT, Inc. 2026

https://github.com/AkihiroSuda/gomodjail
https://fosdem.org/2026/schedule/event/37NC8K-gomodjail/

Overview ONTT

*Open source is under attack
*Malicious libraries everywhere

egomodjail puts untrusted Go modules into the jail

require (

example.com/module v1.0.0 // gomodjail:confined

Just add a directive comment in go.mod,
and run the program with gomodjail

© NTT, Inc. 2026 1

ONTT

Demo

© NTT, Inc. 2026 2

ONTT

Background

© NTT, Inc. 2026 3

Open source is under attack ONTT

Nowadays it is practically impossible to write software without depending
on third-party libraries

Docker CLI v29: 94 dependencies
Docker daemon v29: 239 dependencies

Kubernetes v1.35: 208 dependencies

*Bad actors have been trying to inject malicious dependencies

© NTT, Inc. 2026 4

xzl/liblzma backdoor incident (2024) ONTT

*CVE-2024-3094: a backdoor was injected to xz (liblzma) by a maintainer
(not by the original author)

*The culprit had been making harmless contributions for 2+ years;
suddenly injected the backdoor and faded out from the community

*Even widely adopted libraries can be compromised
Even maintainers cannot be trusted (-

*This case was not about Go, but similar attacks could happen with Go

©NTT, Inc. 2026 https://research.swtch.com/xz-timeline 5

https://research.swtch.com/xz-timeline
https://research.swtch.com/xz-timeline

Fake Go modules (2025-) ONTT

*In the spring of 2025, hundreds of fake Go modules were published on
GitHub

*The repos looked genuine but contained malicious wget |bash code

*For some repos, the numbers of the GitHub stars even exceeded
those of the genuine repos

*Most repos seem now banned, but some of them are still alive

©NTT, Inc. 2026 https://socket.dev/blog/wget-to-wipeout-malicious-go-modules-fetch-destructive-payload §)

https://socket.dev/blog/wget-to-wipeout-malicious-go-modules-fetch-destructive-payload

“Slopsquatting” ONTT

Al coding agents may hallucinate to inject malicious dependencies with
plausible package names

@ Here is a code to store passwords securely...

import securehashlib

Even when an LLM itself doesn’t hallucinate, it can be still deceived by
fake sites on the Internet via the web search tool

» Some sites are just slops
» Some sites are published with malice

“Importing Phantoms: Measuring LLM Package Hallucination Vulnerabilities” (A.Krishna et al., 2025) 7

©NTT, Inc. 2026
https://arxiv.orag/html/2501.19012v1

https://arxiv.org/html/2501.19012v1

“Slopsquatting”

Kubernetes 2.0 Might Kill YAML =%
Here’s the Private Beta That
Changed Everything (2025)

g Sandesh | DevOps | AWS | K8 | Dev S5 minread - Jul10,2025

S o0 Qs (Contains a plausible installation script of]

“Kubernetes 2.0 private beta”
ONTT, Inc. 2026 L that does not even exist

“Slopsquattlng” ONTT

a BAR v copilot.microsoft.com/shares/73F74ut7BAGnpjNssBciu @& ¢ @ i]

» Windows 11 T®D7-Zip ¥ o> 0— KAk

"7zip download method windows11”
(Japanese)

7zip ¥~ 0O—RK A% windows11

Windows 11T7-ZipZ4 v YO—R 9 3Icld. AR A kN SBERDOPCILE>fc/\—Y 3 Y ERATIY
Ab—LI2DNBEORETHETT,

UTOFIETES T EIW:

Microsoft Copilot was actually)
deceived to suggest downloading

1 ARYANETIER : T
v sa-in-s e [FARE] 7-zip from a fake “official” site

2. BADPCIEES>fN—YavERA .
BEDOWindows 11 PCZ25764E v b Windows x64,FAD .exe 1 YA K—3 Fake- 7Z|p[-]Com

* Intel/AMDECPUIHPC > 64L v h (x64) Real: 7-zip.org /

) 7-ZipDF o >O—RK &1 VA ~—ILFIE (Windows 1)

REZERIT S

© NTT, Inc. 2026 The chat session was shared by a Twitter user @longer_n (Jan 22, 2026) g
https://x.com/longer_n/status/2014335971505123760

https://x.com/longer_n/status/2014335971505123760

Review all the dependencies! ONTT

*Everybody knows that they should do so

ALL MODERN DIGITAL
INFI RP\S'I;EUC TURE

N

)
-But who can actually do? gg ﬂ 2L
%ﬁ A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
L BEEN THANKLESSLY
=

MAINTAINING
SINCE 2003

)

5
(-

© NTT, Inc. 2026 https://xkcd.com/2347/ 10

https://xkcd.com/2347/

Library sandboxing ONTT

A genre of technology to confine capabilities of a library

*Similar to containers (as in Docker containers), but in finer granularity

» process granularity vs library granularity

*Several designs are possible
y Seccomp
» WebAssembly
» Compilation-time assertion

© NTT, Inc. 2026 1

Similar work: Google Sandboxed APl ONTT

*Wraps C/C++ library calls using Linux seccomp and namespaces

A function caller and a callee are executed in separate processes that
communicate with each other via IPC

«Adoption does not seem straightforward, as it requires massively
modifying the source codes and the build scripts

*Does not seem widely adopted outside Google

O NTT, Inc. 2026 https://developers.google.com/sandboxed-api/ 12

https://developers.google.com/sandboxed-api/

Similar work: RLBox ONTT

*Wraps C library calls using WebAssembly
*Adopted in Firefox since 2021

» libgraphite, libogg, libhunspell, libexpat, libwoff2, libsoundtouch, ...

*Adoption does not seem straightforward either
» “On average, sandboxing a library takes only a few days”

"Retrofitting Fine Grain Isolation in the Firefox Renderer" (S. Narayan et al., 2020)
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

© NTT, Inc. 2026 https://rlbox.dev 13

https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://rlbox.dev/

Similar work: isolated-vm ONTT

*Wraps nodejs library calls using another instance of v8 engine
*Adopted by Fly, Algolia, Tripadvisor, etc.
*Adoption is relatively wide, but not really easy to get started

» Several host functions have to be manually exposed to an isolated instance
of v8 engine

©NTT, Inc. 2026 https://github.com/laverdet/isolated-vm 14

https://github.com/laverdet/isolated-vm

Similar work: depguard ONTT

*A linter to enforce an allowlist/denylist of Go modules
*Widely adopted via golangci-lint

*Too strict: no way to allow a module with limited capabilities

*Yet another similar linter: gomodguard

» Not to be confused with my gomodjail

https://qgithub.com/OpenPeeDeeP/depguard

©NTT, Inc. 2026 https:/github.com/ryancurrah/gomodguard

https://github.com/OpenPeeDeeP/depguard
https://github.com/ryancurrah/gomodguard

Goal: make it easy to get started

*No modification to the source code
-Little modification to the build script etc.

«Caveats may apply, as a trade-off for simplicity

© NTT, Inc. 2026

ONTT

16

gomodijail

© NTT, Inc. 2026

ONTT

17

gomodijail: library sandbox for Go ONTT

*Focuses on simplicity
*Applicable in just two steps
*Step 1: Add gomodjail:confined comment to go.mod

require (Confined modules
example.com/module v1.0.0 // gomodjail:confined are disallowed to

) open or execute files

*Step 2: Run the target program with gomodjail run

gomodjail run --go-mod=go.mod -- ./prog

©NTT, Inc. 2026 https://aithub.com/AkihiroSuda/gomodijail 18

https://github.com/AkihiroSuda/gomodjail

How it works ONTT

*Hooks “dangerous” syscalls

» File: open(), creat(), mkdir(), unlink(), ...
> Process: execve(), posix_spawn(), ...

> Network: connect(), listen(), ...

*Unwinds the call stack to identify the Go function that invoked the syscall

» The .gopclntab ELF section contains symbols, even when stripped

*If the function belongs to a confined module, blocks the syscall

O NTT, Inc. 2026 19

How it works ONTT

execve(“/something/weird”)

ﬁ gomodijail unwinds the call stack]

func example.com/leftpad.Leftpad(string) string
gomodijail checks whether
the module is “confined”

/usr/bin/myapp

require (

example.com/leftpad v1.0.0 // gomodjail:confined

O NTT, Inc. 2026

20

How it works ONTT

execve(“/something/weird”) | errno = EPERM

ﬁ gomodijail unwinds the call stack]

func example.com/leftpad.Leftpad(string) string
gomodijail checks whether
the module is “confined”

/usr/bin/myapp

require (

example.com/leftpad v1.0.0 // gomodjail:confined

O NTT, Inc. 2026

21

Supported GOOS and GOARCH ONTT

[inux/amd64
[inux/arm64
«darwin/amd64 (no support for stripped binaries)

edarwin/armo64

© NTT, Inc. 2026)

Implementation for Linux ONTT

*SECCOMP_RET_TRACE is used to hook syscalls
*PTRACE_PEEKDATA is used to unwind the call stack

*FAQ: why not SECCOMP_USER_NOTIF ?

» Because it lacks the frame pointer information
*FAQ: why not use Landlock ?

» Because no way to associate Go modules with threads to be
landlocked

© NTT, Inc. 2026 23

Implementation for macOS ONTT

DYLD INSERT_LIBRARIES to hook syscalls

» Equates to LD_PRELOAD on glibc/Linux
» No need to support static binaries on macOS

» System calls are always invoked via 1ibSystem

*libgomodjail hook darwin.dylib unwinds the stack using
_dyld get image vmaddr slide()

» Unlike on Linux, unwinding is quite complicated as the call stack switches when
calling 1ibSystem

» Fetches struct g that represents the goroutine (See the next slide)
» Parses g->m.libcallsp, g->m.libcallpc etc.

© NTT, Inc. 2026 24

Implementation for macOS ONTT

*How to fetch the pointer to the struct g

> Fetch the value of the runtime.tls g variable (see below)
» Read the TLS register (ARM: tpidrro_el0, Intel: %gs:0x30)
» gislocated at tls base + runtime.tls g

*How to fetch the value of the runtime.tls g
» Non-stripped: symbols of global variables are available
» Just find the pointer to the runtime.tls g variable in __gosymtab
» Stripped: symbols of functions are still available
» Find the pointer to func runtime.load g() in __gopclntab
» Call the function
» runtime.tls_gis “leaked” into a temporary register x27

© NTT, Inc. 2026 25

Benchmark ONTT

*Applied gomodijail to Docker CLI (not to daemon)
Workload: docker run --rm hello-world

Normal With gomodijail
Linux 119.5+£ 9.2 ms 124.6 £ 7.6 ms
(overhead: 4.27%)
macOS 124.4 + 6.8 ms 135.7 7.1 ms
(overhead: 9.08%)

Measured mean * o, 100 times

©NTT, Inc. 2026 gomodijail v0.3.0, Docker v29.1.5, Ubuntu 24.04.3, macOS 26.2 (both ARM64) 26

Caveats ONTT

*Not applicable to a Go binary built by non-trustworthy
thirdparty

» The symbol information might be faked

*No isolation of file descriptors across modules

» A confined module can still read/write an existing FD

*The target binary must not be replaced during execution

© NTT, Inc. 2026 27

Caveats

*Not applicable to a module that imports:

» unsafe

» reflect

» plugin

» //g0:1linkname
» C

> asm

O© NTT, Inc. 2026

ONTT

28

Static analyzer to detect incompatible
imports

$ gomodjail analyze ./...

golang.org/x/sys@ve.39.0/execabs/execabs.go:22:2:

ONTT

unsafe or cgo-related package imported: "unsafe"

O NTT, Inc. 2026

29

Adoption status of gomodijail ONTT

*Adopted in several projects under my own maintainership

» Lima (https://lima-vm.io) LI m a

» Linux VM, optimized for containers and Al agents

» nerdctl (https://aithub.com/containerd/nerdctl)
. nerp=jctl
» contaiNERD CTL

> Alcoholless Homebrew (https://aithub.com/AkihiroSuda/alcless)

» Homebrew with User ID isolation for security

Looking for wider adoptions

© NTT, Inc. 2026 30

https://lima-vm.io/
https://github.com/containerd/nerdctl
https://github.com/AkihiroSuda/alcless

Packing gomodjail with target program for ONTT
easier distribution

$ gomodjail pack --go-mod=go.mod ./program

$./program.gomodjail

O NTT, Inc. 2026 31

ONTT

Side topics

© NTT, Inc. 2026 32

Future work: compilation-time mode ONTT

* Run-time sandboxing is fragile and has lots of caveats

* The future plan is to introduce the compilation-time mode

» Would lint/translate the source code to control accessing dangerous functions
» Any chance to get it accepted in the upstream Go compiler?
» Maybe reuse AspectGo (2016) ? https://github.com/AkihiroSuda/aspectgo

» Aspect-Oriented Programming framework for Go

» Similar to Aspectd (Java)

© NTT, Inc. 2026 33

https://github.com/AkihiroSuda/aspectgo

Future work: support other languages ©NTT

« The threat to the software supply chain is not specific to Go

« Just began with Go because it is the primary language in the Cloud
Native communities

« Other language ecosystems need improvements in supply chain
security too

© NTT, Inc. 2026 34

Another approach to prevent supply ONTT

chain attacks

egosocialcheck: social reputation checker for Go modules

» Checks whether dependencies have been already adopted by matured
projects (CNCF Graduated projects)

» Caveat: even Graduated maintainers may overlook malicious packages

» Future version may add more reputation checks
» e.g., check OpenSSF Scorecard?

» GitHub Stars will never be counted, as they can be faked up with bot accounts

» Social approaches are complementary to tech approaches such as gomodjail

©NTT, Inc. 2026 https:/github.com/AkihiroSuda/gosocialcheck 35

https://github.com/AkihiroSuda/gosocialcheck

Recap ONTT

*Open source is under attack
*Malicious libraries everywhere

egomodjail puts untrusted Go modules into the jail

require (

example.com/module v1.0.0 // gomodjail:confined

Just add a directive comment in go.mod,
and run the program with gomodjail

©NTT, Inc. 2026 36

