
Paul Floyd, Sat 31 2026

Valgrind for DragonFly/Net/
Open BSD?
FOSDEM’26

Valgrind Overview

Valgrind Overview
Memory fault detector, profiler and thread hazard detector

• DBA, DBI, dynamic recompilation

• In the process there is the host (the Valgrind tool) running on the physical CPU
and the guest or client running on the emulated Valgrind CPU VEX

• Reads guest instructions, converts them to IR, adds instrumentation, does a
quick optimisation and regenerates machine code

• Single process, not separate processes like LLDB and GDB

• Tool exe is statically linked - no libc

Valgrind Code
565kloc code [mostly C + some asm] + 275kloc tests

perf
5 %

memcheck
3 %

helgrind
3 %
drd
2 %

coregrind
33 %

callgrind
1 %

VEX
51 %

amd64 
i386 
arm 
arm64 
ppc32 
ppc64 
mips32 
mips64 
riscv64 
s390

libc replacement 
syscalls 
memory manager 
signals 
loader 
DWARF 
GDB server

Startup - ELF, DWARF, mmap recording

Program Header:

 LOAD off 0x0000000000000000 vaddr 0x0000000000200000 paddr 0x0000000000200000 align 2**12

 filesz 0x0000000000001414 memsz 0x0000000000001414 flags r--

 LOAD off 0x0000000000001420 vaddr 0x0000000000202420 paddr 0x0000000000202420 align 2**12

 filesz 0x0000000000000c70 memsz 0x0000000000000c70 flags r-x

 LOAD off 0x0000000000002090 vaddr 0x0000000000204090 paddr 0x0000000000204090 align 2**12

 filesz 0x00000000000001e0 memsz 0x0000000000000f70 flags rw-

 LOAD off 0x0000000000002270 vaddr 0x0000000000205270 paddr 0x0000000000205270 align 2**12

•No ELF = guest exe won’t load

•Bad mmap recording = Valgrind confused about who owns what memory,
usually very bad

•No DWARF = no file and line, major usability impact

Hackiness - signals and threads

• Many hacks to get signal handlers to run in VEX and to return to VEX

• Even more hacks to get threads to run in VEX

• Much juggling of signal masks

syscall wrappers - easy
Well, most are easy

// SYS_fstatat 552

// int fstatat(int fd, const char *path, struct stat *sb, int flag);

PRE(sys_fstatat)

{

 PRINT("sys_fstatat(%"FMT_REGWORD"d, %#"FMT_REGWORD"x(%s), %#"FMT_REGWORD"x, %"FMT_REGWORD"d)", 
 SARG1, ARG2,(char*)ARG2, ARG3, SARG4);

 PRE_REG_READ4(int, "fstatat",

 int, fd, const char *, path, struct stat *, sb, int, flag);

 ML_(fd_at_check_allowed)(SARG1, (const HChar*)ARG2, "fstatat", tid, status);

 PRE_MEM_RASCIIZ("fstatat(path)", ARG2);

 PRE_MEM_WRITE("fstatat(sb)", ARG3, sizeof(struct vki_stat));

}

• Process related syscalls are difficult

Regtest

• 600 - 800 non-OS-specific related tests

• About 100 OS related tests for Linux and FreeBSD

• No OS related tests for DragonFly/Open/Net BSD 

• Also auxchecks (GSL based tests) and LTP (Linux only)

• perf test

Valgrind developers and infra

• 6 active developers, mostly at RedHat or IBM

• Infra has a lot of history

• Most hosted by sourceware.org (git, web site, buildbot, forgejo)

• KDE hosts bugzilla

• Sourceforge hosts the mailing lists

• GCC server farm

• Nightly tests triggered every day that there is a git commit

http://sourceware.org

The BSDs

DragonFly BSD

• Work done on the port in 2021 by ‘dan1338’ 

• Similar to state on FreeBSD at the same time

• Most similar to FreeBSD - should be the easiest

NetBSD

• NetBSD wiki refers to berlios.de via WayBackMachine, no SVN

• pkgsrc only has Linux version

• Project carried out by 4 students at Western Washington University in 2022 
https://github.com/WWU-VG4NBSD/valgrind/tree/netbsd-rebase (early dev
version of Valgrind 3.20)

http://berlios.de
https://github.com/WWU-VG4NBSD/valgrind/tree/netbsd-rebase

PIE = crash

netbsd$./valgrind-netbsd/vg-in-place yes

==1852== Memcheck, a memory error detector

==1852== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.

==1852== Using Valgrind-3.27.0.GIT and LibVEX; rerun with -h for copyright info

==1852== Command: yes

==1852==

==1852== Jump to the invalid address stated on the next line

==1852== at 0x3027D0: ???

==1852== Address 0x3027d0 is in a rw- anonymous segment

NetBSD - error writing results files
Tools cannot open log or results files

OpenBSD

OpenBSD - do like perl?

• Perl has Sys::Syscall

• Implemented as a “dispatcher” from syscall to libc wrapper

• Two problems

• Not all syscalls have libc wrappers

• Chicken and Egg 
 
Valgrind uses mmap to load the guest exe 
And about 1800 syscalls before libc.so gets mmap’d

OpenBSD
Only possibility?

• Implement a pinsyscalls table 

struct whats {
 unsigned int offset;
 unsigned int sysno;
} happening[] __attribute__((section(".openbsd.syscalls"))) = {
 { 0x104f4, 4 },
 { 0x10530, 1 },
};

https://nullprogram.com/blog/2025/03/06/

Summary
Before and after prep for this talk

Version Repo Package Regtest
before Regtest after

FreeBSD 3.26 sourceware OK 99.8 %

illumos 3.26 sourceware
 OK 99.3 %

DFlyBSD 3.15 GitHub Almost 65.2 % 78.6 %

NetBSD 3.20 GitHub Broken 2.8 % 67.1 %

OpenBSD 3.21 GitHub Broken 21.9 % 41.1 %

Resources

• GitHub repos 
 
https://github.com/paulfloyd/valgrind-openbsd 
 
https://github.com/paulfloyd/valgrind-dragonfly 
 
https://github.com/paulfloyd/valgrind-netbsd

• There is a “fosdem26” branch for each of these repos

• https://valgrind.org/support/mailing_lists.html 
 
IRC and the mailing list are the most used informal channels

https://github.com/paulfloyd/valgrind-openbsd
https://github.com/paulfloyd/valgrind-dragonfly
https://github.com/paulfloyd/valgrind-netbsd
https://valgrind.org/support/mailing_lists.html

More Resources

• FOSDEM 2022, Valgrind dev room

• https://archive.fosdem.org/2022/schedule/event/valgrind_freebsd/

• FreeBSD Journal October 2024

• https://freebsdfoundation.org/our-work/journal/browser-based-edition/kernel-development/valgrind-on-
freebsd/

• Porting Valgrind to NetBSD and OpenBSD - Masao Uebayashi

• https://www.youtube.com/watch?v=PEPo0PJteaA

• https://www.slideshare.net/slideshow/eurobsdcon2014-valgrindpresentation/43399217

• Valgrind web site

• Git repo README_DEVELOPERS, README.freebsd

https://archive.fosdem.org/2022/schedule/event/valgrind_freebsd/
https://www.youtube.com/watch?v=PEPo0PJteaA
https://www.slideshare.net/slideshow/eurobsdcon2014-valgrindpresentation/43399217

Thank you for listening

Extras

FreeBSD history

Real start Jan 2020

First Call For Testing mid Feb 2020

Valgrind commit bit Nov 2020

FreeBSD port updated to Valgrind 3.17 April 2021

FreeBSD support landed upstream Oct 2021

FreeBSD support for arm64 April 2024

Debuggability

• Many tracing and debug and verbose logging options

• C++ “Hello World” with full logging about 16Mbytes

• Debug with GDB and LLDB works well

• Bonus points if vgdb works

• Extra bonus points for getting Valgrind self-hosting to work

Memory Map

Legend: (1,67,3) /usr/bin/yes

0: RSVN 0000000000-00000fffff 1048576 ----- SmFixed

1: file 0000100000-0000100fff 4096 r-x-- F (1,67)

2: 0000101000-00002fffff 2093056

3: file 0000300000-0000301fff 8192 rw--- F (1,67)

4: anon 0000302000-0000b01fff 8388608 rw---

OpenBSD - no DRD or Helgrind readers

Scheduler / VEX
Complicated but needs little maintenance

Yes No

Yes No

Start

VG_scheduler

is_exiting?

Exit dispatch_ctr == 0 ?

Yield

sys_sched_yield

VG_sanity_check_general

VG_poll_signals

run_thread_for_a_while

trc

value

BORING INNER_FASTMISS CHAIN_ME_TO_* MP_NOREDIR JMP_CLIENTREQ JMP_SYS_* JMP_YIELD INNER_COUNTERZERO FAULT_SIGNAL JMP_NODECODE JMP_INVALICACHE

