Dynamic Bot Blocking with
Web-Server Access-Log Analytics

Alexander Krizhanovsky
Tempesta Technologies, Inc.

ak@tempesta-tech.com

Tempesta FW & xXFW

» Linux kernel HTTP accelerator + XDP volumetric DDoS filter

https://github.com/tempesta-tech/tempesta
https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/

» Embedded into the TCP/IP stack: outperforms HAProxy, Nginx etc.
» Full DDo0S protection & Web security

user space
kernel space netdev . IP : TCP * TLS . HTTP
R LA R N I W P g
: & . Rate Iimitsé »
' 1 Challenges I
: : Basic WAF I
I

| [
. 6
| & |
LL .
] :
I b I - : Load Balancing
3 <
2 : Netfilter :
| e | "t :
(] .
DDoS / Bots / i _ \] 3 .
Web attacks I | FANET. o R
Tempesta DB K I 2 Upstream
I I l } servers
| I N Tempesta FW Y

https://github.com/tempesta-tech/tempesta
https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/

Bots

» L7 DD0S

e HTTP flood, HTTP/2 control frame floods = high rates

e slow HTTP = high RAM/CPU/socket usage
» Security scanners, password crackers = high rate of 4xx/5xx errors
> “Bots”

e content scrapers (Al boosted)

* carting/checkout abuse, e.g. inventory scalping
* booking bots (time crucial, so high rates)

nnnnnnnnnnnn

Bot Protection

scrape cloudflare

» Rate limits: floods, scanners etc -
> SIOW HTTP — Sponsored results
» Cloud proxies: focus on large vendors :

* thousands IPs w/ only one reguest
https.//lwn.net/Articles/1008897/

* CAPTCHA, JS & other challenges’ solvers
 full browser emulation (inc. resource reqs)
* Impersonalization & consistency (L3-L7)
* behavior: timing, mouse movements etc

» Custom bots + residential proxies (pricy)
https.//www.reddit.com/r/webscraping/

https://lwn.net/Articles/1008897/

Data Analysis

» |dentify clients
e |P addresses

* fingerprints (pOf, JA3, JA4, Tempesta Fingerprints)
... or other combined metrics, e.g. unusual <User-Agent, JA3>

e hot Referer, User—-Agent or other headers

» Classify
* RPS, BPS (high or low), GeolP, response time, HTTP errors
* history (behavior)

> Events

* rapid growth on classification, (semi-)manual Q/ Tempesta

Teaochnologiles

Traffic Fingerprints

» HTTP

* Version (HTTP/1.1, HTTP/2, HTTP/3)

 Method (GET, POST etc)

* Which headers are presented and in which order
» TLS (ClientHello)

* Version (TLS 1.2, TLS 1.3)
* Announced ciphersuites

> Network
* Versions (IPv4, IPv6)
 TCP window size

nnnnnnnnnnnn

John Althouse’s Fingerprints: JA3 & JA4

» JA3 — TLS only

https.//github.com/salesforce/ja3

* wide adoption (e.g. implemented in Envoy)
e« MD5 (TLS Version, Cipher, TLS Extension,
Elliptic Curve, Elliptic CurvePolint Format)

e "0734£3743106700b3ab4292b3f00£29984"

» JA4+ - TLS, HTTP, TCP, Latency e e
https.//blog.foxio.io/ja4%2B-network-fingerprinting + SNLSNI =" (o domah), o SNI = (1P}

Number of Extensions

« SHA256 Is expensive In the kernel * FIrstALPN value (00 ¥ no ALPN)
e NO similarity for some parts JA4=t13d1516h2_acb858a92679_e5627efa2abl

JA4 | 1A

> M L Cl aSSIflcatI On : Iarge d iStan Ce e Truncated SHA256 hash of the Cipher Suites, sorted

e Truncated SHAZ256 hash of the Extensions, sorted

betwee n S i m i Iar Val u eS + Signature Algorithms, in the order they appear

pOf Fingerprints

https.//lcamtuf.coredump.cx/p0f3/
» Passive traffic fingerprinting
e opposed to nmap sending specially crafted packets
* also tries to guess software, e.g. Windows, Firefox etc
» IPv4/IPv6, TCP handshake, HTTP
* MTU, TCP options, MSS & window size, timestamps, HTTP headers

nnnnnnnnnnnn

https://lcamtuf.coredump.cx/p0f3/

Tempesta Fingerprints

https://tempesta-tech.com/knowledge-base/ Traffic-Filtering-by-Fingerprints/
» TLS & HTTP

» Fast computation
» Similarity encoding (DA & ML friendly)

TLS (tft)

3 bits: ALPN: “h2”, “http/1.1"”, “http/1.1,h2”, “h2,http/1.1”
1 bit: set if handshake has unknown ALPN

1 bit: found wvirtual host for SNI

1 bit: abbreviated handshake

1 bit: TLS wversion

(alignment to 1 byte)

2 bytes: sum * 11 + cipher_suite (order of cipher suites)

2 bytes: sum * 11 + extension_type
2 bytes: sum * 11 + elliptic_curve ;/ Tempesta

https://tempesta-tech.com/knowledge-base/Traffic-Filtering-by-Fingerprints/

Access Logs

» Usually (except Varnish) formatted string writes to a file

[367562.584711] 192.168.100.1 "tempesta-tech.com"™ "GET / HTTP/1.1"
200 25207 "-" "Wget/1.25.0" "tft=66cbda9cafc40009" "tfh=b1c0008c0280"

 hard to store 100K+/s records
e hard to analyze (grep & Co.)

» Log shipping: read, parse, send, (re-)encode, store
* Filebeat + Logstash, Vector, Fluent Bit, Kafka etc

* ClickHouse, MongoDB, TimescaleDB, InfluxDB etc
» ClickHouse
* high ingestion performance

» powerful and fast analytics Cf Tempesta

t fw_logger: Log Shipping

https://tempesta-tech.com/knowledge-base/Access-
Log-Analytics/

>

>

>

»

>

Per-CPU threads & ring buffers
(like io_uring)

Zero-copy

Binary encoding

Optimized batches for ClickHouse
Ingestion

Similar ClickHouse tables for security
events and xFW blocking events

:

batch buffer

batch buffer batch buffer

batch buffer

tfw logger g

RYGTRT
RUavaT

:

threadO thread1 thread2 thread3

user space m /’\ /b\

kernel space Q{.‘B/ W \FLB/ \RiB/
Tempesta FW § é § g

softirg0 softirg1 softirg2 softirg3

CPU, CPU; CPU, CPU,

mmap ()

Access Log in ClickHouse

» 34K records/s in a 4 vCPU VM on 19-12900HK 8GB RAM (w/ ClickHouse)

SELECT DISTINCT timestamp,uri,user_agent,tfh,dropped_events
FROM access_log LIMIT 15;

timestamp uri user_agent tfh——dropped_events—

2025-11-05 16:10:30.250 / baremetal 6576814795386782464 11
2025-11-05 16:10:30.402 / vm.web 6576814795386782464 0
2025-11-05 16:10:29.145 / tempesta-1 6576814795386782464 0
2025-11-05 16:10:30.574 / tempesta-2 6576814795386782464 0
2025-11-02 16:00:03.285 / tempesta-2 6576814795386782464 3
2025-11-02 16:00:04.104 / tempesta-1 6576814795386782464 0
2025-11-02 16:00:04.234 / baremetal 6576814795386782464 0
2025-11-02 16:00:04.630 / vm.web 6576814795386782464 0
2025-11-02 16:00:05.286 / tempesta-2 6576814795386782464 1380
2025-11-02 16:00:06.104 / tempesta-1 6576814795386782464 0
2025-11-02 16:00:06.234 / baremetal 6576814795386782464 0

Q/ Tempesta

Technologies

Dynamic Blocking by Tempesta Fingerprints

» WAF acceleration API
» LRU-managed <storage_size> only for the most aggressive clients

» <hash> <connections/s> <messages/s>, (0 = full blocking)

tempesta_fw.conf :

tft storage_size=1073741824 {
hash 66cbda9cafc40009 0 O;
hash 66cbda9cafc40010 10 1000;

}

Jfh storage_size=1073741824 {
hash blc0008c0280 0 O;
hash b1c0008c0281 10 1000;

g/ Tempesta

Identifying Shopping Bots

» Inventory scalping -» many requests to the cart/ URL

» Thousands of IPs, fake User—-Agent

SELECT tft, tot_n, cart_n, round((100. * cart_n) / tot_n, 2) AS cart_pct

FROM (
SELECT tft, count () AS tot_n,

sum(if (startswWwith(uri, '/ecart/'),1,0)) AS cart_n
FROM access_log
WHERE timestamp >= now () — INTERVAL 10 MINUTE GROUP BY tfh, tft, address

) WHERE tot_n >= 20 AND (cart_n / tot_n) >= 0.3
ORDER BY cart_pct DESC, cart_n DESC LIMIT 10;

tft——tot_n———cart_n——cart_pct—

7407100078318223377 32920 32081 97.45
7407183517036511248 130 63 48.46
6567475626450092048 140 48 34.29

6567475626450092080 45 15 33.33
10415504629338275857 1262 406 32.17 ;/ Tempesta

T

echnoelogilies

Identifying Security Scanning Bots

» xmlrpc.php IS still enabled by default in WordPress — L7 DDoS vector

SELECT uri, count(*) AS hits FROM access_log
GROUP BY uri ORDER BY hits DESC LIMIT 3;

uri hits
/ 894986
//xmlrpc.php 56386
/xmlrpc.php 6905
SELECT 1f (method=3, 'GET',1f (method=10, "POST', '"OTHER')) AS http_method,
status, count () AS hits

FROM access_log WHERE uri LIKE '$Sxmlrpc.php'
GROUP BY http_method, status ORDER BY hits DESC;

http_method status hits
POST 200 63350
GET 405 18
POST 504 7
GET 404 1

g/ Tempesta

» POST with response status code 200

Validate TLS Tempesta Fingerprints

» 3 different TLS fingerprints with wp_n / tot_n >= 0.7

“‘no ALPN”

&

SELECT hex(tft) AS tft hex, left (uri, 40) AS uri_short, count () AS hits

FROM access_log WHERE tft IN ('...', '"...', "...")

GROUP BY tft_hex, uri_short ORDER BY hits DESC
tft_hex uri_short hits—
E51FBA42695A0010 //xmlrpc.php 60084
E51FBA42695A0010 //wp—login.php 2944
OD37190DF4E70015 /xmlrpc.php 1039
ES51FBA42695A0010 //?author=1 61
E51FBA42695A0010 //wp—json/wp/v2/users/ 61
E51FBA42695A0010 / 53
01C3F16C3D0OD0010 /xmlrpc.php 45
E51FBA42695A0010 //wp—includes/wlwmanifest.xml 42
E51FBA42695A0010 //?author=2 42
E51FBA42695A0010 //?author=3 21
ES51FBA42695A0010 //wp—includes/ID3/license.txt 19
ES51FBA42695A0010 //feed/ 19
ES51FBA42695A0010 /blog/lean-video-co02000nferencing-billin 4
E51FBA42695A0010 /blog/fast-programming—languages—c—cpp-r 3
E51FBA42695A0010 /blog/tempesta-fw-0-7-release-wordpress— 1

A

Tempesta

Teachneoelog

1 &

L7 DDoS: Slow HTTP

» Heaviest endpoint accessed from thousands of IPs
» highest cumulative response_time — most popular fingerprint

e tOp response_time - just an outlier for normal clients

e Intersection of the top talkers and the top cumulative response_time
— Who aims to spend server time as much as possible?

nnnnnnnnnnnn

L7 DDoS: Slow HTTP
— Top Average Response Time

SELECT hex (tft) AS tft_hex, sum(response_time) AS tot_resp_time,
count () AS tot_req, sum(response_time)/count () AS avg_resp_time

FROM access_log GROUP BY tft HAVING tft IN (

SELECT tft FROM (SELECT tft, sum(response_time) AS s FROM access_log

GROUP BY tft ORDER BY s DESC LIMIT 20)
) AND tft IN (SELECT tft FROM (SELECT tft, count () AS c¢ FROM access_log
GROUP BY tft ORDER BY ¢ DESC LIMIT 20)

) ORDER BY avg_resp_time DESC;

tft_hex tot_resp_time tot_req avg_resp_time
398A2452C0320030 21264088 7735 2749.0740788623143
398A9769C0320010 24137024 11469 2104.5447728659865
B94C7202A1480035 12519004 82918 150.98053498637208
ES51FBA42695A0015 8315604 58670 141.73519686381456
66CB4E46EF170015 2869480 887197 3.2343211259731492
A
“*no ALPN”

Q/ Tempesta

Techneoelogilies

Tempesta WebShield

https.//github.com/tempesta-tech/webshield
https.//tempesta-tech.com/knowledge-base/Bot-Protection/

» Small extensible Python daemon

» Periodically executes queries for trigger events
* Manual, configured limits or z-score thresholds on trained data

» Detectors (that large SQL gueries) with model validation
* HTTP requests and error responses per second
e cumulative response time
* unusual GeolP
» Automatically issues blocking rules with time-outs
- Tempesta Fingerprints, IPSet, nftables (f lempesta

Teaochnologiles

https://github.com/tempesta-tech/webshield
https://tempesta-tech.com/knowledge-base/Bot-Protection/

Detector Validation Example

» Define detectors to use:
DETECTORS=["tft_rps","tft_errors", ...]

» Trigger event as 10 standard deviaons:

DETECTOR_TFT_RPS_DEFAULT_THRESHOLD=10
DETECTOR_TFT_ERRORS_DEFAULT_THRESHOLD=10

» Define the baseline time frame & maximum data sets intersection:
BLOCKING WINDOW DURATION SEC=3600
DETECTOR_TFT RPS INTERSECTION PERCENT = 10
DETECTOR_TFT ERRORS INTERSECTION PERCENT = 10

» Algorithm

1) On trigger event get TLS fingerprints with top RPS

2) Check 1f the same fingerprints were also top RPS 1 hour ago

3) If not, goto (1) for TLS fingerprints with top error codes/s

Future Work

» Behavior analysis
e requested URLs ratios (e.g. cart/ to other URLS)

 classify delay-weighted transition graphs

» Correlations: TLS fingerprints, User-Agent, HTTP/2 Priority
» Scoring: many probabilistic parameters

rrrrrrrrrrrrr

Bots in the Wild

» Reddit at DEF CON 33 (Apr ‘25): https://www.youtube.com/watch?v=yGYR-tEOljw
» Simple User—-Agent filtration still works in many cases

» TLS fingerprints still work in most cases
* GREASE (RFC 8701): random ALPN, Extensions, Cipher Suites etc.

Firefox Fingerprinting protection: random permutations

sort Extensions, Cipher Suites etc

replace all GREASE fields with a single flag

good: many bots still use unique fingerprints

bad: impersonalization libraries

- curl-impersonate, curl_cffi, ja3proxy ... Q/

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

https://www.youtube.com/watch?v=yGYR-tE0ljw

So What About Scraping Clouds?

» CDNs aren’t enough without site-specific bot protection
* cost vs profit
* being scrapped just because there Is a big target behind the CDN
e custom protection frequently requires custom scraper

» Use your secret weapon — your data
https.//community.shopify.com/t/shopify-bot-exploit-add-to-cart-abuse-is-corrupting-analytics-
shopify-refuses-to-act-at-platform/412062/13

 all the queries above will be different for your resource
* your database knows your clients’ behavior
* Python + ClickHouse = cheap and powerful protection

rrrrrrrrrrrrr

Thanks!

https://github.com/tempesta-tech/webshield
https.//github.com/tempesta-tech/tempesta
https.//tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/

We are hiring! hitps://tempesta-tech.com/careers/

ak@tempesta-tech.com
https.//www.linkedin.com/in/alexander-krizhanovsky/

https.//x.com/a_krizhanovsky

nnnnnnnnnn

https://github.com/tempesta-tech/webshield
https://github.com/tempesta-tech/tempesta
https://tempesta-tech.com/tempesta-escudo/knowledge-base/XFW/
mailto:ak@tempesta-tech.com
https://www.linkedin.com/in/alexander-krizhanovsky/
https://x.com/a_krizhanovsky

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

