

Weaviate

Multi-Vector embeddings revolution? or evolution?

Marcin Antas, Roberto Esposito

Who am I?

Weaviate Core Engineer

over 17 years of experience

almost 5 years in AI space

Preferred languages: Go, Python, Java, Scala, TS

working on Open Source AI-first Weaviate DB

Who am I?

Weaviate **Research Engineer**

Applied Research Team

Past experience:

Research on Approximate Nearest
Neighbor and Compression

Agenda

1. Embeddings models
2. Vector Databases - How does it work?
3. MUVERA Multi-Vector encoding
4. Demo

Embeddings models

Embedding models

Embeddings are vector representations of data.

Model: [Snowflake/snowflake-arctic-embed-m](#)

Language: English Dimensionality: 768

“Black cat sitting on the street on a rainy day at night”

[0.02460668, -0.027135728, -0.0029105705, ... , -0.018872168]

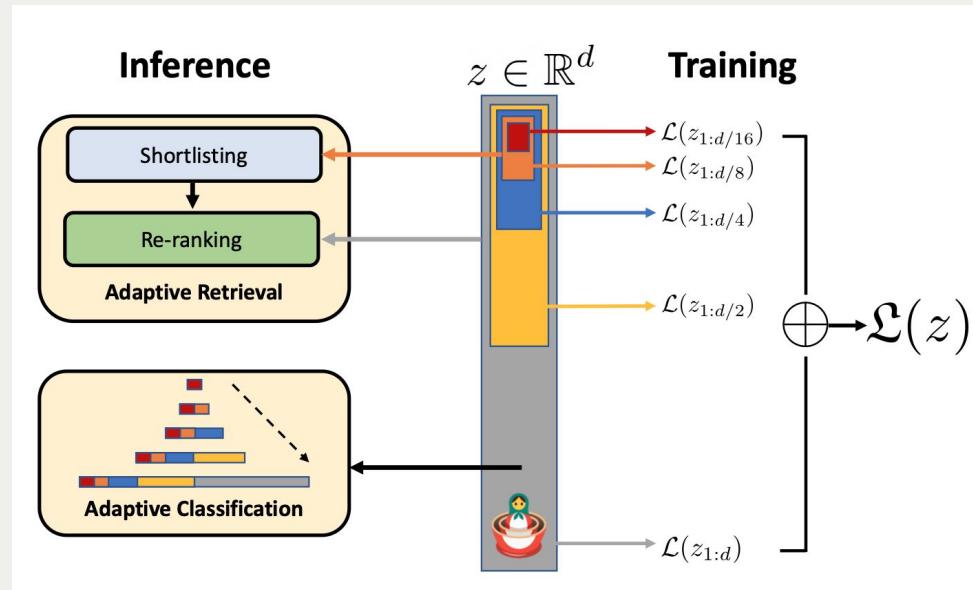
Text embeddings models turn text into a vector representation.

Embedding models

Matroyshka Embedding models offer multiple vector dimensions

Model: nomic-ai/nomic-embed-text-v1.5

Language: English Dimensionality: 64, 128, 256, 512, 768



Embedding models

AI Embedding models:

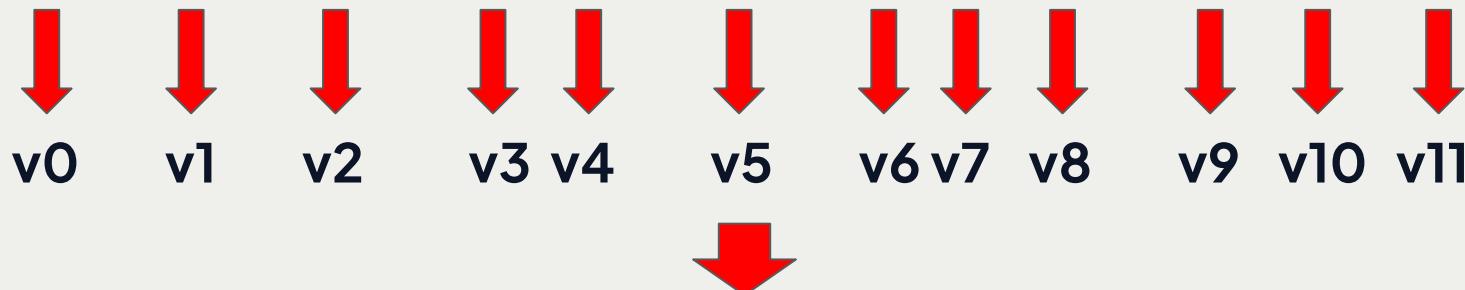
- OpenAI V3 text embedding
- Google Embedding Gemma 300m
- Cohere Embed 4
- Snowflake Arctic Embed
- ModernVBERT Embed
- BAAI BGE-M3
- Jina AI Embeddings V4

Embedding models

Multi-Vector (ColBERT) embeddings

ColBERT produces as many embeddings as there are tokens (words) in a sentence, instead of producing one embedding for sentence.

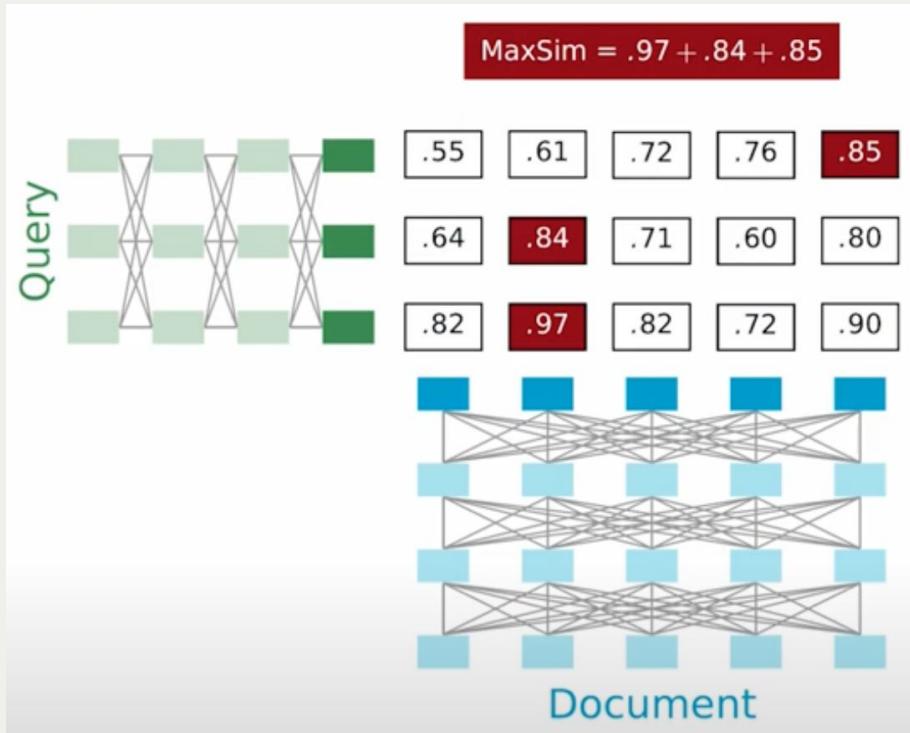
“Black cat sitting on the street on a rainy day at night”



Sentence embedding: [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11]

Embedding models

How to search data using **ColBERT embeddings**?



Source: Stanford
University NLU online
course

Embedding models

ColBERT embeddings Late interaction

Contextualized Late Interaction over BERT

$$S(\mathbf{Q}, \mathbf{D}) = \sum_{i=1}^n \max_{j \in \{1, \dots, m\}} \mathbf{q}_i \cdot \mathbf{d}_j$$

Score

number of query tokens

MaxSim

dot product

query embedding

document embedding

sum over all tokens in the query

number of document tokens

query token embedding

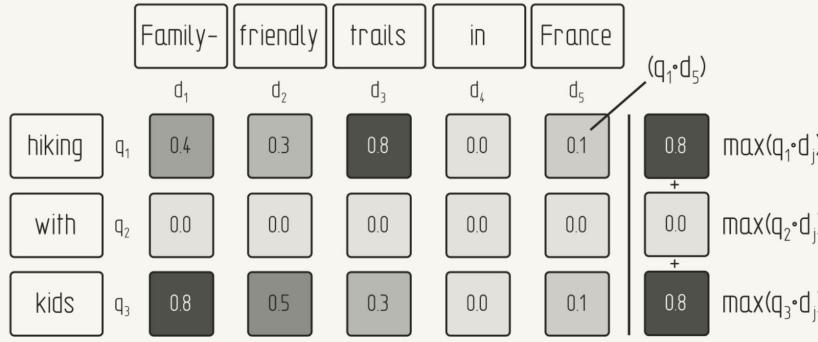
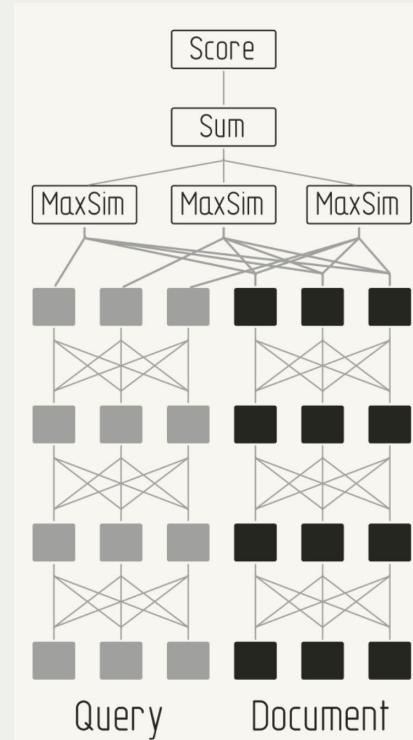
document token

Embedding models

ColBERT embeddings Late interaction

Late Interaction

$$\sum_{i=1}^n \max_{j \in \{1, \dots, m\}} \mathbf{q}_i \cdot \mathbf{d}_j$$



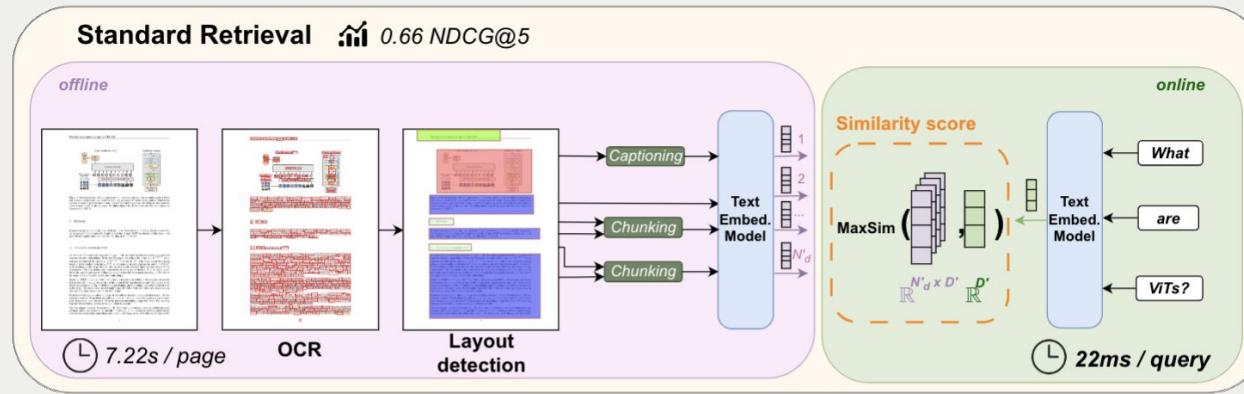
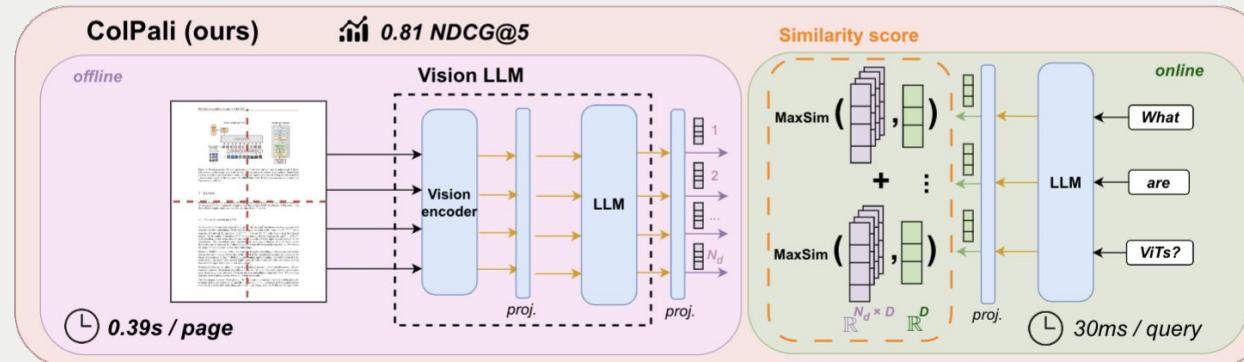
Embedding models

Multi-Vector vision embeddings models

ColPali
(PaliGemma)

ColQwen2
(Qwen2-VL)

ColNomic
(Fine tuned
Qwen2.5-VL)



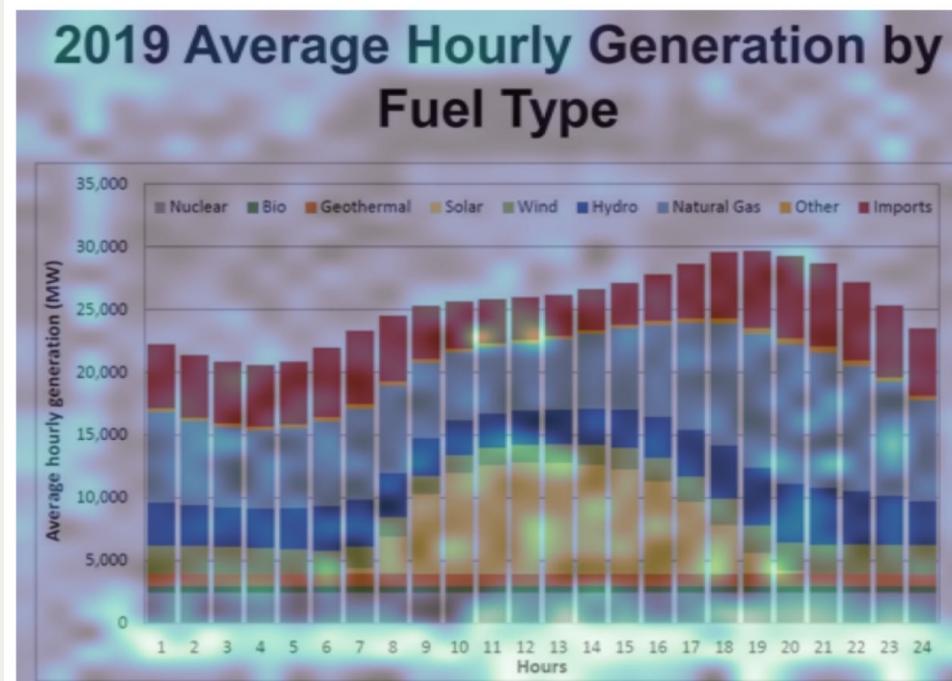
Embedding models

Multi-Vector vision embeddings models

ColPali
(PaliGemma)

ColQwen2
(Qwen2-VL)

ColNomic
(Fine tuned
Qwen2.5-VL)



Query: "Which hour of the day had the highest overall electricity generation in 2019?"

Embedding models

Multi-Vector vision embeddings models

When to use Multi-Vector vision embedding models?

- PDF documents and research papers
- Screenshots of applications and websites
- Visually rich content where layout matters
- Multilingual documents where visual context is important

Vector databases – How does it work?

Vector representations of data

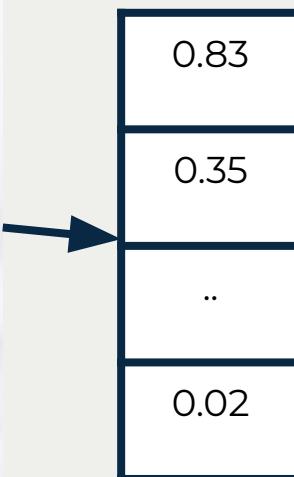


Photo by [Shayna Douglas](#) on [Unsplash](#)

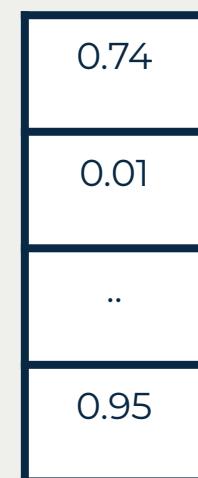
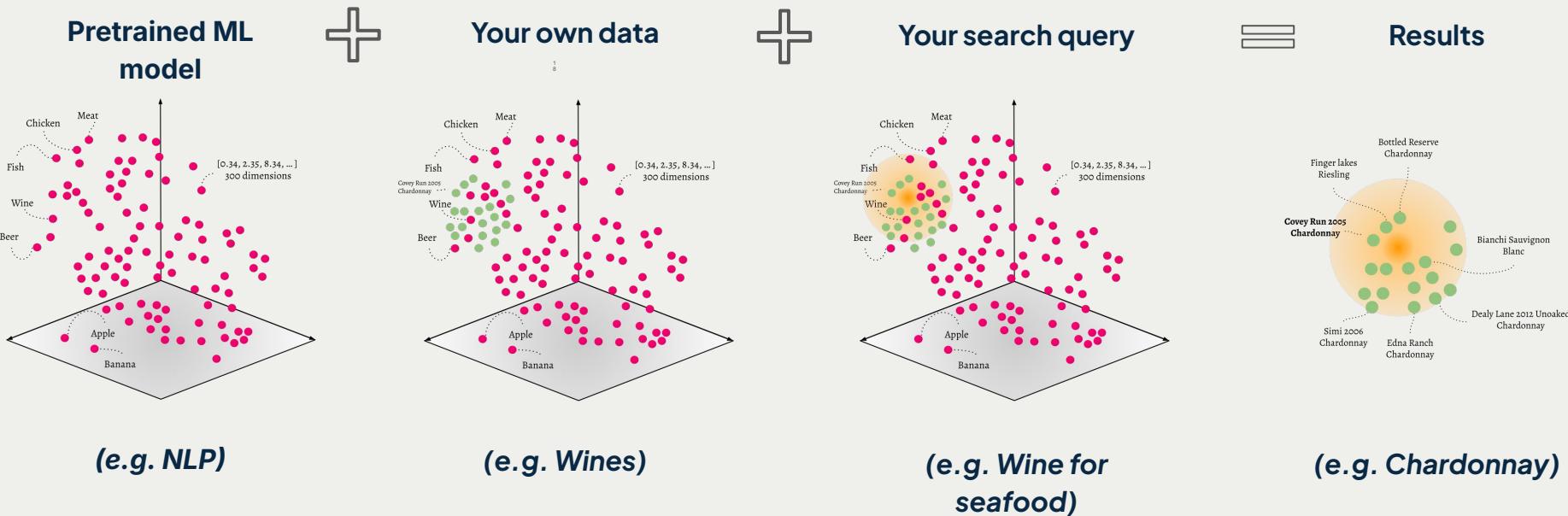


Photo by [Bill Stephan](#) on [Unsplash](#)

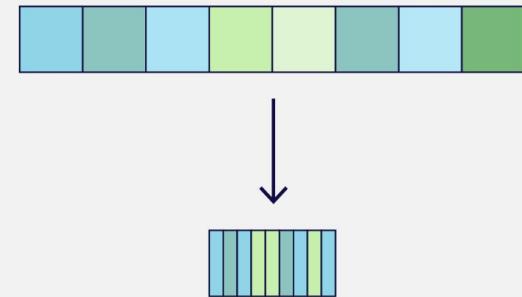
Vector databases – How does it work?



Vector databases – How does it work?

Vector Index types:

- HNSW / Flat (on disk)
 - PQ – Product Quantization
 - BQ – Binary Quantization
 - SQ – Scalar Quantization
 - RQ – Rotational Quantization
- HNSW Multi Vector
 - MUVERA

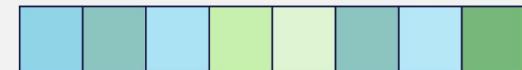
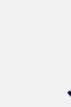
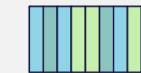


Quantized embeddings

Vector databases – How does it work?

Vector Index types:

- **HNSW / Flat (on disk)**
 - PQ – Product Quantization
 - BQ – Binary Quantization
 - SQ – Scalar Quantization
 - RQ – Rotational Quantization
- **HNSW Multi Vector**
 - MUVERA

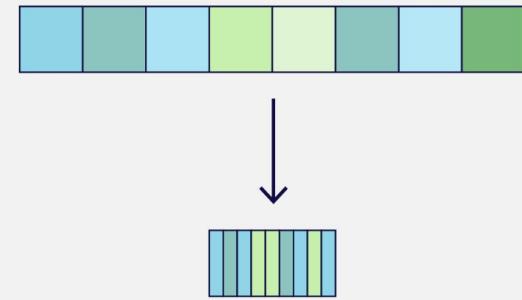


Quantized embeddings

Vector databases – How does it work?

Vector Index types:

- **HNSW / Flat (on disk)**
 - PQ – Product Quantization
 - BQ – Binary Quantization
 - SQ – Scalar Quantization
 - RQ – Rotational Quantization
- **HNSW Multi Vector**
 - MUVERA

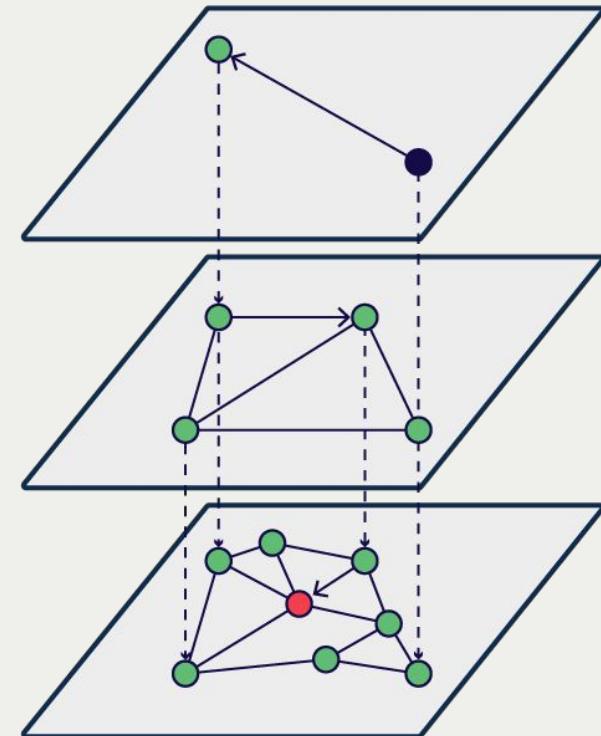


Quantized embeddings

Vector databases – How does it work?

Vector Index types:

- **HNSW / Flat (on disk)**
 - PQ – Product Quantization
 - BQ – Binary Quantization
 - SQ – Scalar Quantization
 - RQ – Rotational Quantization
- **HNSW Multi Vector**
 - MUVERA



MUVERA Multi-Vector encoding

MUVERA Multi-Vector encoding

MUVERA:

- encodes multi vector into single vector called FDE
- each FDE product approximates MaxSim score

arXiv > cs > arXiv:2405.19504

Search

Help | A

Computer Science > Data Structures and Algorithms

[Submitted on 29 May 2024]

MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings

Laxman Dhulipala, Majid Hadian, Rajesh Jayaram, Jason Lee, Vahab Mirrokni

Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding $x \in \mathbb{R}^d$ per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark CoBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring.

In this paper, we introduce MUVERA (MULTi-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality ϵ -approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5x fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.

MUVERA Multi-Vector encoding

Main Steps

1. Space partitioning
2. Dimensionality reduction
3. Repeat 1 & 2 multiple times

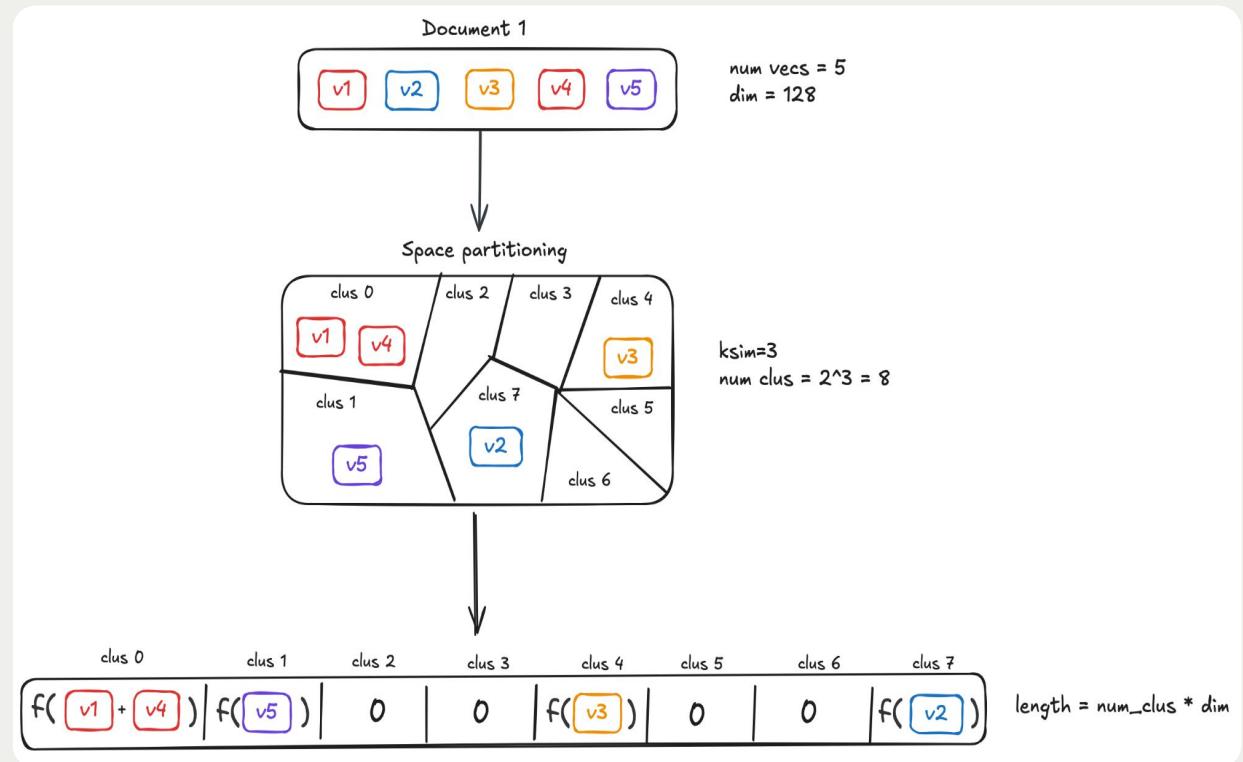
Parameters

- kSim: 4
- dProj: 16
- nReps: 10

MUVERA Multi-Vector encoding

MUVERA:

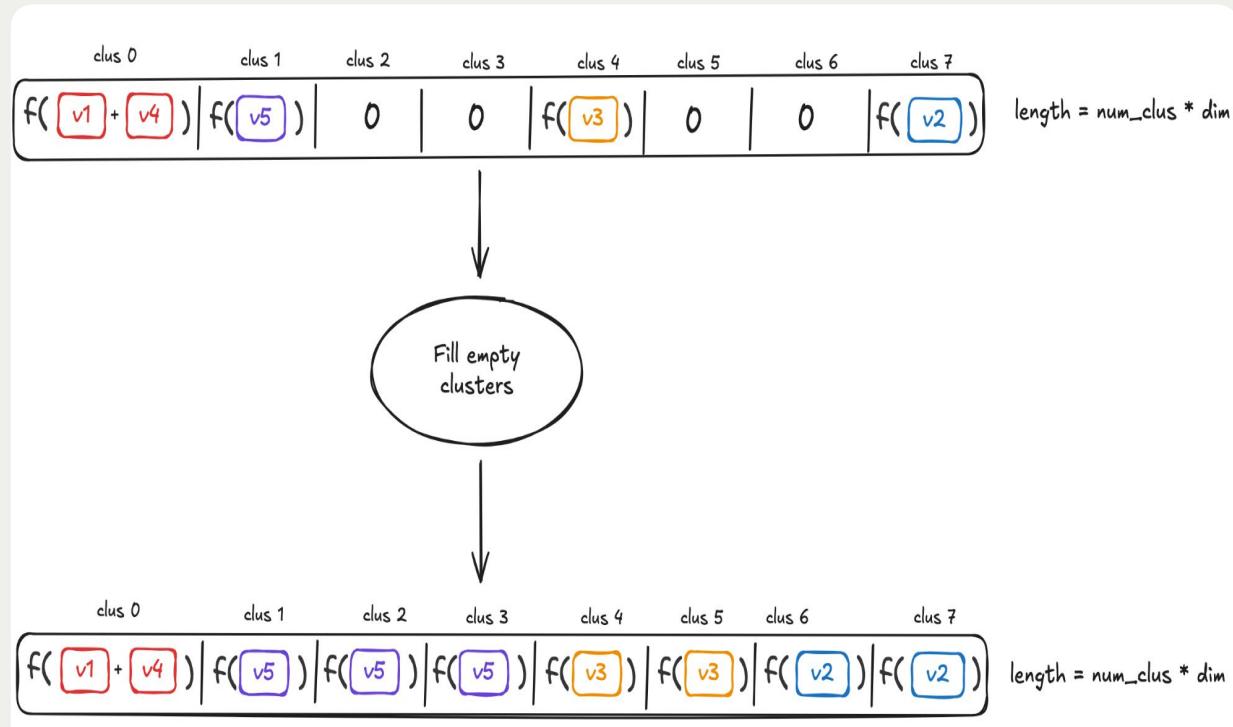
space partitioning
uses SimHash
based on Locality
Sensitive Hashing



MUVERA Multi-Vector encoding

MUVERA:

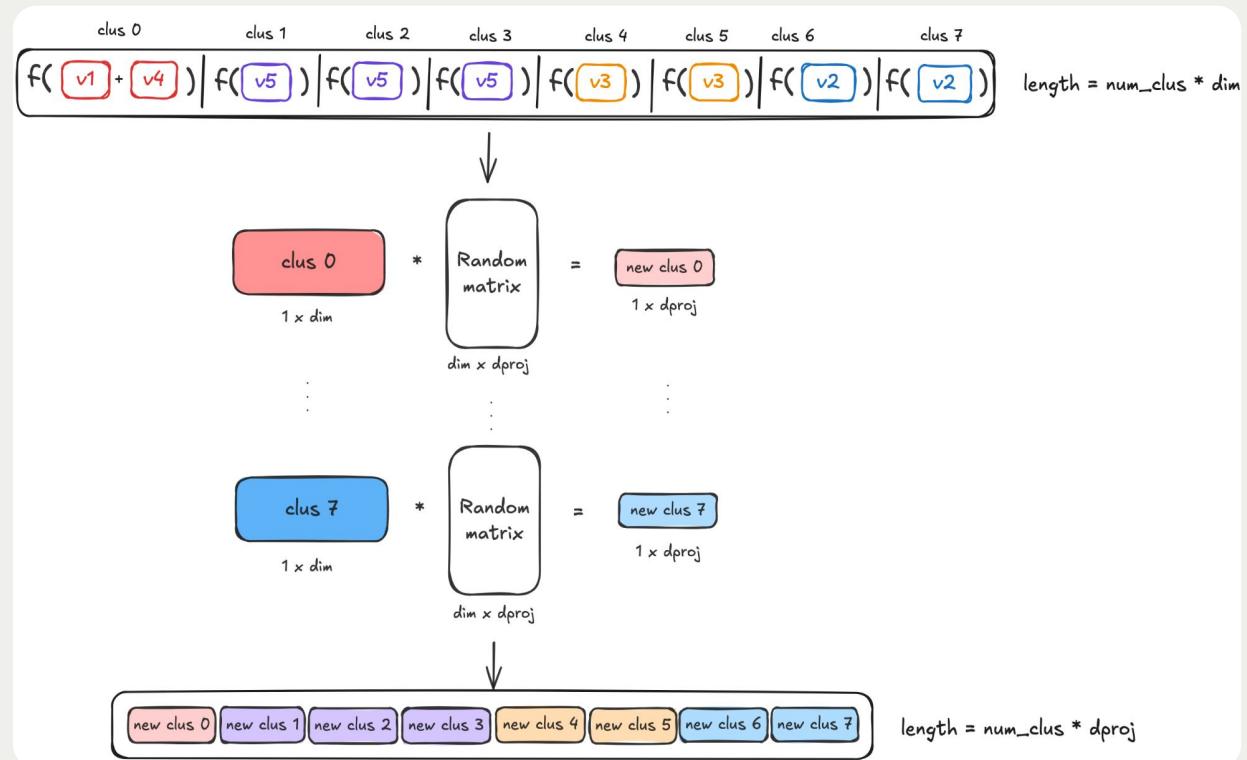
filling empty cluster
during document
encoding



MUVERA Multi-Vector encoding

MUVERA:

dimensionality
reduction uses
random matrices
to project dimensions



MUVERA Multi-Vector encoding

MUVERA:

pros:

- improved import times
- reduced memory requirements (smaller index)
- faster QPS

cons :

- worse recall (precision search)

MUVERA Multi-Vector encoding

MUVERA:

pros:

- improved import times
- reduced memory requirements (smaller index)
- faster QPS

cons :

- worse recall (precision search)
 - rescoring is the way of fixing the recall

Demo

Demo

Multi-Vector Vision models

1. **Weaviate** – v1.35
2. ColBERT vision model
ColQwen2.5

Demo

Multi-Vector Vision models

AI powered OCR pipeline:

Demo

Multi-Vector Vision models

AI powered OCR pipeline:

1. Extract document page as an image

Demo

Multi-Vector Vision models

AI powered OCR pipeline:

1. Extract document page as an image
2. Vectorize image with Multi-Vector embeddings vision model

Demo

Multi-Vector Vision models

AI powered OCR pipeline:

1. Extract document page as an image
2. Vectorize image with Multi-Vector embeddings vision model
3. Store Multi-Vector embeddings in Vector DB using MUVERA encoding

Demo

Multi-Vector Vision models

AI powered OCR pipeline:

1. Extract document page as an image
2. Vectorize image with Multi-Vector embeddings vision model
3. Store Multi-Vector embeddings in Vector DB using MUVERA encoding
4. All set up!

Connect with us!

weaviate.io

[weaviate/weaviate](https://github.com/weaviate/weaviate)

[@weaviate_io](https://twitter.com/weaviate_io)

Thank you!

More efficient multi-vector embeddings with MUVERA

June 5, 2025 · 16 min read

Roberto Esposito
Research Engineer

Joon-Pil (JP) Hwang
Educator

MUVERA

#123

Roberto Esposito
Weaviate

Rajesh Jayaram
Google

Connor Shorten
Weaviate

