
libgomp Optimizations for
Para-virtualized Scheduling Guided OpenMP Execution
OMP_DYNAMIC_POLICY=pvsched

Himadri CHHAYA-SHAILESH1,2 Jean-Pierre LOZI2 Julia LAWALL2

1Whisper, Inria Paris
2KrakOS, Grenoble INP

FOSDEM 2026

Agenda

Context

Background: OpenMP

Background: Scheduling

Thesis Overview

Contribution-1: Phantom Tracker

Contribution-2: pv-barrier-sync

Contribution-3: Juunansei

Evaluation

Next things

2 / 43

Context

The Triad

1. Parallelization
→ Using GCC’s implementation of OpenMP (libgomp).

2. Scheduling
→ Using Linux’s Earliest Eligible Virtual Deadline First Scheduler (EEVDF).

3. Virtualization
→ Using the Quick EMUlator (QEMU) and the Kernel-based Virtual Machine (KVM).

Context 4 / 43

Background: OpenMP

What is OpenMP? 1

– An Application Program Interface (API) useful for achieving multi-threaded, shared
memory parallelism.

– It provides:
1. Compiler Directives,
2. Runtime Library Routines,
3. Environment Variables.

– It is implemented as a runtime library by the compiler
(e.g., libgomp in GCC)

– The programmer has the full control over parallelization.

1https://hpc-tutorials.llnl.gov/openmp
Background: OpenMP 6 / 43

Parallelism using OpenMP

A simple sequential loop in C

1 for (i = 0; i < N; i++)
2 work();

A simple loop in C parallelized using OpenMP

1 #pragma omp parallel for
2 for (i = 0; i < N; i++)
3 work();

Background: OpenMP 7 / 43

In the previous example, OpenMP took care of...

– Determining how many workers to use for parallelization
i.e. the Degree of Parallelism (DoP).

– Creating the worker threads using the pthread library

– Distributing the loop iterations evenly among the workers.

– Launching the workers to execute the loop iterations concurrently.

– Synchronizing the workers at the end of the loop.

– Terminating the workers.

Background: OpenMP 8 / 43

OpenMP 101: Threads

– A fork-join model, where a master thread and several worker threads form a team
to execute parallel work.

– The value of DoP is resolved at the beginning of a parallel region.

– OpenMP creates, re-uses, and terminates threads as and when needed.

Background: OpenMP 9 / 43

OpenMP 101: Barriers

– A barrier marks a point where all worker threads must finish their work before any
can proceed.

– Some threads finish earlier than others, so early arrivals at the barrier must wait for
the stragglers.

– Threads can wait at a barrier either by spinning or by blocking.

– Barrier usage in OpenMP:
– Inter-region barriers (ThreadsDock), which marks the beginning of a new parallel

region.

– Intra-region barriers (TeamBarrier), which synchronizes threads within a parallel
region.

Background: OpenMP 10 / 43

Parallelism using OpenMP

A simplified version of the testfor() from EPCC

1 void testfor(void) {
2 int i, j, k;
3 /* Five parallel regions */
4 for (k = 0; k < 5; k++) {
5 #pragma omp parallel private(j)
6 {
7 /* Two parallel loops per parallel region */
8 for (j = 0; j < 2; j++) {
9 #pragma omp for

10 for (i = 0; i < 1000; i++)
11 delay(250);
12 }
13 }
14 delay(1000);
15 }
16 }

Background: OpenMP 11 / 43

OpenMP Threads & Barriers in the Previous Example

0.0 0.2 0.4 0.6

trace_epcc_testfor_default_annotated, time (sec), duration: 0.609246

0

2

4

6

8

10

co
re

__x64_sys_omp_threads_dock (59 = 85%)

__do_sys_juunansei_print_decision (5 = 7%)

__do_sys_juunansei_dock_barrier_finish (5 = 7%)

Execution of five parallel regions

0.15 0.20

trace_epcc_testfor_default_annotated_from_0.11_upto_0.22, time (sec), duration: 0.220936

0

2

4

6

8

10

co
re

__x64_sys_omp_team_barrier (30 = 68%)

sys_enter_futex op=FUTEX_WAIT (6 = 13%)

sys_enter_futex op=FUTEX_WAKE (3 = 6%)

__do_sys_juunansei_team_barrier_finish (3 = 6%)

__do_sys_juunansei_print_decision (2 = 4%)

Zoom on a single parallel region

Visualizations produced using schedgraph-tools [FOSDEM’23]Background: OpenMP 12 / 43

Background: Scheduling

Scheduling 101

– The task_struct data structure represents a task using numerous fields.
e.g. pid, comm, state, priority, policy, etc.

– A runqueue is a per-CPU data structure that holds all tasks eligible to run on that
CPU.

– Stopping a task from running is called preemption.

– Switching between two tasks is called a context switch.

Background: Scheduling 14 / 43

Dual level of task scheduling in the cloud

Application

T2

Guest Scheduler

Host Scheduler

pCPU1

vCPU1 vCPU2

T1

T1

pCPU2

T2

Background: Scheduling 15 / 43

Life of a vCPU

– A vCPU is created when a VM is launched.

– A vCPU is destroyed when the VM is terminated.

– The host scheduler treats vCPUs like any other regular task.

– A vCPU can be preempted at any time on the host

clone run exit

wait

1 1

1 0
0

sleep
0

1

1

Figure: vCPU state transitions on the host

Background: Scheduling 16 / 43

Thesis Overview

Motivation

– OpenMP execution in cloud VMs is commonplace.

– Oversubscription is a popular cost-cutting practice in cloud deployments.

– OpenMP performance heavily relies on task scheduling and barrier synchronization.

– The relevant default choices in libgomp are static and virtualization oblivious.

Thesis Overview 18 / 43

Thesis

Scheduler Guided OpenMP Execution in Cloud VMs:
– Combine task-scheduling insights from both the schedulers.

– Use these insights to guide OpenMP runtime choices regarding:
– Degree of Parallelism (DoP) per parallel region.

– Barrier synchronization mechanism per barrier.

– Improve performance inside oversubscribed Linux VMs.

Thesis Overview 19 / 43

Contributions

1. Phantom Tracker:
An algorithm that tracks vCPU states during OpenMP execution in VMs.

2. pv-barrier-sync:
A paravirtualized barrier synchronization mechanism.

3. Juunansei:
An extension for libgomp, which uses Phantom Tracker and pv-barrier-sync with
few added optimizations.

Thesis Overview 20 / 43

Contribution-1: Phantom Tracker

Phantom vs. Viable vCPUs Under Oversubscription

A vCPU is a phantom if:
1. It is currently waiting in the runqueue of a

pCPU on the host.

2. A guest task that was running on this
vCPU is now stalled because the vCPU is
not executing.

Parallel Application

T2

Guest Scheduler

Host Scheduler

pCPU-1

vCPU-1 vCPU-2

T1

T1 T2
runqueue-1

Phantom
vCPU

Contribution-1: Phantom Tracker 22 / 43

Phantom Tracking

1. Enable communication between the host and guest schedulers.

2. Register OpenMP threads in the guest Scheduler.

3. Monitor guest scheduler’s decisions for the registered threads.

4. Register target VM’s vCPUs in the host Scheduler.

5. Monitor host scheduler’s decisions for the registered vCPUs and keep track of
phantom vCPU occurrences.

6. Compute phantom_average - a metric that captures the impact of host overload
on the OpenMP execution inside the guest at the granularity of a scheduler tick.

Contribution-1: Phantom Tracker 23 / 43

Phantom Tracking

1. Enable communication between the host and guest schedulers.

2. Register OpenMP threads in the guest Scheduler.

3. Monitor guest scheduler’s decisions for the registered threads.

4. Register target VM’s vCPUs in the host Scheduler.

5. Monitor host scheduler’s decisions for the registered vCPUs and keep track of
phantom vCPU occurrences.

6. Compute phantom_average - a metric that captures the impact of host overload
on the OpenMP execution inside the guest at the granularity of a scheduler tick.

Contribution-1: Phantom Tracker 23 / 43

Phantom Tracking

1. Enable communication between the host and guest schedulers.

2. Register OpenMP threads in the guest Scheduler.

3. Monitor guest scheduler’s decisions for the registered threads.

4. Register target VM’s vCPUs in the host Scheduler.

5. Monitor host scheduler’s decisions for the registered vCPUs and keep track of
phantom vCPU occurrences.

6. Compute phantom_average - a metric that captures the impact of host overload
on the OpenMP execution inside the guest at the granularity of a scheduler tick.

Contribution-1: Phantom Tracker 23 / 43

Phantom Tracking

1. Enable communication between the host and guest schedulers.

2. Register OpenMP threads in the guest Scheduler.

3. Monitor guest scheduler’s decisions for the registered threads.

4. Register target VM’s vCPUs in the host Scheduler.

5. Monitor host scheduler’s decisions for the registered vCPUs and keep track of
phantom vCPU occurrences.

6. Compute phantom_average - a metric that captures the impact of host overload
on the OpenMP execution inside the guest at the granularity of a scheduler tick.

Contribution-1: Phantom Tracker 23 / 43

Contribution-2: pv-barrier-sync

To Spin or Not to Spin

Huang et al.’s finding reveal that for barrier synchronization
– Using spinning can lead to cascading performance loss and a significant waste of

CPU cycles under oversubscription.

– Using blocking is inefficient because Linux kernel’s task sleep and wake-up process
involves multiple queue locking and thread state transitions, making it too
expensive under oversubscription.

1HPDC’21: "Towards Exploiting CPU Elasticity via Efficient Thread Oversubscription"
Contribution-2: pv-barrier-sync 25 / 43

To Spin or Not to Spin

Kontothanassis et al. propose using scheduler information for making optimal choices
between spinning and blocking at barriers.

– For N threads trying to get through the barrier using P CPUs where N >= P :

– The optimal policy would force the first N − P threads to block, so that the
remaining P can finish their work.

1PPOPP ’93: "Using scheduler information to achieve optimal barrier synchronization performance"
Contribution-2: pv-barrier-sync 26 / 43

Phantom-Guided Spinning with pv-barrier-sync

1. Extends Kontothanassis et al.’s proposal to cloud VMs using paravirtualized
scheduling insights generated by Phantom Tracker.

2. Respects Huang et al.’s findings:
– Maximize spinning as long as there are no phantoms.

– Minimize blocking and use it as a last resort if phantoms are detected.

3. Decided at each barrier on a per-thread basis:
“Should I block at this barrier?”

4. Upon detecting phantoms,
blocks as many threads as there are phantoms.

Contribution-2: pv-barrier-sync 27 / 43

libgomp implementation

Algorithm pv-barrier-sync

1: procedure do_spin
2: loop
3: if phantoms_detected then
4: if atomic_sub(to_block, 1) > 0 then
5: block()
6: end if
7: if phantoms_increasing then
8: should_i_block = check_to_block_more()
9: if should_i_block then

10: block()
11: end if
12: end if
13: else if itr_count % onems_spins == 0 then
14: phantom_average = read_ivshmem()
15: update_pv_barrier_sync_stats(phantom_average)
16: end if
17: end loop
18: end procedure

Contribution-2: pv-barrier-sync 28 / 43

Contribution-3: Juunansei

A three part solution

1. Phantom Tracker guided DoP adaptations at the beginning parallel regions.

2. pv-barrier-sync optimizations for ThreadsDock and TeamBarriers.

3. A lightweight task-affinity mechanism to guide the guest scheduler.

1In addition to phantom_average, Juunansei extends Phantom Tracker to produce per-tick
idle_average as well.

Contribution-3: Juunansei 30 / 43

Phantom-guided DoP Adaptation

The DoP resolution is handled by the master thread upon entering the
gomp_dynamic_max_threads() function:

– phantom_average > 0
→ scale down DoP

– phantom_average = 0 and idle_average > 0
→ scale up DoP

– phantom_average = 0 and idle_average = 0
→ maintain current DoP

Contribution-3: Juunansei 31 / 43

Stability requirement

In order to be conservative while scaling up the DoP:
Juunansei only consumes the minimum of reported idle_average values over the last
stability_requirement ticks.

– Default value: stability_requirement = 2 ticks

– If phantoms are detected after scaling up the DoP,
→ stability_requirement *= 2;

Contribution-3: Juunansei 32 / 43

juunansei_cpuset

– At the beginning of each new parallel region:
If DoP = N
→ the last thread to reach ThreadsDock applies juunansei_cpuset = [0, N-1] on
the entire team.

– In case of phantom detection with pv-barrier-sync:
If P phantoms are detected at a barrier
→ one of the spinning threads adjusts
juunansei_cpuset = [0, N-P-1] and updates the entire team.
If more phantoms are detected during the same region
→ no further updates to juunansei_cpuset.

Contribution-3: Juunansei 33 / 43

juunansei_cpuset

– At the beginning of each new parallel region:
If DoP = N
→ the last thread to reach ThreadsDock applies juunansei_cpuset = [0, N-1] on
the entire team.

– In case of phantom detection with pv-barrier-sync:
If P phantoms are detected at a barrier
→ one of the spinning threads adjusts
juunansei_cpuset = [0, N-P-1] and updates the entire team.
If more phantoms are detected during the same region
→ no further updates to juunansei_cpuset.

Contribution-3: Juunansei 33 / 43

Juunansei in Action

The next figure refused to be compressed into a slide!

Contribution-3: Juunansei 34 / 43

Evaluation

Evaluation Goals

– Quantify the performance improvements in oversubscribed virtualized environments.

– Analyze the behavior under varying levels of resource contention caused by a
competing VM.

– Use three different experimental set-ups (Small, Medium, Large) to test the
scalability.

Evaluation 36 / 43

Target VM runs NAS Parallel Benchmarks

Table: Benchmark characteristics

Application Input Size Parallel Regions Barriers
BT Class B 1022 2234
CG Class B 35 10123
FT Class B 112 224
LU Class B 516 2810
MG Class B 1281 3071
SP Class B 3616 7644
UA Class B 38769 80503

Evaluation 37 / 43

Competing VM runs a Random Spinners Workload

0 5 10 15 20

setup-large_step-size-1000ms_rw_from_control_upto_20

0

10

20

30

40

50

th
re

ad
s

all threads running threads

Step size = 1000 ms (Set-up: Large)

0 5 10 15 20

setup-large_step-size-100ms_rw_from_control_upto_20

0

20

40

60

80

th
re

ad
s

all threads running threads

Step size = 100 ms (Set-up: Large)
Visualizations produced using schedgraph-tools [FOSDEM’23]

Evaluation 38 / 43

Baseline vs. Juunansei set-up

– Baseline:
– OMP_NUM_THREADS = Number of vCPUs of the target VM

– OMP_WAIT_POLICY = passive

– Host, Guest run vanilla kernels

– NAS benchmarks load default libgomp from GCC branch-releases/gcc-14,
commit-569f826774a

– Juunansei:
– OMP_DYNAMIC = true

– Host, Guest run Linux kernels with Phantom Tracker patches

– NAS benchmarks load a custom libgomp build with Juunansei patches

Evaluation 39 / 43

Baseline vs. Juunansei set-up

– Baseline:
– OMP_NUM_THREADS = Number of vCPUs of the target VM

– OMP_WAIT_POLICY = passive

– Host, Guest run vanilla kernels

– NAS benchmarks load default libgomp from GCC branch-releases/gcc-14,
commit-569f826774a

– Juunansei:
– OMP_DYNAMIC = true

– Host, Guest run Linux kernels with Phantom Tracker patches

– NAS benchmarks load a custom libgomp build with Juunansei patches

Evaluation 39 / 43

Benchmark: ua.B.x (38769 Parallel Regions & 80503 Barriers)

20 30 40 50 60 70
Avg. pCPUs available

0

5

10

15

20

25

30

Ru
nt

im
e

(s
)

larochette (96 pCPUs): ua.B.x + random spinners (with cgroups, seed = 64) set-up: Large

step size = 1000 ms (baseline)
step size = 900 ms (baseline)
step size = 800 ms (baseline)
step size = 700 ms (baseline)
step size = 600 ms (baseline)
step size = 500 ms (baseline)
step size = 400 ms (baseline)
step size = 300 ms (baseline)
step size = 200 ms (baseline)
step size = 100 ms (baseline)

step size = 1000 ms (juunansei)
step size = 900 ms (juunansei)
step size = 800 ms (juunansei)
step size = 700 ms (juunansei)
step size = 600 ms (juunansei)
step size = 500 ms (juunansei)
step size = 400 ms (juunansei)
step size = 300 ms (juunansei)
step size = 200 ms (juunansei)
step size = 100 ms (juunansei)

Set-up: Large (96 vCPUs)

18 20 22 24 26 28 30
Avg. pCPUs available

0

5

10

15

20

25

30

35

Ru
nt

im
e

(s
)

gros (36 pCPUs): ua.B.x + random spinners (with cgroups, seed = 64) set-up: Small

step size = 1000 ms (baseline)
step size = 900 ms (baseline)
step size = 800 ms (baseline)
step size = 700 ms (baseline)
step size = 600 ms (baseline)
step size = 500 ms (baseline)
step size = 400 ms (baseline)
step size = 300 ms (baseline)
step size = 200 ms (baseline)
step size = 100 ms (baseline)

step size = 1000 ms (juunansei)
step size = 900 ms (juunansei)
step size = 800 ms (juunansei)
step size = 700 ms (juunansei)
step size = 600 ms (juunansei)
step size = 500 ms (juunansei)
step size = 400 ms (juunansei)
step size = 300 ms (juunansei)
step size = 200 ms (juunansei)
step size = 100 ms (juunansei)

Set-up: Small (36 vCPUs)

Evaluation 40 / 43

Benchmark: cg.B.x (35 Parallel Regions & 10123 Barriers)

10 20 30 40 50 60 70
Avg. pCPUs available

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt

im
e

(s
)

larochette (96 pCPUs): cg.B.x + random spinners (with cgroups, seed = 64) set-up: Large
step size = 1000 ms (baseline)
step size = 900 ms (baseline)
step size = 700 ms (baseline)
step size = 600 ms (baseline)
step size = 500 ms (baseline)
step size = 400 ms (baseline)
step size = 300 ms (baseline)
step size = 200 ms (baseline)
step size = 100 ms (baseline)
step size = 1000 ms (juunansei)

step size = 900 ms (juunansei)
step size = 800 ms (juunansei)
step size = 700 ms (juunansei)
step size = 600 ms (juunansei)
step size = 500 ms (juunansei)
step size = 400 ms (juunansei)
step size = 300 ms (juunansei)
step size = 200 ms (juunansei)
step size = 100 ms (juunansei)

Set-up: Large (96 vCPUs)

10 15 20 25 30 35 40 45
Avg. pCPUs available

0

2

4

6

8

10

12

14

Ru
nt

im
e

(s
)

chirop (64 pCPUs): cg.B.x + random spinners (with cgroups, seed = 64) set-up: Medium
step size = 1000 ms (baseline)
step size = 900 ms (baseline)
step size = 800 ms (baseline)
step size = 700 ms (baseline)
step size = 600 ms (baseline)
step size = 500 ms (baseline)
step size = 400 ms (baseline)
step size = 300 ms (baseline)
step size = 200 ms (baseline)
step size = 100 ms (baseline)

step size = 1000 ms (juunansei)
step size = 900 ms (juunansei)
step size = 800 ms (juunansei)
step size = 700 ms (juunansei)
step size = 600 ms (juunansei)
step size = 500 ms (juunansei)
step size = 400 ms (juunansei)
step size = 300 ms (juunansei)
step size = 200 ms (juunansei)
step size = 100 ms (juunansei)

Set-up: Medium (64 vCPUs)

Evaluation 41 / 43

Next things

Implementation Proposal for libgomp

– Extend the current OMP_DYNAMIC mechanism.

– Introduce a new icv: OMP_DYNAMIC_POLICY.

– Usage:

OMP_DYNAMIC=true OMP_DYNAMIC_POLICY=pvsched ./your-parallel-app

Next things 43 / 43

I can use extra sets of eyes and more hands!

Seeking...
1. feedback on the implementation proposal.

2. code reviewers for the eventual PR(s).

3. funding for hiring an intern via Outreachy / Summer of Code.

4. collaborators and a co-mentor for the internship.

Contact: himadrics@pm.me

Next things 44 / 43

	Context
	Background: OpenMP
	Background: Scheduling
	Thesis Overview
	Contribution-1: Phantom Tracker
	Contribution-2: pv-barrier-sync
	Contribution-3: Juunansei
	Evaluation
	Next things

