BLUE - A GENERIC
BUILD-SYSTEM
CRAFTED ENTIRELY IN

gio Pastor Pérez, Olivier Dion

TABLE OF CONTENTS

e Whatis BLUE?

e Hello BLUE

e Delayed computations
e Backtraces

e Help menus

e Replay

e Preference system
e Extensibility

e blue.el

e GuUiX support

e ROADMAP

e |apislazuli

e END

WHAT IS BLUE?

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

A BUILD-SYSTEM

(blueprint
(configuration blue-configuration)
(buildables
(append
blue-docs
blue-modules
blue-templates))
(testables
blue-tests)
(commands
(list
check-install-command
coverage-command
install-command
guix-build-command)))

(blueprint
(configuration blue-configuration)
(buildables

(append

blue-docs

blue-modules

blue-templates))

(testables
blue-tests)
(commands
(1list
check-install-command
coverage-command
install-command
guix-build-command)))

Ooo~dJoul ~W

GOAL-DRIVEN DECLARATIONS

(buildables
(append
blue-docs
blue-modules
blue-templates))
(testables
blue-tests)

10
11
12
13
14
15

AND COMMAND BASED ACTIONS

(commands
(list
check-install-command
coverage-command
install-command
guix-build-command)))

OoodJourTh,~, WwNPF-

N
= S

12
13
14

IT'S ALSO A COMMAND DISPATCHER

(define-command (hello-command files)
((invoke "hello")
(category 'hello)
(synopsis "Say hello")
(help "FILE ...\nPrint hello to FILE."))
(for-each
(lambda (file)
(with-output-to-file file
(lambda () (display "Hello\n"))))
files))
(blueprint
(commands
(list hello-command)))

(define-command (hello-command files)

((invoke "hello")

(category 'hello)

(synopsis "Say hello")

(help "FILE ...\nPrint hello to FILE."))
(for-each

(lambda (file)

(with-output-to-file file
(lambda () (display "Hello\n"))))

files))

1
2
3
4
5
6
7
8
9

(blueprint
(commands
(list hello-command)))

BUT MORE IMPORTANTLY...

Voo ulh WN -

10
11
12
13
14
15
16
17
18

A FRAMEWORK
TO MAKE YOUR OWN BUILD SYSTEM

(define-blue-class <tarball> (<buildable>)
(executable
#:getter tarball-executable
#:1nit-value #%~#%?TAR
#:init-keyword #:executable))

(define-method (ask-build-manifest
(this <tarball>) (inputs <list>) (output <string>))
(let ((relative-path (buildable-inputs-relative-to this)))

(make-build-manifest

(string-append "TAR\t" output)

(cons*

(tarball-executable this) "czf" output

"-C" relative-path

(map

(lambda (path)
(string-replace-substring path (string-append relative-path "/") ""))

inputs)))))

DEFINE YOUR OWN BUILDABLE OBJECTS

1 (define-blue-class <tarball> (<buildable>)
2 (executable

3 #:getter tarball-executable

4 #:1nit-value #%~#%?TAR

5 #:init-keyword #:executable))

AND LET BLUE KNOW WHAT TO DO WITH THEM

7 (define-method (ask-build-manifest

8

9
10
11
12
13
14
15
16
17
18

(this <tarball>) (inputs <list>) (output <string>))
(let ((relative-path (buildable-inputs-relative-to this)))
(make-build-manifest

(string-append "TAR\t" output)
(cons*

(tarball-executable this) "czf" output

"-C" relative-path

(map

(lambda (path)
(string-replace-substring path (string-append relative-path "/") ""))

inputs)))))

Y ANOTHER BUILD-SYST

Because BLUE is

—M?

MINIMALIST AND SELF-CONTAINED

blue@0.0.0-10.617c969

guile@3.0.9

libxcrypt@4.4.38

Iibffi@3.4.6A‘/

i

perl@5.36.0

N

~

bash-minimal@5.2.37

libunistring@1.3

libgc@8.2.8

pkg-config@0.29.2

Figure 1. Dependencies of the BLUE package

GOAL-BASED

Ask what you want.

(c-binary

(inputs '("prog.c"))

(external-dependencies #%~(list #%?dep:sdl2))
(outputs "prog"))

GOAL-BASED

Ask what you want.

(c-binary

(inputs '("prog.c"))

(external-dependencies #%~(list #%?dep:sdl2))
(outputs "prog"))

BLUE will figure it out [

$ gcc -MMD -I<prefix>/include -I<prefix>/include/SDL2 -fPIE \
-g -02 -Wall -Wextra -c -0 prog.o prog.c
$ gcc -g -02 -Wall -Wextra -L<prefix>/1lib -o prog prog.o -1SDL2

EXTENSIBLE

EXTENSIBLE
GOOPS

EXTENSIBLE

GOOPS
e Method overriding / redefining
e Inheritance

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance

User defined commands

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance

User defined commands
e Override built-in commands

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)
e Custom build scheduler

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)
e Custom build scheduler
Stencil system

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)
e Custom build scheduler
Stencil system

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)
e Custom build scheduler
Stencil system
Project serialization

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)
e Custom build scheduler
Stencil system
Project serialization

EXTENSIBLE

GOOPS
e Method overriding / redefining
e |Inheritance
User defined commands
e Override built-in commands
Plugin system (TODO)
e Custom build scheduler
Stencil system
Project serialization
Autocomplete engine

EXTENSIBLE

GOOPS
e Method overriding / redefining
e Inheritance
User defined commands
e QOverride built-in commands
Plugin system (TODO)
e Custom build scheduler
Stencil system
Project serialization
Autocomplete engine
e Shell integration

HELLO BLUE

LAYOUT

blueprint.scm
A container for gathering a BLUE project
description.

1 ;;; Modules

2

3 ,;,;; Buildables
4

5 ;,;,; Commands

6

7 ;. Blueprint
8

IMPORT STENCILS

Stencil
A set of buildable types and utilities to simplity
the description of a common pattern.

1 ;;; Modules
2 (use-modules (blue stencils c))

BUILDABLES

DECLAR

Buildable
An object that BLUE knows how to build.

;;; Builldables
(define libhello
(c-binary
(inputs "hello.c")
(outputs "libhello.a")
(library? #t)
10 (shared? #f)))
11
12 (define hello
13 (c-binary
14 (inputs (list "main.c" libhello))
15 (outputs "hello")))

O 00 ~dOoOyUl B~

DEFINE COMMANDS

Command
An action that BLUE can execute.

DEFIN

Blueprint
An object that describes a BLUE project.

SLU

[11
U

RINT

'S

SUILT [T

UPS...IFORGOT TO CONFIGURE

The C stencil requires a configuration step.

A blue build
Traceback (most recent call last):
0: (_)_at blue/command.scm:80:8

17 (cond
78 (result result)
79 (required?
> 80 (raise-exception
81 (make-exception
82 (make-external-error)
83 (make-exception-with-origin

Error while running command ‘build':
&external-error
origin:
blue/types/configuration.scm:543:2 - blue/types/configuration.scm:130:6
irritants:
(#:configuration-hash
"57134f29%eccd79ff5dfa0f71a493ce1d021c6b41f2ec4c91230638eceaelccb5f6h8e024b2cf00F39")
message:
Could not find the configuration in the store.
hint:
This is usually because the command invoked requires a configuration,
but no configuration exists in the store matching the configuration
manifest of the blueprint.

This can happen if no configuration has been done or that the
configuration manifest has changed.

Try to configure the build directory with the built-in command:

blue configure [ARGS]...

Figure 2: Missing BLUE configuration

LETSDOIT RIGHT

Commands optionally can be chained with '--".

A blue configure — build
starting phase ‘parse-command-line-arguments'
parsing 0 arguments:
starting phase "resolve-host'
guessing host target
0K x86_64-unknown-1inux-gnu
starting phase ‘resolve-dependencies'
resolving 0 dependencies
starting phase ‘expand-variables'
guessing build target
0K x86_64-unknown-1inux-gnu
guessing C toolchain
looking for binary x86_64-unknown-linux-gnu-gcc
OK x86_64-unknown-1linux-gnu-gcc — /gnu/store/pdsp8rh..-gcc-15.2.0/bin/x86_64-unknown-1inux-gnu-gcc
configuration summary
0 warnings
0 errors
CC /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-blue/build/hello.o
CC /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-blue/build/main.o
LINK /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-blue/build/1libhello.a
LINK /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-blue/build/hello

Figure 3: Command chaining

COMMAND CAN TAKE ARGUMENTS

Here we pass the arguments directly to Guix.

1 (define-command (guix-build-command arguments)

2 ((1invoke "gquix-build")

3 (category 'guix)

4 (load-configuration-policy 'no))

5 (zero? (popen "guix"

6 (append

7 “("time-machine"

8 "-C"

9 , (string-append #%?sxrcdir "/channels.scm")
10 "ot

11 "build"

12 "-f

13 , (string-append #%?sxrcdir "/guix.scm"))
14 arguments)

15 #:working-directory #%?srcdir)))

WHAT IF | MY PROJECT NE

STAI

CFUL DATA?

DS

INT

RO

DUCING TH

Configuration
An object that describes stateful data.

1 (define hello-configuration
(configuration))

2

- CONFIGU

RATION

HERE YOU CAN DEFINE VARIABLES FOR YOUR PROJECT

(variables
(list
(variable
(name "VERSION")
(value "0.0.1"))
(variable
(name "CFLAGS")
(value
11 (lambda* (#:key host #:allow-other-keys)
12 (match-glob host
13 (("aarch64*") "-moutline-atomics")

14 (else "")))))))))

=
VWO JOUTL &~ W

(define hello-configuration
(configuration
(variables
(list
(variable
(name "VERSION")
(value "0.0.1"))
(variable
(name "CFLAGS")
(value
(lambda* (#:key host #:allow-other-keys)
(match-glob host
(("aarch64*") "-moutline-atomics")

(else "")))))))
(dependencies

1
2
3
4
5
6
7
8
9

BLUE WILL ENSURE THE DEPENDENCIES ARE MEET

A blue configure
starting phase ‘parse-command-line-arguments'
parsing 0 arguments:
starting phase ‘resolve-host'
guessing host target
OK x86_64-unknown-linux-gnu
starting phase ‘resolve-dependencies'
resolving 1 dependency
NO sdl12 (?77)
starting phase ‘expand-variables'
guessing C toolchain
looking for binary x86_64-unknown-1linux-gnu-gcc
0K x86_64-unknown-1linux-gnu-gcc — /gnu/store/pdsp8rh..-gcc-15.2.0/bin/x86_64-unknown-1inux-gnu-gcc
guessing build target
OK x86_64-unknown-linux-gnu
configuration summary
0 warnings
1 error
&error
origin:
#{<c-dependency>: blueprint.scm:33:5 - blue/dependency/c.scm:63:8}
caused-by:
&external-error
origin:
$ pkg-config —exists sd12
message:
Package sd12 was not found in the pkg-config search path.
Perhaps you should add the directory containing ‘sd12.pc'
to the PKG_CONFIG_PATH environment variable
No package 'sd12' found

Figure 4. Unmet dependency exception

LET'S MAKE A CONFIGURATION
-XAMPLE

AWHITE CANVAS..

1 (use-modules (blue types blueprint))
2
3 (blueprint)

LETS A

D

DA

1 (use-modules (blue stencils c)

O 00~ Oy

(buildables
(list
(c-binary

(inputs '("prog.c'

"))

(outputs "prog")))))

SUIL

DA

S

- 'S CONFIGU

CFLAGS

w

10
11
12
13

q

- AVA

(blue types configuration)
(blue types variable))

(variables

(list
(variable
(name "CFLAGS")
(value "-03"))))))

RIABLE

default to "-g -0O2 -Wall -Wextra" (C stencil)

(use-modules (blue dependency c)
(blue stencils c)
(blue types blueprint)
(blue types configuration)
(blue types variable))

(blueprint
(configuration
(configuration
(variables
(list
(variable
(name "CFLAGS")
(value "-03"))))
(dependencies

15
16
17
18
19

24

AND A DEPENDENCY

(dependencies

(list
(c-dependency
(name "sdl2")
(required? #t))))))

(external-dependencies #%~(list #%?dep:sdl2))

THAT WAS

US

S

- CONF

FASY.. B

HOW

DOW

RATION?

10
11
12
13
14
15

=[S DEFINE ANEW COMMAN

THAT USES THE VARIABL

(define-command (print-info-command arguments)
((invoke "info"))
(format #t "-----

Source directory: ~a

Build directory: ~a

Prefix: ~a

CFLAGS: ~a

sdl2: ~a

D TO

LET'S

THAT USES THE VARIABLE

43 (comm

DEFIN

ands

- ANEW COMMAN

44 (list print-info-command)))

D TO

LET'SBUILT |

A blue configure —prefix=/tmp/hello-install — build — info
starting phase “parse-command-line-arguments'
parsing 1 argument: —prefix=/tmp/hello-install
starting phase ‘resolve-host'
guessing host target
0K x86_64-unknown-1linux-gnu
starting phase ‘resolve-dependencies'’
resolving 1 dependency
0K sd12 (2.30.8)
starting phase ‘expand-variables'
guessing C toolchain
looking for binary x86_64-unknown-1linux-gnu-gcc
0K x86_64-unknown-1linux-gnu-gcc — /gnu/store/pdsp8rh..-gcc-15.2.0/bin/x86_64-unknown-linux-gnu-gcc

guessing build target
0K x86_64-unknown-1inux-gnu

configuration summary

0 warnings

0 errors

CC /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.o

LINK /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog
Source directory: /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration
Build directory: /home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration
Prefix: /tmp/hello-install
CFLAGS: -03
sdl2: -1SDL2

Figure 5: Configure with command arguments

DELAYED COMPUTATIONS

(define-command (print-info-command arguments)
((invoke "info"))
(format #t "
Source directory: -~a
Build directory: -~a
Prefix: ~a
CFLAGS: ~a
~a

1
2
3
4
5
6
7
8
9

#%?srcdir

#%?builddir

#%?prefix

#%?CFLAGS

(c-dependency-libs-only-1 #%?dep:sdl2)))

BLUE DELAYED COMPUTATIONS

Delayed computation
An expressions evaluated at run-time within a

dynamic computation environment. Its
application is memoized.

Expression Meaning

#%~FORM Create a delayed expression from FORM.

#%?SYMBOL Ask for the value of SYMBOL within the current computation.

#%,FORM Undelay the expression in FORM within a delayed expression.

LET'S DELAY AN EXPRESSION

1 #%~"qguile"

LET'S DELAY AN EXPRESSION

1 #%~"qguile"

Expands to [

1 (make-computation (lambda () "guile"))

LET'S RETRIEVE A CONFIGURATION VALUE

1 #%~(1if (string=? #%?1libdir "/usr/local/lib")
2 #%,special-location

3 (path->string

4 (path-join #%?libdir "quile")))

LET'S RETRIEVE A CONFIGURATION VALUE

1 #%~(1if (string=? #%?1libdir "/usr/local/lib")
2 #%,special-location

3 (path->string

4 (path-join #%?libdir "quile")))

Expands to [

1 (make-computation

2 (let* ((t-1dff1lb83541ce327-295 special-location))
3 (lambda ()

4 (let ((t-1dff1b83541ce327-294

5 (delay (computation-ask 'libdir))))

6 (1f (string=? (force t-1dfflb83541ce327-294)
7 "/usxr/local/lib")

8 t-1dff1b83541ce327-295

9 (path->string

0 (path-join

1 (force t-1dff1b83541ce327-294) "qguile")))))))

LET'S DRAW SOME SIMILARITIES

Makefile (lazy evaluation)

/usr/local
${PREFIX}/bin

PREFIX
BINDIR

G-Expressions

#~(string-append #$output "/bin")

BLUE

#%~ (string-append #%?prefix "/bin")

ONE LAST REMARK

Delayed computations bring

ONE LAST REMARK

Delayed computations bring
e Much more than variable expansion.

ONE LAST REMARK

Delayed computations bring
e Much more than variable expansion.
e The power and expressivity of Guile.

CAN BE SERIALIZED TO DISK!

1 #%~(string-append #%?prefix "/bin")

Expands to 1}

CAN BE SERIALIZED TO DISK!

1 #%~(string-append #%?prefix "/bin")

Expands to]

1 (let

2 ((the-computation

3 ((@ (blue computation) make-computation)

4 (let ()

5 (let ()

6 (define proc

7 (lambda ()

8 (let

9 ((t-5c05c27ebb17590-ab

10 ((@@ (guile) make-promise)

11 (lambda ()

12 ((@@ (blue computation) computation-ask) (quote prefix))))))
13 ((@ (qguile) string-append)

14 ((@@ (blue computation) force) t-5c@5c27ebb17590-ab) "/bin"))))
15 ((@@ (blue utils hash) set-object-property!) proc (quote blue-hash)
16 754606235298532093936125085570906851521)

17 proc))

18 (quote ((line . 91) (column . 20)))

19 (quote (string-append (~computation-ask (quote prefix)) "/bin"))

20 (delay

21 (quote

22 (let ()

BACKTRACES

MANY OF US MAK

- MISTAK

WOR

- GOT

SR

RY NOT...

SACKT

RAC

(use-modules (blue dependency c)
(blue stencils c)
(blue types blueprint)
(blue types configuration)
(blue types variable)
(blue types command))

(define-command (print-info-command arguments)
((invoke "info"))
(format #t "

Source directory: ~a

Build directory: -~a

Prefix: ~a

CFLAGS: ~a

sdl2: ~a

1
2
3
4
5
6
7
8
9

THIS IS THE BLUE BACKTRACE YOU WILL SEE

147[(lambda (exn stack)

2: (dynamic-wind* _ #<procedure 7fbh87972fe40 at blue/command.scm:144:7 ()> #<p..>)_at blue/fibers/scheduler.scm:288:2

285| (define (dynamic-wind* in-guard thunk out-guard)
286| "Like regular @code{dynamic-wind}, but ignore @uar{in-guard} and
287|@var{out-guard} during suspension and resumption of tasks."

> 288| (dynamic-wind

289 (lambda ()
290| (unless (rewinding-for-scheduling?)
291 (in-guard)))

1: (_)_at blue/command.scm:146:8

143 (run-with-states (append inject-states (load-configuration-states command))

144 (log:with-nest-logging

145 log:trace-level ("invoking command: ~a~{ ~a~}" (command-invoke command) args)
> 146 ((command-procedure command) args))))

147 (lambda (exn stack)

148 (let ((port (current-error-port)))

149 (newline port)

0: (_ _)_at blueprint.scm:17:25

14|CFLAGS: ~a

15(sd12: ~a
'IB n
> 17 (string-append idontexist #4?srcdir)
18 #/?builddir
19 #/2prefix
20 #/2CFLAGS

Error while running command ‘info':
unbound-variable: Unbound variable: idontexist

Figure 6: Unbound variable BLUE backtrace

HELP MENUS

HAS DYNAMIC AN

VE HELP MENUS

A blue help
Usage: blue [OPTIONS | VAR=VALUE]...
Run COMMAND with ARGS, if given.

OPTIONS:

—always-build
—build-directory=DIRECTORY
—color[=POLICY]
-C, —compiled-load-path=DIRECTORY
-n, —dry-run
-f, —file=FILE
—fresh-store

-h, —help
-j, —Jjobs[=N]
-q, —quiet

-L, —load-path=DIRECTORY
—1log-level=LEVEL
—profile[=HOW]
—source-directory=DIRECTORY
—store-directory=DIRECTORY
—trace

-v, —version

COMMAND ARGS... [— COMMAND ARGS...J...

always build everything

set the build directory to DIRECTORY

set the color POLICY (auto, always, never; (default: always)
add DIRECTORY to the front of the module compiled load path
print what would happen without side effects

use FILE as blueprint

assume files in store are not valid

display this message and exit

maximum number jobs to run in parallel

don't load local preferences. Pass twice for not loading global preferences also.
add DIRECTORY to the front of the module load path

set the default log level to LEVEL

profile execution HOW (gc, stat, trace; (default: stat))

set the source directory to DIRECTORY

use DIRECTORY for the store

same as '—profile=trace —Ilog-level=trace'

display version of blue and exit

COMMAND must be one of the sub-commands listed below:

builtin commands:

build Build the project

check Run the project test suites

clean Clean the project

configure Configure the build directory.

help Ask help about a command

repl Start a Guile REPL in blue environment

=

epla Replay failed builds

other command:
info

Report bugs to: <https://codeberg.or

g/lapislazuli/blue/issues>.

Join the community: #blue on Libera.

Chat IRC network.

Figure 7: BLUE help menus

REPLAY

Since mistakes are bound to happen...

A blue replay

origin: #{<c-object>/home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.o: blue/stencils/c.scm:296:8}

replay: blue replay da0015b3ea84ab9

log: blue replay —log da0015bh3ea84ab9

inputs:

+ [home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.c

outputs:

+ [home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.o

error:

origin:
#{<c-object>/home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.o: blue/stencils/c.scm:296:8}
caused-by:
irritants:

(#:exit-value

#:subprocess

("gcc”
n2MMD"
"-1/gnu/store/74szk51..-sd12-2.30.8/include"
"-1/gnu/store/74szk51..-sd12-2.30.8/include/SDL2"
"-fdiagnostics-color=always"
"-fPIE"
n_p3n
"-D_REENTRANT"
n_gh

n_gh
"/home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.o"
"/home/pastor/projects/lapislazuli/fosdem2026-presentation/hello-configuration/prog.c"))

message:

SUBPROCESS invocation failed.

Figure 8: BLUE replay command

PREFERENCE SYSTEM

Preference
A setting that configures some aspect of BLUE

Projects, and extensions can also define their own preferences
that users can customize.

D

1 ,;; In $XDG_CONFIG_HOME/blue/config.scm

—IN

= TH

M G

2 (set-preference! blue.ui:jobs 4)
3 (set-preference! blue.ui:color-policy 'always)

O

SA

A WN R

PROJECT LOCALLY

vio In $%?srcdir/.blue-config.scm

(set-preference!
blue.command.builtin. configure:flags
'("--fast-install"))

ORINA

—NVI

RONM

“NT VA

RIABL

1 export BLUE_PREFERENCES=blue.stencils.c.configuration:cc=clang

EXTENSIBILITY

INHERITANCE

1 (define-blue-class <texinfo> (<buildable>))

=

PO LW ~JdJOULDEWN

ADDING ADDITIONAL SLOTS

(executable

#:.:getter info-executable
#:init-value "makeinfo"
#:1init-keyword #:executable
#:type string?)

(flags

#:getter info-flags
#:init-value '()
#:1init-keyword #:flags
#:type (list-of? string?)))

(define-blue-class <texinfo> (<buildable>)
(executable
#:getter info-executable
#:1nit-value "makeinfo"

#:1init-keyword #:executable
#:type string?)

(flags

#:getter info-flags
#:init-value '()
#:init-keyword #:flags
#:type (list-of? string?)))

PO WVWOoLONOOUTEWNE

=

=

cuwWwooNNoOouTh, WN -

RLOADING

METHOD OV

(define-method (ask-build-manifest
(this <texinfo>)
(input <string>)
(output <string>))
(make-build-manifest
(string-append "MKINFO\t" output)
(list (info-executable this)
(info-flags this)
(string-append "--output=" output)
input)))

SBUILDABL

(define-method (ask-build-manifest
(this <texinfo>)
(input <string>)
(output <string>))

(make-build-manifest

(string-append "MKINFO\t" output)

(list (info-executable this)
(info-flags this)
(string-append "--output=" output)
input)))

S wWoo~JOoOuUuTLpsWNPE

[

(define-method (ask-build-manifest
(this <texinfo>)
(input <string>)
(output <string>))

(make-build-manifest

(string-append "MKINFO\t" output)

(list (info-executable this)
(info-flags this)
(string-append "--output=" output)
input)))

VWO JNOULPEWNPE

[

(define-method (ask-build-manifest
(this <texinfo>)
(input <string>)
(output <string>))

(make-build-manifest

(string-append "MKINFO\t" output)

(list (info-executable this)
(info-flags this)
(string-append "--output=" output)
input)))

S VWoLoNOoOUTkWNE

[

S OO0 ~JO U

MANIFEST

(make-build-manifest
(string-append "MKINFO\t" output)
(list (info-executable this)
(info-flags this)
(string-append "--output=" output)
input)))

HEADER
Progress indicator that BLUE will print.

6 (string-append "MKINFO\t" output)

ACTION

The code that generates the artifact.

(list (info-executable this)
(info-flags this)
(string-append "--output=" output)
input)))

BLUEEL

The Emacs interface for BLUE

blue-1un-command

| o> projects » lapislazuli » blue

> [share|bash-completion|completions|blue 1

> [tests 5

> [.woodpecker 2

A blueprint.scm 26-01-26 13:40 1.1k

[bootstrap 2.4K

2. channels.scm 1.3k

[CONTRIBUTING 3.3K

© COPYING 2 —prefix= PREFIX|7.5k

@ .dir-locals.el 2% —host= HOST| 4 .2k

£+ .envrc 22 —huild= BUILD| 299

£+ .gitattributes /2 —psdir= DIRECTORY| 48
A aitionnra 22 —bindir=DIRECTORY

| 1 name[mtine /% —docdir=DIRECTORY | / 26

Build directory (M-<num> to select): S2 —dvidir=DIRECTORY
22 —1ibdir=DIRECTORY

@ /home/pastor/projects/lapislazuli/blue/build-2
+hemetpaster/prejeetsHapistazuti/bluefbuitd— 2 —mandir=DIRECTORY
52 —pdfdir=DIRECTORY ——

1/11 [double-dash-separated list] [CMR—] Command: —always-build configure — — build —
—— builtin
» help Ask help about a command
repl Start a Guile REPL in blue environment
build Build the project
check Run the project test suites
clean Clean the project
replay Replay failed builds
configure Configure the build directory.
—— 1install
install Install the project

Figure 9: BLUE run command Emacs interface

blue-transient

| o> projects » lapislazuli > blue
A blueprint.scm
M hnntetran

26-01-26 13:40 1.7k
2 Ak

I_T name |mtime

12 / 26]

Eommands: configure —prefix=/tmp/blue-install/

M-p Previous prompt M-n Next prompt
Options

-a Always-Build (—always-build)

-A Color (—color=)

-0 Compiled-Load-Path (—compiled-load-path=)
-d Dry-Run (—dry-run)

-i File (—file=)

-r Fresh-Store (—fresh-store)

Build directory

-b Build directory (—build-directory=)
1 /home/pastor/projects/lapislazuli/blue/build-

arguments

—r Prefix (—prefix=/tmp/blue-install/) —S
—e Exec-Prefix (—exec-prefix=) —L
—a Datarootdir (—datarootdir=) —d
—c Localstatedir (—1localstatedir=) —y
—o0 Docdir (—docdir=) —B
—m Mandir (—mandir=) —R
—b Bindir (—bindir=) —i
C-a C-b c-f C-e
<home> First <left> < <right> > <end> L
Commands
Testing Install Guix Bui
ti Installcheck i Install g Guix-Build bb
tc Coverage bc
hl
1/3 —profile=
» stat
gc
trace

— build — check — install — installcheck

-e Help (—help)

-J Jobs (—jobs=)

-u Quiet (—quiet)
Load-Path (—1load-path=)
-D Log-Level (—log-level=)
Profile (—profile=)

1

-s Source-Directory (—source-directory=)
-t Store-Directory (—store-directory=)
-T Trace (—trace)

-V Version (—version)

, Selected command args
! Free-type
~ Comint flip (flip)

Sbindir (—sbhindir=)

Libexecdir (—libexecdir=)

Datadir (—datadir=)

Sysconfdir (—sysconfdir=)
Sharedstatedir (—sharedstatedir=)
Runstatedir (—runstatedir=)
Includedir (—includedir=)

ast

Ltin DEL Del RET Run)
Build C-k Kill

Check C-1 Clear

Lloan Unda

—O0 Oldincludedir (—oldincludedir=) —s Lispdir (—1ispdir=)

—n Infodir (—infodir=) —A Localedir (—localedir=)
—t Htmldir (—htmldir=) —u Build (—build=)

—v Dvidir (—dvidir=) —T Target (—target=)

—p Pdfdir (—pdfdir=) —h Host (—host=)

—P Psdir (—psdir=)

—1 Libdir (—1libdir=)

Figure 10: BLUE transient Emacs interface

blue-replay

Build directory: /[home/pastor/projects/lapislazuli/blue/build-1

>Record 1aca9990a0ec7d4c
vRecord eff998bcca09667
origin: #{<guile-test-suite>#f: blueprint/tests.scm:102:5}
replay: |h1ue replay eff998bccad9667|
vInputs:
+ [home/pastor/projects/lapislazuli/blue/tests/unit/blue/utils/glob.scm
vOutputs:
+ (#:1og . [home/pastor/projects/lapislazuli/blue/build-1/tests/unit/blue/utils/glob.scm.log)
+ (#:trs . [home/pastor/projects/lapislazuli/blue/build-1/tests/unit/blue/utils/glob.scm.trs)
+ (#:cov . /home/pastor/projects/lapislazuli/blue/build-1/tests/unit/blue/utils/glob.scm.cov)
vError:
origin:
#{<guile-test-suite>#f: blueprint/tests.scm:102:5}
caused-hy:
irritants:
(#:exit-value
127
#:thunk
#<procedure 7££301208030 at blue/stencils/guile.scm:141:3 ()>)
message:
THUNK invocation failed.

| @ B *blue replay* 26:11 All LF UTF-8 Blue-replay
Click to replay buildable eff998bccad9667

Figure 11: BLUE replay Emacs interface

GUIX SUPPORT

Bluebox
A Guix channel for BLUE.

https://codeberg.org/lapislazuli/bluebox

(define-public blue
(let ((commit "4ef3c82de@@da®39ad255d458becc®@1d9chb65507")
(revision "12"))
(package
(name "blue")
(version (git-version "0.0.0" revision commit))
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://codeberg.org/lapislazuli/b
(commit commit)))
(file-name (git-file-name name version))
(sha256
(base32
"1hv9x7002nal967ywh73dpcakygpblarxyzjmxd93jo

1
2
3
4
5
6
7
8
9

(define-public blue
(let ((commit "4ef3c82de®0dda®39ad255d458becc®@1d9cb65507")
(revision "12"))
(package
(name "blue")
(version (git-version "0.0.0" revision commit))
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://codeberg.org/lapislazuli/b
(commit commit)))
(file-name (git-file-name name version))
(sha256
(base32
"1hv9x7002nal967ywh73dpcakygpblarxyzjmxd93jo

1
2
3
4
5
6
7
8
9

nerated Guix pha

(define-public blue
(let ((commit "4ef3c82de@0@da®39ad255d458becc®@1d9chb65507")
(revision "12"))
(package
(name "blue")
(version (git-version "0.0.0" revision commit))
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://codeberg.org/lapislazuli/b
(commit commit)))
(file-name (git-file-name name version))
(sha256
(base32
"1hv9x7002nal967ywh73dpcakygpblarxyzjmxd93jo

1
2
3
4
5
6
7
8
9

guix build -L. blue --check --no-grafts

The following derivation will be built:
/gnu/store/jgbskg7sx076vc66vbngdoxvscx6algd-blue-0.0.0-13.0e

building /gnu/store/Jqbskg7sx®76vc66vbngd9xvscx6alg4 blue-0.0.

starting phase "separate-from-pidl’

starting phase "set-SOURCE-DATE-EPOCH'

starting phase "set-paths'

starting phase "install-locale’

starting phase “unpack'

starting phase "bootstrap'

starting phase “patch-usr-bin-file'

starting phase “patch-source-shebangs'

starting phase "bootstrap-blue'

starting phase " configure’

starting phase "patch-generated-file-shebangs'

1
2
3
4
5
6
7
8
9

ROADMAP

e Pre-alpha (we are here)
e Alpha

e Beta

e Release

CUR

:{

-NT F

“ATU

:{

=S

Pure Guile (no additional dependencies)
Replay functionality
Configurable preferences
Autocomplete engine
Blueprint export to JSON
Extensible primitive types (through GOOPS)
Hash-based tracking of buildables
Time-based tracking of inputs/outputs
Configuration based on system discoverability

NEXT FEATURES

DAG traversal API
DAG exporter/viewer (hoot?)
Custom build scheduler
WISP support
Exporters

= Ninja

= Compilation database

| APISLAZUL

FO

R YOU

RF

Q

DOM AN

D OU

Our projects are GPL compliant

RS

MAIN REPOSITORIES

LGPL
e BLUE - Build Language User Extensible
GPL
e Bluebox - A Guix channel for BLUE
(Implements the blue-build-system)
e blue.el - The Emacs interface for BLUE

https://codeberg.org/lapislazuli/blue
https://codeberg.org/lapislazuli/bluebox
https://codeberg.org/lapislazuli/blue.el

PORTS

Guile
e Shepherd
Suckless
o ST
e DWM
Demos
e Hello world
e Hello world with embedded BLUE

https://codeberg.org/lapislazuli/shepherd
https://codeberg.org/lapislazuli/st
https://codeberg.org/lapislazuli/dwm
https://codeberg.org/lapislazuli/test-hello
https://codeberg.org/lapislazuli/test-hello-embedded

END

Thanks for you attention

