

Dynamic Bot Blocking with
Web-Server Access-Log Analytics

Alexander Krizhanovsky

Tempesta Technologies, Inc.

ak@tempesta-tech.com

Tempesta FW & xFW

Linux kernel HTTP accelerator + XDP volumetric DDoS filter
https://github.com/tempesta-tech/tempesta
https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/

Embedded into the TCP/IP stack: outperforms HAProxy, Nginx etc.

Full DDoS protection & Web security

https://github.com/tempesta-tech/tempesta
https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/

Bots

L7 DDoS
● HTTP flood, HTTP/2 control frame floods = high rates
● slow HTTP = high RAM/CPU/socket usage

Security scanners, password crackers = high rate of 4xx/5xx errors

“Bots”
● content scrapers (AI boosted)
● carting/checkout abuse, e.g. inventory scalping
● booking bots (time crucial, so high rates)
● ….

Bot Protection

Rate limits: floods, scanners etc

Slow HTTP – hard to rate limit CPU usage

Cloud proxies: focus on large vendors
● thousands IPs w/ only one request

https://lwn.net/Articles/1008897/

● CAPTCHA, JS & other challenges’ solvers
● full browser emulation (inc. resource reqs)
● Impersonalization & consistency (L3-L7)
● behavior: timing, mouse movements etc

Custom bots + residential proxies (pricy)
https://www.reddit.com/r/webscraping/

https://lwn.net/Articles/1008897/

Data Analysis

Identify clients
● IP addresses
● fingerprints (p0f, JA3, JA4, Tempesta Fingerprints)

… or other combined metrics, e.g. unusual <User-Agent, JA3>
● not Referer, User-Agent or other headers

Classify
● RPS, BPS (high or low), GeoIP, response time, HTTP errors
● history (behavior)

Events
● rapid growth on classification, (semi-)manual

Traffic Fingerprints

HTTP
● Version (HTTP/1.1, HTTP/2, HTTP/3)
● Method (GET, POST etc)
● Which headers are presented and in which order

TLS (ClientHello)

● Version (TLS 1.2, TLS 1.3)
● Announced ciphersuites

Network
● Versions (IPv4, IPv6)
● TCP window size

John Althouse’s Fingerprints: JA3 & JA4

JA3 – TLS only
https://github.com/salesforce/ja3

● wide adoption (e.g. implemented in Envoy)
● MD5(TLS Version, Cipher, TLS Extension,
 Elliptic Curve, Elliptic CurvePoint Format)

● ”6734f37431670b3ab4292b8f60f29984”

JA4+ - TLS, HTTP, TCP, Latency
https://blog.foxio.io/ja4%2B-network-fingerprinting

● SHA256 is expensive in the kernel
● No similarity for some parts

ML classification: large distance
between similar values

p0f Fingerprints

https://lcamtuf.coredump.cx/p0f3/

Passive traffic fingerprinting
● opposed to nmap sending specially crafted packets

● also tries to guess software, e.g. Windows, Firefox etc

IPv4/IPv6, TCP handshake, HTTP
● MTU, TCP options, MSS & window size, timestamps, HTTP headers

https://lcamtuf.coredump.cx/p0f3/

Tempesta Fingerprints

https://tempesta-tech.com/knowledge-base/Traffic-Filtering-by-Fingerprints/

TLS & HTTP

Fast computation

Similarity encoding (DA & ML friendly)

TLS (tft)

 3 bits: ALPN: “h2”, “http/1.1”, “http/1.1,h2”, “h2,http/1.1”
 1 bit: set if handshake has unknown ALPN
 1 bit: found virtual host for SNI
 1 bit: abbreviated handshake
 1 bit: TLS version
 (alignment to 1 byte)
 2 bytes: sum * 11 + cipher_suite (order of cipher suites)
 2 bytes: sum * 11 + extension_type
 2 bytes: sum * 11 + elliptic_curve

https://tempesta-tech.com/knowledge-base/Traffic-Filtering-by-Fingerprints/

Access Logs

Usually (except Varnish) formatted string writes to a file

[367562.584711] 192.168.100.1 "tempesta-tech.com" "GET / HTTP/1.1"
 200 25207 "-" "Wget/1.25.0" "tft=66cbda9cafc40009" "tfh=b1c0008c0280"

● hard to store 100K+/s records
● hard to analyze (grep & Co.)

Log shipping: read, parse, send, (re-)encode, store
● Filebeat + Logstash, Vector, Fluent Bit, Kafka etc
● ClickHouse, MongoDB, TimescaleDB, InfluxDB etc

ClickHouse
● high ingestion performance
● powerful and fast analytics

tfw_logger: Log Shipping

https://tempesta-tech.com/knowledge-base/Access-
Log-Analytics/

Per-CPU threads & ring buffers
(like io_uring)

Zero-copy

Binary encoding

Optimized batches for ClickHouse
ingestion

Similar ClickHouse tables for security
events and xFW blocking events

Access Log in ClickHouse

34K records/s in a 4 vCPU VM on i9-12900HK 8GB RAM (w/ ClickHouse)

SELECT DISTINCT timestamp,uri,user_agent,tfh,dropped_events
FROM access_log LIMIT 15;

┌───────────────timestamp─┬─uri─┬─user_agent─┬─────────────────tfh─┬─dropped_events─┐
│ 2025-11-05 16:10:30.250 │ / │ baremetal │ 6576814795386782464 │ 11 │
│ 2025-11-05 16:10:30.402 │ / │ vm.web │ 6576814795386782464 │ 0 │
│ 2025-11-05 16:10:29.145 │ / │ tempesta-1 │ 6576814795386782464 │ 0 │
│ 2025-11-05 16:10:30.574 │ / │ tempesta-2 │ 6576814795386782464 │ 0 │
│ 2025-11-02 16:00:03.285 │ / │ tempesta-2 │ 6576814795386782464 │ 3 │
│ 2025-11-02 16:00:04.104 │ / │ tempesta-1 │ 6576814795386782464 │ 0 │
│ 2025-11-02 16:00:04.234 │ / │ baremetal │ 6576814795386782464 │ 0 │
│ 2025-11-02 16:00:04.630 │ / │ vm.web │ 6576814795386782464 │ 0 │
│ 2025-11-02 16:00:05.286 │ / │ tempesta-2 │ 6576814795386782464 │ 1380 │
│ 2025-11-02 16:00:06.104 │ / │ tempesta-1 │ 6576814795386782464 │ 0 │
│ 2025-11-02 16:00:06.234 │ / │ baremetal │ 6576814795386782464 │ 0 │
└─────────────────────────┴─────┴────────────┴─────────────────────┴────────────────┘

Dynamic Blocking by Tempesta Fingerprints

WAF acceleration API

LRU-managed <storage_size> only for the most aggressive clients

<hash> <connections/s> <messages/s>, (0 = full blocking)

tempesta_fw.conf :
 tft storage_size=1073741824 {
 hash 66cbda9cafc40009 0 0;
 hash 66cbda9cafc40010 10 1000;
 }
 jfh storage_size=1073741824 {
 hash b1c0008c0280 0 0;
 hash b1c0008c0281 10 1000;
 }

Identifying Shopping Bots

Inventory scalping → many requests to the cart/ URL

Thousands of IPs, fake User-Agent

SELECT tft, tot_n, cart_n, round((100. * cart_n) / tot_n, 2) AS cart_pct
FROM (
 SELECT tft, count() AS tot_n,
 sum(if(startsWith(uri, '/cart/'),1,0)) AS cart_n
 FROM access_log
 WHERE timestamp >= now() - INTERVAL 10 MINUTE GROUP BY tfh, tft, address
) WHERE tot_n >= 20 AND (cart_n / tot_n) >= 0.3
 ORDER BY cart_pct DESC, cart_n DESC LIMIT 10;

┌──────────────────tft─┬─tot_n─┬─cart_n─┬─cart_pct─┐
│ 7407100078318223377 │ 32920 │ 32081 │ 97.45 │
│ 7407183517036511248 │ 130 │ 63 │ 48.46 │
│ 6567475626450092048 │ 140 │ 48 │ 34.29 │
│ 6567475626450092080 │ 45 │ 15 │ 33.33 │
│ 10415504629338275857 │ 1262 │ 406 │ 32.17 │
└──────────────────────┴───────┴────────┴──────────┘

Identifying Security Scanning Bots

xmlrpc.php is still enabled by default in WordPress → L7 DDoS vector
SELECT uri, count(*) AS hits FROM access_log
GROUP BY uri ORDER BY hits DESC LIMIT 3;
┌─uri────────────┬───hits─┐
│ / │ 894986 │
│ //xmlrpc.php │ 56386 │
│ /xmlrpc.php │ 6905 │
└────────────────┴────────┘

SELECT if(method=3,'GET',if(method=10,'POST','OTHER')) AS http_method,
 status, count() AS hits
FROM access_log WHERE uri LIKE '%xmlrpc.php'
GROUP BY http_method, status ORDER BY hits DESC;
┌─http_method─┬─status─┬──hits─┐
│ POST │ 200 │ 63350 │
│ GET │ 405 │ 18 │
│ POST │ 504 │ 7 │
│ GET │ 404 │ 1 │
└─────────────┴────────┴───────┘

POST with response status code 200

Validate TLS Tempesta Fingerprints

3 different TLS fingerprints with wp_n / tot_n >= 0.7
SELECT hex(tft) AS tft_hex, left(uri, 40) AS uri_short, count() AS hits
FROM access_log WHERE tft IN ('...', '...', '...')
GROUP BY tft_hex, uri_short ORDER BY hits DESC;
┌─tft_hex──────────┬─uri_short────────────────────────────────┬──hits─┐
│ E51FBA42695A0010 │ //xmlrpc.php │ 60084 │
│ E51FBA42695A0010 │ //wp-login.php │ 2944 │
│ 0D37190DF4E70015 │ /xmlrpc.php │ 1039 │
│ E51FBA42695A0010 │ //?author=1 │ 61 │
│ E51FBA42695A0010 │ //wp-json/wp/v2/users/ │ 61 │
│ E51FBA42695A0010 │ / │ 53 │
│ 01C3F16C3D0D0010 │ /xmlrpc.php │ 45 │
│ E51FBA42695A0010 │ //wp-includes/wlwmanifest.xml │ 42 │
│ E51FBA42695A0010 │ //?author=2 │ 42 │
│ E51FBA42695A0010 │ //?author=3 │ 21 │
│ E51FBA42695A0010 │ //wp-includes/ID3/license.txt │ 19 │
│ E51FBA42695A0010 │ //feed/ │ 19 │
│ E51FBA42695A0010 │ /blog/lean-video-co2000nferencing-billin │ 4 │
│ E51FBA42695A0010 │ /blog/fast-programming-languages-c-cpp-r │ 3 │
│ E51FBA42695A0010 │ /blog/tempesta-fw-0-7-release-wordpress- │ 1 │
 ^
 “no ALPN”

L7 DDoS: Slow HTTP

Heaviest endpoint accessed from thousands of IPs
● highest cumulative response_time → most popular fingerprint

● top response_time → just an outlier for normal clients

● intersection of the top talkers and the top cumulative response_time
– who aims to spend server time as much as possible?

L7 DDoS: Slow HTTP
– Top Average Response Time

SELECT hex(tft) AS tft_hex, sum(response_time) AS tot_resp_time,
 count() AS tot_req, sum(response_time)/count() AS avg_resp_time
FROM access_log GROUP BY tft HAVING tft IN (
 SELECT tft FROM (SELECT tft, sum(response_time) AS s FROM access_log
 GROUP BY tft ORDER BY s DESC LIMIT 20)
) AND tft IN (SELECT tft FROM (SELECT tft, count() AS c FROM access_log
 GROUP BY tft ORDER BY c DESC LIMIT 20)
) ORDER BY avg_resp_time DESC;

┌─tft_hex──────────┬─tot_resp_time───────┬─tot_req────────┬──avg_resp_time─────┐
│ 398A2452C0320030 │ 21264088 │ 7735 │ 2749.0740788623143 │
│ 398A9769C0320010 │ 24137024 │ 11469 │ 2104.5447728659865 │
│ B94C7202A1480035 │ 12519004 │ 82918 │ 150.98053498637208 │
│ E51FBA42695A0015 │ 8315604 │ 58670 │ 141.73519686381456 │
│ 66CB4E46EF170015 │ 2869480 │ 887197 │ 3.2343211259731492 │
└──────────────────┴─────────────────────┴────────────────┴────────────────────┘
 ^
 “no ALPN”

Tempesta WebShield

https://github.com/tempesta-tech/webshield
https://tempesta-tech.com/knowledge-base/Bot-Protection/

Small extensible Python daemon

Periodically executes queries for trigger events
● Manual, configured limits or z-score thresholds on trained data

Detectors (that large SQL queries) with model validation
● HTTP requests and error responses per second
● cumulative response time
● unusual GeoIP

Automatically issues blocking rules with time-outs
● Tempesta Fingerprints, IPSet, nftables

https://github.com/tempesta-tech/webshield
https://tempesta-tech.com/knowledge-base/Bot-Protection/

Detector Validation Example

Define detectors to use:
 DETECTORS=["tft_rps","tft_errors", ...]

Trigger event as 10 standard deviaons:
 DETECTOR_TFT_RPS_DEFAULT_THRESHOLD=10
 DETECTOR_TFT_ERRORS_DEFAULT_THRESHOLD=10

Define the baseline time frame & maximum data sets intersection:
 BLOCKING_WINDOW_DURATION_SEC=3600
 DETECTOR_TFT_RPS_INTERSECTION_PERCENT = 10
 DETECTOR_TFT_ERRORS_INTERSECTION_PERCENT = 10

Algorithm
1) On trigger event get TLS fingerprints with top RPS
2) Check if the same fingerprints were also top RPS 1 hour ago
3) If not, goto (1) for TLS fingerprints with top error codes/s

Future Work

Behavior analysis
● requested URLs ratios (e.g. cart/ to other URLs)

● classify delay-weighted transition graphs

Correlations: TLS fingerprints, User-Agent, HTTP/2 Priority

Scoring: many probabilistic parameters

Bots in the Wild

Reddit at DEF CON 33 (Apr ‘25): https://www.youtube.com/watch?v=yGYR-tE0ljw

Simple User-Agent filtration still works in many cases

TLS fingerprints still work in most cases
● GREASE (RFC 8701): random ALPN, Extensions, Cipher Suites etc.
● Firefox Fingerprinting protection: random permutations
● sort Extensions, Cipher Suites etc
● replace all GREASE fields with a single flag
● good: many bots still use unique fingerprints
● bad: impersonalization libraries

– curl-impersonate, curl_cffi, ja3proxy ...

https://www.youtube.com/watch?v=yGYR-tE0ljw

So What About Scraping Clouds?

CDNs aren’t enough without site-specific bot protection
● cost vs profit
● being scrapped just because there is a big target behind the CDN
● custom protection frequently requires custom scraper

Use your secret weapon – your data
https://community.shopify.com/t/shopify-bot-exploit-add-to-cart-abuse-is-corrupting-analytics-
shopify-refuses-to-act-at-platform/412062/13

● all the queries above will be different for your resource
● your database knows your clients’ behavior
● Python + ClickHouse = cheap and powerful protection

Thanks!

https://github.com/tempesta-tech/webshield

https://github.com/tempesta-tech/tempesta

https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/

We are hiring! https://tempesta-tech.com/careers/

ak@tempesta-tech.com

https://www.linkedin.com/in/alexander-krizhanovsky/

https://x.com/a_krizhanovsky

https://github.com/tempesta-tech/webshield
https://github.com/tempesta-tech/tempesta
https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/
mailto:ak@tempesta-tech.com
https://www.linkedin.com/in/alexander-krizhanovsky/
https://x.com/a_krizhanovsky

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

