ISOVALENT

now part of CI1SCO

eBPF Reachability
AIEWAIE 8 | @8

Speaker: Dylan Reimerink

me

@eBPF eBPF Docs £ Q search gt;jbmm

eBPF Docs
Home

4 .
D | a n | ze | | I | e rl n k Linux Reference
il sk Welcome to the eBPF Docs! eBPF is an amazing technology which enables its users to extend the functionality of operating systems in a

Concepts
Meta docs fast and secure way. eBPF is powerful, but also very complex, especially for newcomers.

. C : FA
S OftW a re E n I n e e r _— | S Ova | e nt I S C O g This site aims to provide technical documentation for eBPF. If you are looking for specific information, we recommend you to use the
search feature in to top right. You can use the navigation bar on the left for a hierarchical view, or use the condensed table of contents

below to jump to a particular general topic.

Cilium committer

Quick links
I\/l I t I f b f_ I | I b 'r /':S Intro to eBPF QO eBPF Concepts i1) Program Types
aintainer of ebpf-go (cilium/ebpf) :
. . . An introduction to eBPF on Linux An overview core eBPF concepts An overview of eBPF program types
I\/l a I nta I n e r Of d O C S e b Df I O - eBPF on Linux - Concepts - Program types

B BPF Map Q'P Helper Functions G Syscall Commands

An overview of eBPF map types An overview of eBPF helper functions An overview of eBPF syscall commands

—> Map types —> Helper functions — Syscall commands

F KFuncs Q eBPF libraries

An overview of eBPF KFuncs Libraries to help you with eBPF

—> KFuncs —> eBPF libraries

ISOVALENT

now part of CI1sco

https://ebpf-go.dev/
http://docs.ebpf.io

Acknowledgement

e [imo Beckers
o Cillum committer
o ebpf-go maintainer
o co-author of reachability analysis
e Robin Gogge
o Cilium reviewer + org member
o ebpf-go reviewer
o Primary reachability analysis reviewer

Modernizing Cilium

e Cilium is over 10 years old, one of the first eBPF users
e Cilium compiles its eBPF programs at runtime (for now)
e Our goal is to pre-compile all eBPF programs
o Faster program loading
o Smaller docker images (not shipping clang toolchain and dependencies)
o Less attack surface
o Less complexity, so hopefully less bugs
e \Working towards this since 2023

Load time configuration

e Cilium has a significant amount of optional features and settings

o Cilium has 94 datapath settings (at the moment)
e Disabled features were conditionally compiled with pre-processor macros
e Compile time config needs to become load time config

o v5.1: bpf: dead code elimination

o v5.5: Track read-only map contents as known scalars in BPF verifiers

volatile const bool enable feature a;

int SEC("tc") entrypoint (struct sk buff *ctx)
1f (enable feature a)

}
return TC ACT OK;

https://lists.openwall.net/netdev/2018/12/29/11
https://lore.kernel.org/bpf/20191009201458.2679171-1-andriin@fb.com/

The “"problem”

e Cilium core value: Only pay for what you use
e SO how do | prevent paying for a map | don't use?

#ifdef ENABLE FEATURE A

struct {
ulnt (type, BPF MAP TYPE HASH) ;
type (key, struct some key);
type (value, struct some value);
ulnt (max entries, 1000000) ;

} feature a map SEC(".maps");

#endif

int SEC("tc") entrypoint (struct sk buff *ctx) {
#ifdef ENABLE FEATURE A
struct some key key = { }s
struct some value *val = bpf map lookup elem(&feature a map, &key);

#fendif
return TC_ACT_OK;

The naive fix?

struct {
ulnt (type, BPF MAP TYPE HASH) ;
type (key, struct some key);
type (value, struct some value);
ulnt (max entries, 1000000) ;

} feature a map SEC(".maps");

volatile const bool enable feature a;

int SEC("tc") entrypoint (struct sk buff *ctx) {
1f (enable feature a) {
struct some key key = { '
struct some value *val = bpf map lookup elem(&feature a map, &key);

}
return TC_ACT_OK;

The naive fix?

$ sudo bpftool prog dump xlated id 2390 $ sudo bpftool prog
int entrypoint (struct sk buff * ctx): 2390: sched cls name entrypoint tag 61£771b5£f10a00fc
; int SEC("tc") entrypoint (struct sk buff *ctx) loaded at 2026-01-28T15:32:14+0100 wuid O
0: (b7) r0O = 0 xlated 160B Jited 97B memlock 4096B map ids 281,279
1f (enable feature a) btf 1d 310
1: (18) rl = map[i1d:281][0]+0
3: (71) rl = *(u8 *) (rl +0)
1f (enable feature a)
4: (15) 1f rl == 0x0 goto pc+l4
5: (b7) r1l = 0
struct some key key = {/*...*/};
(63) *(u32 *) (rl0 -8) = rl
r2 = rl0
r2 += -8
rl = map[1d:279]
call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l
r0 += 56
rl = r0
r0 =1
1if rl !'= 0x0 goto pc+l
r0O = 0
ro <<= 1

OO0 (WO O Ok 0oFr O
J J U1 J H J U1 o1 oo J

N©)
@

exit

The naive fix? - Dead code maintains refcount

$ sudo bpftool prog dump xlated id 2392 S sudo bpftool prog
int entrypoint (struct sk buff * ctx): 2392: sched cls name entrypoint tag 61£771b5£f10a00fc
; 1nt SEC("tc") entrypoint(struct sk buff *ctx) loaded at 2026-01-28T15:37:22+0100 wuid O
0: (b7) r0O = 0 xlated 40B Jited 31B memlock 4096B map ids 286,284
; 1f (enable feature a) btf 1d 319
1: (18) rl = map[id:286] [0]+0
3: (71) rl = *(u8 *) (rl +0)
.
4: (95) exit

The naive fix? - Dead code maintains refcount

e resolve_pseudo_Ildimm64 runs early

o Does a flat scan, converting FDs to pointers

o Adds map to env>used_maps

o Increments map refcount ‘bpf_map_inc(map);’
e Majority of verification happens...
e Dead code elimination happens

o opt_hard_wire_dead_code_branches

o Qopt_remove_dead_code

o opt_remove_nops
e But map refcounts are never released after pointers are eliminated ==

https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20572
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20542
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20540
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21061
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21087
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21114

First workaround - The double load

e | oad our program once, maps set to max_entries 1
e Read back the jitted code, see which maps remain
e Change LDIMMG64 of unused maps FDs to load imm OXDEADCODE
e | oad with modified instructions and only used maps with full max_entries
e \Works (sort of), but...
o Loading takes long, a lot of tailcall programs, and large programs
o We still have to create maps, not free, even small ones
o We risk hitting the 64 map limit on the first run
o We cannot gate unsupported map types behind features (arena maps)
o Reading back instructions impossible when kernel.kptr_restrict +
‘net.core.bpf_jit_harden are set.

Second workaround - matching userspace logic

e \Write userspace logic that matches the logic in eBPF to disable maps
e \We did not go this route
o If the compiler re-orders code, the compiled program may not match
userspace logic, even though sources do
o Chances for human error are significant
o Burdon on maintainers undesirable

Final workaround - reachability analysis

e \What if we knew before loading which instructions in our program are reachable
under the given load time configuration?

e A reachability analysis if you will

e Applicable to both maps, tailcalls to hardcoded slots and bpf-to-bpf functions

e Addresses most concerns, but did cost some engineering effort

Reachability analysis - basic block

rO = 0

rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4
rl =0

*(u32 *) (rl0 -8) = rl
r2 = rl10

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l
r0 += 56

rl = r0

r0 = 1

1if rl !'= 0x0 goto pc+l
r0O = 0

rQ <<= 1

exit

0:
1:
3:
4
S5:
0 :
7
8 :

Reachability analysis - basic block

rO = 0

rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4

rl = 0

*(u32 *) (rl0 -8) = rl

r2 = rl0

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

r0 += 56

rl = r0

r0 = 1

1if rl !'= 0x0 goto pc+l

ro = 0
rg <<= 1
exlit

Reachability analysis - basic block

rO = 0

rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4

rl = 0

*(u32 *) (rl0 -8) = rl

r2 = rl0

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

r0 += 56

rl = r0

r0 = 1

1if rl !'= 0x0 goto pc+k

ro = 0
rg <<= 1
exlit

Reachability analysis - basic block

rO = 0

rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4

rl = 0

*(u32 *) (rl0 -8) = rl

r2 = rl0

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

rO0O += 56
rl r0

r0 1
1if rl !'= 0x0 goto pc+l

r0

r0

Reachability analysis - basic block

=0

= map[id:281][0]+0

= *(u8 *)(rl +0)

rl ==) goto pc+14

ro = 0

rl = map[1d:281][0]+0 = G

rl = *(8 =) (rl +0) *(u32 *)(r1e -8) = rl
1if rl == 0x0 goto pc+14 : r2 = rle
: r2 += -8
rl = 0 : rl = map[id:279]
*(u32 *) (rl0 -8) = rl - call htab map lookup elem#294448

r2 = rl0 if ro == goto pc+l

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

r0 += 56
rl = 0 : IX0 goto pc+l

r0 = 1
1if rl !'= 0x0 goto pc+l

r0

r0

Reachability analysis - load time config

r0 = 0
; Get polnter to .rodata map
l: rl = map[1d:281][0]+0
; Deref variable at offset
3: rl = *(u8 *) (rl +0)
; Compare to some constant

4. 1f rl1 == goto pc+l1l4

Reachability analysis - backtracking

0
map[1d:281] [0]+0
*(u8 *) (rl +0)
0
*(u6d *) (rl0 -16)
r2 == 0x123 goto pc+200

goto pc+l1l4

Reachability analysis - sigh extension

r0 = 0
Get polnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
Cast slb to 64-bit
rl <<= 48
rl s>>= 48
Compare to some constant

1f rl s> goto pc+14

r0 = 0
Get poilnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
Cast slb to 32-bit
wl <<= 24 ; new 1n ISAvV3
wl s>>= 24
Compare to some constant

1f wl s> goto pc+14

Reachability analysis - masks

rO = 0
Get polnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
rl &= 0x01
Compare to some constant

1f rl == goto pc+14

r0 = 0
Get poilnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
Mask and shift bitfield
rl &= 0x04
rl >>= 2
Compare to some constant

1f r1 == goto pc+14

Reachability analysis - 64 bit constants

r0 = 0
Get pointer to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
= *(ule *) (rl +0)
LD64IMM, branching instructions have a 32-bit 1mm
= OXFFFFFFFFFEFFEFEFFEF
Compare reglster to register

1f rl == goto pc+1l4

Reachability analysis - edge cases

: r0 0 #define CONFIG (name)
. rl map[1id:281]1[0]1+0 (* ({

: rl = *(ulé *) (rl +0) vodd SouE; .
X (ul6 *) (rl0 -8) = asm volatile ("%0 = stringilify (name) 11" \

"=r" (out)); \
(typeof (name) *)out; \

: r8 = *(uloc *) (rl0 -8) 1))

if r8 == goto pc+14
1f (CONFIG (enable feature a))

}

Conclusions / final notes

e Reachability analysis seems like a good tool for optimization
o Reducing map creation and un-releasable maps
o Reducing load time by pruning unused tail calls and global functions
e The verifier could be improved with regards to map refcounting
o But even then this likely has a place
e This system has false negatives but no false positives
e |s this a Cilium specific use case? Or might this be useful elsewhere?
e Can we make signing work with this? (at some point in the future)

ISOVALENT

Questions?

ISOVALENT

Thank
you!

