
BLUE - A GENERIC

BUILD-SYSTEM

CRAFTED ENTIRELY IN

GUILE

Sergio Pastor Pérez, Olivier Dion

TABLE OF CONTENTS
What is BLUE?

Hello BLUE

Delayed computations

Backtraces

Help menus

Replay

Preference system

Extensibility

blue.el

Guix support

ROADMAP

Lapislázuli

END

WHAT IS BLUE?

A BUILD-SYSTEM

(blueprint
 (configuration blue-configuration)
 (buildables
 (append
 blue-docs
 blue-modules
 blue-templates))
 (testables
 blue-tests)
 (commands
 (list
 check-install-command
 coverage-command
 install-command
 guix-build-command)))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SUPPORTING PROJECT CONFIGURATION

 (configuration blue-configuration)
(blueprint1

2
 (buildables3
 (append4
 blue-docs5
 blue-modules6
 blue-templates))7
 (testables8
 blue-tests)9
 (commands10
 (list11
 check-install-command12
 coverage-command13
 install-command14
 guix-build-command)))15

GOAL-DRIVEN DECLARATIONS

 (buildables
 (append
 blue-docs
 blue-modules
 blue-templates))
 (testables
 blue-tests)

(blueprint1
 (configuration blue-configuration)2

3
4
5
6
7
8
9

 (commands10
 (list11
 check-install-command12
 coverage-command13
 install-command14
 guix-build-command)))15

AND COMMAND BASED ACTIONS

 (commands
 (list
 check-install-command
 coverage-command
 install-command
 guix-build-command)))

(blueprint1
 (configuration blue-configuration)2
 (buildables3
 (append4
 blue-docs5
 blue-modules6
 blue-templates))7
 (testables8
 blue-tests)9

10
11
12
13
14
15

IT'S ALSO A COMMAND DISPATCHER

(define-command (hello-command files)
 ((invoke "hello")
 (category 'hello)
 (synopsis "Say hello")
 (help "FILE ...\nPrint hello to FILE."))
 (for-each
 (lambda (file)
 (with-output-to-file file
 (lambda () (display "Hello\n"))))
 files))

(blueprint
 (commands
 (list hello-command)))

1
2
3
4
5
6
7
8
9

10
11
12
13
14

WITHOUT BOILER PLATE

(blueprint
 (commands
 (list hello-command)))

(define-command (hello-command files)1
 ((invoke "hello")2
 (category 'hello)3
 (synopsis "Say hello")4
 (help "FILE ...\nPrint hello to FILE."))5
 (for-each6
 (lambda (file)7
 (with-output-to-file file8
 (lambda () (display "Hello\n"))))9
 files))10
 11

12
13
14

BUT MORE IMPORTANTLY…

A FRAMEWORK

TO MAKE YOUR OWN BUILD SYSTEM

(define-blue-class <tarball> (<buildable>)
 (executable
 #:getter tarball-executable
 #:init-value #%~#%?TAR
 #:init-keyword #:executable))

(define-method (ask-build-manifest
 (this <tarball>) (inputs <list>) (output <string>))
 (let ((relative-path (buildable-inputs-relative-to this)))
 (make-build-manifest
 (string-append "TAR\t" output)
 (cons*
 (tarball-executable this) "czf" output
 "-C" relative-path
 (map
 (lambda (path)
 (string-replace-substring path (string-append relative-path "/") ""))
 inputs)))))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

DEFINE YOUR OWN BUILDABLE OBJECTS

(define-blue-class <tarball> (<buildable>)
 (executable
 #:getter tarball-executable
 #:init-value #%~#%?TAR
 #:init-keyword #:executable))

1
2
3
4
5

 6
(define-method (ask-build-manifest7
 (this <tarball>) (inputs <list>) (output <string>))8
 (let ((relative-path (buildable-inputs-relative-to this)))9
 (make-build-manifest10
 (string-append "TAR\t" output)11
 (cons*12
 (tarball-executable this) "czf" output13
 "-C" relative-path14
 (map15
 (lambda (path)16
 (string-replace-substring path (string-append relative-path "/") ""))17
 inputs)))))18

AND LET BLUE KNOW WHAT TO DO WITH THEM

(define-method (ask-build-manifest
 (this <tarball>) (inputs <list>) (output <string>))
 (let ((relative-path (buildable-inputs-relative-to this)))
 (make-build-manifest
 (string-append "TAR\t" output)
 (cons*
 (tarball-executable this) "czf" output
 "-C" relative-path
 (map
 (lambda (path)
 (string-replace-substring path (string-append relative-path "/") ""))
 inputs)))))

(define-blue-class <tarball> (<buildable>)1
 (executable2
 #:getter tarball-executable3
 #:init-value #%~#%?TAR4
 #:init-keyword #:executable))5
 6

7
8
9
10
11
12
13
14
15
16
17
18

WHY ANOTHER BUILD-SYSTEM?

Because BLUE is

MINIMALIST AND SELF-CONTAINED

blue@0.0.0-10.617c969

guile@3.0.9

pkg-config@0.29.2

libffi@3.4.6libxcrypt@4.4.38 bash-minimal@5.2.37 libunistring@1.3 libgc@8.2.8

perl@5.36.0

Figure 1: Dependencies of the BLUE package

GOAL-BASED

Ask what you want.

(c-binary
 (inputs '("prog.c"))
 (external-dependencies #%~(list #%?dep:sdl2))
 (outputs "prog"))

GOAL-BASED

Ask what you want.

(c-binary
 (inputs '("prog.c"))
 (external-dependencies #%~(list #%?dep:sdl2))
 (outputs "prog"))

BLUE will figure it out ⬇️
$ gcc -MMD -I<prefix>/include -I<prefix>/include/SDL2 -fPIE \
 -g -O2 -Wall -Wextra -c -o prog.o prog.c
$ gcc -g -O2 -Wall -Wextra -L<prefix>/lib -o prog prog.o -lSDL2

EXTENSIBLE

EXTENSIBLE

GOOPS

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

Stencil system

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

Stencil system

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

Stencil system

Project serialization

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

Stencil system

Project serialization

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

Stencil system

Project serialization

Autocomplete engine

EXTENSIBLE

GOOPS

Method overriding / redefining

Inheritance

User defined commands

Override built-in commands

Plugin system (TODO)

Custom build scheduler

Stencil system

Project serialization

Autocomplete engine

Shell integration

HELLO BLUE

LAYOUT

blueprint.scm

A container for gathering a BLUE project

description.

;;; Modules

;;; Buildables

;;; Commands

;;; Blueprint

1
2
3
4
5
6
7
8

IMPORT STENCILS

Stencil

A set of buildable types and utilities to simplify

the description of a common pattern.

;;; Modules
(use-modules (blue stencils c))

1
2

 3
;;; Buildables4
 5
;;; Commands6
 7
;;; Blueprint8
 9

DECLARE BUILDABLES

Buildable

An object that BLUE knows how to build.

;;; Buildables
(define libhello
 (c-binary
 (inputs "hello.c")
 (outputs "libhello.a")
 (library? #t)
 (shared? #f)))

(define hello
 (c-binary
 (inputs (list "main.c" libhello))
 (outputs "hello")))

;;; Modules1
(use-modules (blue stencils c))2
 3

4
5
6
7
8
9

10
11
12
13
14
15
16

DEFINE COMMANDS

Command

An action that BLUE can execute.

;;; Modules1
(use-modules (blue stencils c)2
 (blue subprocess)3
 (blue types command))4
 5
;;; Buildables6
(define libhello7
 (c-binary8
 (inputs "hello.c")9
 (outputs "libhello.a")10
 (library? #t)11
 (shared? #f)))12
 13
(define hello14
 (c-binary15

(inp ts (list "main c" libhello))16

DEFINE BLUEPRINT

Blueprint

An object that describes a BLUE project.

;;; Modules1
(use-modules (blue stencils c)2
 (blue subprocess)3
 (blue types blueprint)4
 (blue types command))5
 6
;;; Buildables7
(define libhello8
 (c-binary9
 (inputs "hello.c")10
 (outputs "libhello.a")11
 (library? #t)12
 (shared? #f)))13
 14
(define hello15

(c binar16

LET'S BUILT IT

UPS… I FORGOT TO CONFIGURE

The C stencil requires a configuration step.

Figure 2: Missing BLUE configuration

LET'S DO IT RIGHT

Commands optionally can be chained with '--'.

Figure 3: Command chaining

COMMAND CAN TAKE ARGUMENTS

Here we pass the arguments directly to Guix.

(define-command (guix-build-command arguments)
 ((invoke "guix-build")
 (category 'guix)
 (load-configuration-policy 'no))
 (zero? (popen "guix"
 (append
 `("time-machine"
 "-C"
 ,(string-append #%?srcdir "/channels.scm")
 "--"
 "build"
 "-f"
 ,(string-append #%?srcdir "/guix.scm"))
 arguments)
 #:working-directory #%?srcdir)))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

WHAT IF I MY PROJECT NEEDS

STATEFUL DATA?

INTRODUCING THE CONFIGURATION

Configuration

An object that describes stateful data.

(define hello-configuration
 (configuration))

1
2

HERE YOU CAN DEFINE VARIABLES FOR YOUR PROJECT

 (variables
 (list
 (variable
 (name "VERSION")
 (value "0.0.1"))
 (variable
 (name "CFLAGS")
 (value
 (lambda* (#:key host #:allow-other-keys)
 (match-glob host
 (("aarch64*") "-moutline-atomics")
 (else "")))))))))

(define hello-configuration1
 (configuration2

3
4
5
6
7
8
9

10
11
12
13
14

AND ALSO YOUR PROJECT DEPENDENCIES

 (dependencies
(map (lambda (dep)

(define hello-configuration1
 (configuration2
 (variables3
 (list4
 (variable5
 (name "VERSION")6
 (value "0.0.1"))7
 (variable8
 (name "CFLAGS")9
 (value10
 (lambda* (#:key host #:allow-other-keys)11
 (match-glob host12
 (("aarch64*") "-moutline-atomics")13
 (else "")))))))14

15
16

BLUE WILL ENSURE THE DEPENDENCIES ARE MEET

Figure 4: Unmet dependency exception

LET'S MAKE A CONFIGURATION

EXAMPLE

A WHITE CANVAS…

(use-modules (blue types blueprint))

(blueprint)

1
2
3

LET'S ADD A BUILDABLE

(use-modules (blue stencils c)

 (buildables
 (list
 (c-binary
 (inputs '("prog.c"))
 (outputs "prog")))))

1
 (blue types blueprint))2
 3
(blueprint4

5
6
7
8
9

LET'S CONFIGURE A VARIABLE

CFLAGS

default to "-g -O2 -Wall -Wextra" (C stencil)

 (blue types configuration)
 (blue types variable))

 (variables
 (list
 (variable
 (name "CFLAGS")
 (value "-O3"))))))

(use-modules (blue stencils c)1
 (blue types blueprint)2

3
4

 5
(blueprint6
 (configuration7
 (configuration8

9
10
11
12
13

 (buildables14
 (list15

(c binar16

AND A DEPENDENCY

(use-modules (blue dependency c)1
 (blue stencils c)2
 (blue types blueprint)3
 (blue types configuration)4
 (blue types variable))5
 6
(blueprint7
 (configuration8
 (configuration9
 (variables10
 (list11
 (variable12
 (name "CFLAGS")13
 (value "-O3"))))14
 (dependencies15

(list16

AND A DEPENDENCY

(use-modules (blue dependency c)1
 (blue stencils c)2
 (blue types blueprint)3
 (blue types configuration)4
 (blue types variable))5
 6
(blueprint7
 (configuration8
 (configuration9
 (variables10
 (list11
 (variable12
 (name "CFLAGS")13
 (value "-O3"))))14
 (dependencies15

(list16

 (dependencies
 (list
 (c-dependency
 (name "sdl2")
 (required? #t))))))

 (external-dependencies #%~(list #%?dep:sdl2))

 (variables10
 (list11
 (variable12
 (name "CFLAGS")13
 (value "-O3"))))14

15
16
17
18
19

 (buildables20
 (list21
 (c-binary22
 (inputs '("prog.c"))23

24
 (outputs "prog")))))25

THAT WAS EASY… BUT HOW DO WE

USE THE CONFIGURATION?

LET'S DEFINE A NEW COMMAND TO

THAT USES THE VARIABLES

(define-command (print-info-command arguments)
 ((invoke "info"))
 (format #t "-----
Source directory: ~a
Build directory: ~a
Prefix: ~a
CFLAGS: ~a
sdl2: ~a

(use-modules (blue dependency c)1
 (blue stencils c)2
 (blue types blueprint)3
 (blue types configuration)4
 (blue types variable)5
 (blue types command))6
 7

8
9

10
11
12
13
14
15
16

LET'S DEFINE A NEW COMMAND TO

THAT USES THE VARIABLES

(define-command (print-info-command arguments)
 ((invoke "info"))
 (format #t "-----
Source directory: ~a
Build directory: ~a
Prefix: ~a
CFLAGS: ~a
sdl2: ~a

(use-modules (blue dependency c)1
 (blue stencils c)2
 (blue types blueprint)3
 (blue types configuration)4
 (blue types variable)5
 (blue types command))6
 7

8
9

10
11
12
13
14
15
16

 (commands
 (list print-info-command)))

 (variable29
 (name "CFLAGS")30
 (value "-O3"))))31
 (dependencies32
 (list33
 (c-dependency34
 (name "sdl2")35
 (required? #t))))))36
 (buildables37
 (list38
 (c-binary39
 (inputs '("prog.c"))40
 (external-dependencies #%~(list #%?dep:sdl2))41
 (outputs "prog"))))42

43
44

LET'S BUILT IT

Figure 5: Configure with command arguments

DELAYED COMPUTATIONS

#%? … WHAT IS THAT?

 #%?srcdir

(define-command (print-info-command arguments)1
 ((invoke "info"))2
 (format #t "-----3
Source directory: ~a4
Build directory: ~a5
Prefix: ~a6
CFLAGS: ~a7
sdl2: ~a8
-----9
"10

11
 #%?builddir12
 #%?prefix13
 #%?CFLAGS14
 (c-dependency-libs-only-l #%?dep:sdl2)))15

BLUE DELAYED COMPUTATIONS

Delayed computation

An expressions evaluated at run-time within a

dynamic computation environment. Its

application is memoized.

Expression Meaning

#%~FORM Create a delayed expression from FORM.

#%?SYMBOL Ask for the value of SYMBOL within the current computation.

#%,FORM Undelay the expression in FORM within a delayed expression.

LET'S DELAY AN EXPRESSION

#%~"guile"1

LET'S DELAY AN EXPRESSION

#%~"guile"1

Expands to ⬇️
(make-computation (lambda () "guile"))1

LET'S RETRIEVE A CONFIGURATION VALUE

#%~(if (string=? #%?libdir "/usr/local/lib")
 #%,special-location
 (path->string
 (path-join #%?libdir "guile")))

1
2
3
4

LET'S RETRIEVE A CONFIGURATION VALUE

#%~(if (string=? #%?libdir "/usr/local/lib")
 #%,special-location
 (path->string
 (path-join #%?libdir "guile")))

1
2
3
4

Expands to ⬇️
(make-computation
 (let* ((t-1dff1b83541ce327-295 special-location))
 (lambda ()
 (let ((t-1dff1b83541ce327-294
 (delay (computation-ask 'libdir))))
 (if (string=? (force t-1dff1b83541ce327-294)
 "/usr/local/lib")
 t-1dff1b83541ce327-295
 (path->string
 (path-join
 (force t-1dff1b83541ce327-294) "guile")))))))

1
2
3
4
5
6
7
8
9

10
11

LET'S DRAW SOME SIMILARITIES

Makefile (lazy evaluation)

G-Expressions

BLUE

PREFIX = /usr/local
BINDIR = ${PREFIX}/bin

#~(string-append #$output "/bin")

#%~(string-append #%?prefix "/bin")

ONE LAST REMARK

Delayed computations bring

ONE LAST REMARK

Delayed computations bring

Much more than variable expansion.

ONE LAST REMARK

Delayed computations bring

Much more than variable expansion.

The power and expressivity of Guile.

CAN BE SERIALIZED TO DISK!

Expands to ⬇️

#%~(string-append #%?prefix "/bin")1

CAN BE SERIALIZED TO DISK!

Expands to ⬇️

#%~(string-append #%?prefix "/bin")1

(let
 ((the-computation
 ((@ (blue computation) make-computation)
 (let ()
 (let ()
 (define proc
 (lambda ()
 (let
 ((t-5c05c27ebb17590-ab
 ((@@ (guile) make-promise)
 (lambda ()
 ((@@ (blue computation) computation-ask) (quote prefix))))))
 ((@ (guile) string-append)
 ((@@ (blue computation) force) t-5c05c27ebb17590-ab) "/bin"))))
 ((@@ (blue utils hash) set-object-property!) proc (quote blue-hash)
 754606235298532093936125085570906851521)
 proc))
 (quote ((line . 91) (column . 20)))
 (quote (string-append (~computation-ask (quote prefix)) "/bin"))
 (delay
 (quote
 (let ()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

BACKTRACES

MANY OF US MAKE MISTAKES…

WORRY NOT…

WE'VE GOT PRETTY BACKTRACES!

LET'S SAY YOU MAKE A TYPO

(use-modules (blue dependency c)1
 (blue stencils c)2
 (blue types blueprint)3
 (blue types configuration)4
 (blue types variable)5
 (blue types command))6
 7
(define-command (print-info-command arguments)8
 ((invoke "info"))9
 (format #t "-----10
Source directory: ~a11
Build directory: ~a12
Prefix: ~a13
CFLAGS: ~a14
sdl2: ~a15

16

THIS IS THE BLUE BACKTRACE YOU WILL SEE

Figure 6: Unbound variable BLUE backtrace

HELP MENUS

BLUE HAS DYNAMIC AND

INTERACTIVE HELP MENUS

Figure 7: BLUE help menus

REPLAY
Since mistakes are bound to happen…

Figure 8: BLUE replay command

PREFERENCE SYSTEM
Preference

A setting that configures some aspect of BLUE

Projects, and extensions can also define their own preferences

that users can customize.

DEFINE THEM GLOBALLY

;;; In $XDG_CONFIG_HOME/blue/config.scm
(set-preference! blue.ui:jobs 4)
(set-preference! blue.ui:color-policy 'always)

1
2
3

PROJECT LOCALLY

;;; In $%?srcdir/.blue-config.scm
(set-preference!
 blue.command.builtin.configure:flags
 '("--fast-install"))

1
2
3
4

OR IN A ENVIRONMENT VARIABLE

export BLUE_PREFERENCES=blue.stencils.c.configuration:cc=clang1

EXTENSIBILITY

INHERITANCE

(define-blue-class <texinfo> (<buildable>))1

ADDING ADDITIONAL SLOTS

 (executable
 #:getter info-executable
 #:init-value "makeinfo"
 #:init-keyword #:executable
 #:type string?)
 (flags
 #:getter info-flags
 #:init-value '()
 #:init-keyword #:flags
 #:type (list-of? string?)))

(define-blue-class <texinfo> (<buildable>)1
2
3
4
5
6
7
8
9

10
11

TYPED SPECIFICATION FOR SLOTS

 #:type string?)

 #:type (list-of? string?)))

(define-blue-class <texinfo> (<buildable>)1
 (executable2
 #:getter info-executable3
 #:init-value "makeinfo"4
 #:init-keyword #:executable5

6
 (flags7
 #:getter info-flags8
 #:init-value '()9
 #:init-keyword #:flags10

11

METHOD OVERLOADING

(define-method (ask-build-manifest
 (this <texinfo>)
 (input <string>)
 (output <string>))
 (make-build-manifest
 (string-append "MKINFO\t" output)
 (list (info-executable this)
 (info-flags this)
 (string-append "--output=" output)
 input)))

1
2
3
4
5
6
7
8
9

10

BUILDABLE

 (this <texinfo>)
(define-method (ask-build-manifest1

2
 (input <string>)3
 (output <string>))4
 (make-build-manifest5
 (string-append "MKINFO\t" output)6
 (list (info-executable this)7
 (info-flags this)8
 (string-append "--output=" output)9
 input)))10

INPUT

 (input <string>)

(define-method (ask-build-manifest1
 (this <texinfo>)2

3
 (output <string>))4
 (make-build-manifest5
 (string-append "MKINFO\t" output)6
 (list (info-executable this)7
 (info-flags this)8
 (string-append "--output=" output)9
 input)))10

OUTPUT

 (output <string>))

(define-method (ask-build-manifest1
 (this <texinfo>)2
 (input <string>)3

4
 (make-build-manifest5
 (string-append "MKINFO\t" output)6
 (list (info-executable this)7
 (info-flags this)8
 (string-append "--output=" output)9
 input)))10

MANIFEST

 (make-build-manifest
 (string-append "MKINFO\t" output)
 (list (info-executable this)
 (info-flags this)
 (string-append "--output=" output)
 input)))

(define-method (ask-build-manifest1
 (this <texinfo>)2
 (input <string>)3
 (output <string>))4

5
6
7
8
9

10

HEADER

Progress indicator that BLUE will print.

 (string-append "MKINFO\t" output)

(define-method (ask-build-manifest1
 (this <texinfo>)2
 (input <string>)3
 (output <string>))4
 (make-build-manifest5

6
 (list (info-executable this)7
 (info-flags this)8
 (string-append "--output=" output)9
 input)))10

ACTION

The code that generates the artifact.

 (list (info-executable this)
 (info-flags this)
 (string-append "--output=" output)
 input)))

(define-method (ask-build-manifest1
 (this <texinfo>)2
 (input <string>)3
 (output <string>))4
 (make-build-manifest5
 (string-append "MKINFO\t" output)6

7
8
9

10

BLUE.EL
The Emacs interface for BLUE

blue-run-command

Figure 9: BLUE run command Emacs interface

blue-transient

Figure 10: BLUE transient Emacs interface

blue-replay

Figure 11: BLUE replay Emacs interface

GUIX SUPPORT

A Guix channel for BLUE.

Bluebox

https://codeberg.org/lapislazuli/bluebox

blue-build-system

(b ild s stem bl e b ild s stem)

(define-public blue1
 (let ((commit "4ef3c82de00da039ad255d458becc01d9cb65507")2
 (revision "12"))3
 (package4
 (name "blue")5
 (version (git-version "0.0.0" revision commit))6
 (source (origin7
 (method git-fetch)8
 (uri (git-reference9
 (url "https://codeberg.org/lapislazuli/b10
 (commit commit)))11
 (file-name (git-file-name name version))12
 (sha25613
 (base3214
 "1hv9x7002nal967ywh73dpcakygpb1arxyzjmxd93jq15

16

IT CAN BOOTSTRAP BLUE

(define-public blue1
 (let ((commit "4ef3c82de00da039ad255d458becc01d9cb65507")2
 (revision "12"))3
 (package4
 (name "blue")5
 (version (git-version "0.0.0" revision commit))6
 (source (origin7
 (method git-fetch)8
 (uri (git-reference9
 (url "https://codeberg.org/lapislazuli/b10
 (commit commit)))11
 (file-name (git-file-name name version))12
 (sha25613
 (base3214
 "1hv9x7002nal967ywh73dpcakygpb1arxyzjmxd93jq15

(build system blue build system)16

SUBPHASES

Subphase

Auto-generated Guix phase for BLUE.

(define-public blue1
 (let ((commit "4ef3c82de00da039ad255d458becc01d9cb65507")2
 (revision "12"))3
 (package4
 (name "blue")5
 (version (git-version "0.0.0" revision commit))6
 (source (origin7
 (method git-fetch)8
 (uri (git-reference9
 (url "https://codeberg.org/lapislazuli/b10
 (commit commit)))11
 (file-name (git-file-name name version))12
 (sha25613
 (base3214
 "1hv9x7002nal967ywh73dpcakygpb1arxyzjmxd93jq15

(b ild s stem bl e b ild s stem)16

SUBPHASES LOOK LIKE THIS

guix build -L. blue --check --no-grafts1
The following derivation will be built:2
 /gnu/store/jqbskg7sx076vc66vbngd9xvscx6a1g4-blue-0.0.0-13.0e3
building /gnu/store/jqbskg7sx076vc66vbngd9xvscx6a1g4-blue-0.0.4
starting phase `separate-from-pid1'5
starting phase `set-SOURCE-DATE-EPOCH'6
starting phase `set-paths'7
starting phase `install-locale'8
starting phase `unpack'9
starting phase `bootstrap'10
starting phase `patch-usr-bin-file'11
starting phase `patch-source-shebangs'12
starting phase `bootstrap-blue'13
starting phase `configure'14
starting phase `patch-generated-file-shebangs'15
starting phase `build'16

ROADMAP
Pre-alpha (we are here)

Alpha

Beta

Release

CURRENT FEATURES

Pure Guile (no additional dependencies)

Replay functionality

Configurable preferences

Autocomplete engine

Blueprint export to JSON

Extensible primitive types (through GOOPS)

Hash-based tracking of buildables

Time-based tracking of inputs/outputs

Configuration based on system discoverability

NEXT FEATURES

DAG traversal API

DAG exporter/viewer (hoot?)

Custom build scheduler

WISP support

Exporters

Ninja

Compilation database

LAPISLÁZULI

FOR YOUR FREEDOM AND OURS

Our projects are GPL compliant

MAIN REPOSITORIES

LGPL

GPL

(Implements the blue-build-system)

BLUE - Build Language User Extensible

Bluebox - A Guix channel for BLUE

blue.el - The Emacs interface for BLUE

https://codeberg.org/lapislazuli/blue
https://codeberg.org/lapislazuli/bluebox
https://codeberg.org/lapislazuli/blue.el

PORTS

Guile

Suckless

Demos

Shepherd

ST

DWM

Hello world

Hello world with embedded BLUE

https://codeberg.org/lapislazuli/shepherd
https://codeberg.org/lapislazuli/st
https://codeberg.org/lapislazuli/dwm
https://codeberg.org/lapislazuli/test-hello
https://codeberg.org/lapislazuli/test-hello-embedded

END
Thanks for you attention

