
(Re)Building a Next-Gen System 
Package Manager

IPS, the Image Packaging System

Powered by

An Overview of IPS and its Concepts

OpenIndiana Project



The Component That Fascinated Me

The OpenSolaris Legacy

• A system born of innovation, designed for enterprise and stability.

Key concepts: ZFS (CoW Filesystem), DTrace (Observability), Zones (Virtualization), Crossbow (Networking), SMF (Service Management).

The Package Manager: Unlike anything before it.

Why IPS? The SVR4 Problems
• Stateful: Required complex, fragile scripts for upgrades. Non-Atomic: Failures could leave the system in an unrecoverable state.

Image-Unaware: Treated the OS as a collection of loose files, not a coherent, managed image.



The Genesis of IPS

From SVR4 to the Modern Image

• Goal: Create a package manager that treats the Operating System like a bootable image, not just a set of archives.

Creation Era: Developed by the OpenSolaris community and Sun Microsystems, deployed fully in Solaris 11 (c. 2011).

Core Principle: Repository-Centric Design. The repository is the single source of truth for all system state and package metadata.

What IPS Solved
• Rollbacks: Integration with ZFS Boot Environments (BEs) makes package changes atomic and reversible.

Dependency Hell: A sophisticated resolver that works against a precise, immutable record of every package version.

Metadata: Shift from procedural (shell scripts) to declarative (manifests).



FMRI - The Canonical Identity

Fault Managed Resource Identifier (FMRI)

Component Example Role

Scheme pkg: Always denotes an IPS entity.

Publisher openindiana.org Source and maintainer of the package.

Name /web/server/nginx What the package is (unique).

Version @1.25.3-... Crucial: Multiple version components. Software + 

build + branch + timestamp.

Why FMRI?
• Immutability: Each FMRI is precise and globally unique. Rollback: Allows system to be reverted to a specific, known state. Precise 

Dependencies: Dependencies link to specific FMRIs, eliminating ambiguity.

FMRI is the UUID of package management.



Self-Assembly - The Design Philosophy

The Key Difference: The Image is Declared, Not Assembled during build

Traditional Approach
• Download a large, pre-built binary blob (archive). Unpack the onto the filesystem. Run scripts to configure.

Risk: Conflicts only discovered during extraction/script run.

Not much better than running a .exe downloaded from the Internet as root

IPS Self-Assembly Approach
• Metadata-Centric: Contents defined in a Manifest.

Image-Time Resolution: Resolves the entire dependency graph before touching the system.

Atomic Operation: The image (OS instance) is updated by pulling only the necessary file operations from the repository.

Integrated into ZFS: The entire change is a single, atomic operation recorded as a new ZFS Boot Environment (BE).

Result: Guaranteed success or a 100% reversible failure.



Configuration Control: Facets and Variants

Facets (Optionality)
• Definition: Boolean properties for optional components.

Example: facet.doc.*

How it Works: Actions are conditionally included based on image settings.

Benefit: Creates slim (production) or full (development) images.

Variants (Choice)
• Definition: Properties that define mutually exclusive choices.

Example: variant.arch=i386

Benefit: A single package definition can cover multiple architectures/compilation targets (e.g., Zabbix for MySQL or PostgreSQL).



Configuration Control: Mediators and Consolidations

Mediators (Version/Implementation Switching)
• Definition: Mechanisms to indicate a preferred version when multiple are installed.

Example: The image can contain both gcc-10 and gcc-12, with a mediator pointing to the active version.

Benefit: Enables safe, instantaneous switching between different versions of core components within the same image.

Consolidations (System Integrity)
• Definition: Special, logical meta-packages that group related functional components (e.g., the core OS, a desktop environment, or a database 

stack).

Example: consolidation/os/illumos-gate. Installing the consolidation ensures the entire associated subsystem is complete and maintained as 

one unit.

Benefit: Guarantees system integrity and completeness across major functional areas, simplifying administrative updates and ensuring 

consistency by enforcing a single, known good state.

Key Principle

Facets, Variants, and Mediators are set on the Image (the system), not the individual Package.



The Future - IPS in Rust (pkg6)

(Re)Building for the Next Decade

Why Port to Rust?
• Performance: Move from C/Python implementation to a fast, with modern features.

Safety: Eliminate large classes of bugs (memory management, concurrency) inherent in C. A package manager is system-critical. Compile it 

to one Static binary.

Modernization: Clean, maintainable codebase that attracts new FOSS contributors.

API: Opportunity to design cleaner, more ergonomic APIs for integration.

What Improvements Can We Make?
• Algorithm: Better dependency solver implementation (potentially leveraging modern SAT/SMT solvers).

Repository: Enhanced metadata indexing and repository management performance.

Integration: Easier integration with non-IPS tools and new OS features.

Goal: Retain the elegant design of IPS while gaining the performance and safety of a modern 

implementation.


