(Re)Building a Next-GenSystem
Package Manager

IPS, the Image Packaging System

>llumos

An Overview of IPS and its Concepts

Openlndiana Project



The Component That Fascinated Me

The OpenSolaris Legacy

« A system born of innovation, designed for enterprise and stability.
Key concepts: ZFS (CoW Filesystem), DTrace (Observability), Zones (Virtualization), Crossbow (Networking), SMF (Service Management).
The Package Manager: Unlike anything before it.

Why IPS? The SVR4 Problems

+ Stateful: Required complex, fragile scripts for upgrades. Non-Atomic: Failures could leave the system in an unrecoverable state.
Image-Unaware: Treated the OS as a collection of loose files, not a coherent, managed image.



The Genesis of IPS

From SVR4 to the Modern Image

« Goal: Create a package manager that treats the Operating System like a bootable image, not just a set of archives.
Creation Era: Developed by the OpenSolaris community and Sun Microsystems, deployed fully in Solaris 11 (c. 2011).
Core Principle: Repository-Centric Design. The repository is the single source of truth for all system state and package metadata.

What IPS Solved

+ Rollbacks: Integration with ZFS Boot Environments (BEs) makes package changes atomic and reversible.
Dependency Hell: A sophisticated resolver that works against a precise, immutable record of every package version.
Metadata: Shift from procedural (shell scripts) to declarative (manifests).



FMRI - The Canonical Identity

Fault Managed Resource Identifier (FMRI)

Component Example Role
pkg: Always denotes an IPS entity.
openindiana.org Source and maintainer of the package.
/web/server/nginx What the package is (unique).
@.25.3-... Crucial: Multiple version components. Software +
build + branch + timestamp.

Why FMRI?
» Immutability: Each FMRI is precise and globally unique. Rollback: Allows system to be reverted to a specific, known state. Precise
Dependencies: Dependencies link to specific FMRIs, eliminating ambiguity.

FMRI is the UUID of package management.



Self-Assembly - The Design Philosophy

The Key Difference: The Image is Declared, Not Assembled during build

Traditional Approach
« Download a large, pre-built binary blob (archive). Unpack the onto the filesystem. Run scripts to configure.

Risk: Conflicts only discovered during extraction/script run.
Not much better than running a .exe downloaded from the Internet as root

IPS Self-Assembly Approach
« Metadata-Centric: Contents defined in a Manifest.
Image-Time Resolution: Resolves the entire dependency graph before touching the system.
Atomic Operation: The image (OS instance) is updated by pulling only the necessary file operations from the repository.
Integrated into ZFS: The entire change is a single, atomic operation recorded as a new ZFS Boot Environment (BE).

Result: Guaranteed success or a 100% reversible failure.



Configuration Control: Facets and Variants

Facets (Optionality)
« Definition: Boolean properties for optional components.
Example: facet.doc.*
How it Works: Actions are conditionally included based on image settings.
Benefit: Creates slim (production) or full (development) images.

Variants (Choice)
+ Definition: Properties that define mutually exclusive choices.
Example: variant.arch=1386
Benefit: A single package definition can cover multiple architectures/compilation targets (e.g., Zabbix for MySQL or PostgreSQL).



Configuration Control: Mediators and Consolidations

Mediators (Version/Implementation Switching)
« Definition: Mechanisms to indicate a preferred version when multiple are installed.
Example: The image can contain both gcc-16 and gcc-12, with a mediator pointing to the active version.
Benefit: Enables safe, instantaneous switching between different versions of core components within the same image.

Consolidations (System Integrity)

+ Definition: Special, logical meta-packages that group related functional components (e.g., the core OS, a desktop environment, or a database
stack).

Example: consolidation/os/illumos-gate. Installing the consolidation ensures the entire associated subsystem is complete and maintained as
one unit.

Benefit: Guarantees system integrity and completeness across major functional areas, simplifying administrative updates and ensuring
consistency by enforcing a single, known good state.

Key Principle

Facets, Variants, and Mediators are set on the Image (the system), not the individual Package.



The Future - IPS in Rust (pkg6)

(Re)Building for the Next Decade
Why Port to Rust?

+ Performance: Move from C/Python implementation to a fast, with modern features.
Safety: Eliminate large classes of bugs (memory management, concurrency) inherent in C. A package manager is system-critical. Compile it
to one Static binary:.
Modernization: Clean, maintainable codebase that attracts new FOSS contributors.
API: Opportunity to design cleaner, more ergonomic APIs for integration.

What Improvements Can We Make?

+ Algorithm: Better dependency solver implementation (potentially leveraging modern SAT/SMT solvers).
Repository: Enhanced metadata indexing and repository management performance.
Integration: Easier integration with non-IPS tools and new OS features.

Goal: Retain the elegant design of IPS while gaining the performance and safety of a modern
implementation.



