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Cilium committer

Quick links
I\/l I t I f b f_ I | I b 'r /':S Intro to eBPF QO eBPF Concepts i1) Program Types
aintainer of ebpf-go (cilium/ebpf) :
. . . An introduction to eBPF on Linux An overview core eBPF concepts An overview of eBPF program types
I\/l a I nta I n e r Of d O C S e b Df I O - eBPF on Linux - Concepts - Program types

B BPF Map Q'P Helper Functions G Syscall Commands

An overview of eBPF map types An overview of eBPF helper functions An overview of eBPF syscall commands

—> Map types —> Helper functions — Syscall commands

F KFuncs Q eBPF libraries

An overview of eBPF KFuncs Libraries to help you with eBPF

—> KFuncs —> eBPF libraries
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http://docs.ebpf.io
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Modernizing Cilium

e Cilium is over 10 years old, one of the first eBPF users
e Cilium compiles its eBPF programs at runtime (for now)
e Our goal is to pre-compile all eBPF programs
o Faster program loading
o Smaller docker images (not shipping clang toolchain and dependencies)
o Less attack surface
o Less complexity, so hopefully less bugs
e \Working towards this since 2023



Load time configuration

e Cilium has a significant amount of optional features and settings

o Cilium has 94 datapath settings (at the moment)
e Disabled features were conditionally compiled with pre-processor macros
e Compile time config needs to become load time config

o v5.1: bpf: dead code elimination

o v5.5: Track read-only map contents as known scalars in BPF verifiers

volatile const bool enable feature a;

int SEC("tc") entrypoint (struct sk buff *ctx)
1f (enable feature a)

}
return TC ACT OK;



https://lists.openwall.net/netdev/2018/12/29/11
https://lore.kernel.org/bpf/20191009201458.2679171-1-andriin@fb.com/

The “"problem”

e Cilium core value: Only pay for what you use
e SO how do | prevent paying for a map | don't use?

#ifdef ENABLE FEATURE A

struct {
ulnt (type, BPF MAP TYPE HASH) ;
type (key, struct some key);
type (value, struct some value);
ulnt (max entries, 1000000) ;

} feature a map SEC(".maps");

#endif

int SEC("tc") entrypoint (struct sk buff *ctx) {
#ifdef ENABLE FEATURE A
struct some key key = { }s
struct some value *val = bpf map lookup elem(&feature a map, &key);

#fendif
return TC_ACT_OK;




The naive fix?

struct {
ulnt (type, BPF MAP TYPE HASH) ;
type (key, struct some key);
type (value, struct some value);
ulnt (max entries, 1000000) ;

} feature a map SEC(".maps");

volatile const bool enable feature a;

int SEC("tc") entrypoint (struct sk buff *ctx) {
1f (enable feature a) {
struct some key key = { '
struct some value *val = bpf map lookup elem(&feature a map, &key);

}
return TC_ACT_OK;




The naive fix?

$ sudo bpftool prog dump xlated id 2390 $ sudo bpftool prog
int entrypoint (struct sk buff * ctx): 2390: sched cls name entrypoint tag 61£771b5£f10a00fc
; int SEC("tc") entrypoint (struct sk buff *ctx) loaded at 2026-01-28T15:32:14+0100 wuid O
0: (b7) r0O = 0 xlated 160B Jited 97B memlock 4096B map ids 281,279
1f (enable feature a) btf 1d 310
1: (18) rl = map[i1d:281][0]+0
3: (71) rl = *(u8 *) (rl +0)
1f (enable feature a)
4: (15) 1f rl == 0x0 goto pc+l4
5: (b7) r1l = 0
struct some key key = {/*...*/};
(63) *(u32 *) (rl0 -8) = rl
r2 = rl0
r2 += -8
rl = map[1d:279]
call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l
r0 += 56
rl = r0
r0 =1
1if rl !'= 0x0 goto pc+l
r0O = 0
ro <<= 1
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exit




The naive fix? - Dead code maintains refcount

$ sudo bpftool prog dump xlated id 2392 S sudo bpftool prog
int entrypoint (struct sk buff * ctx): 2392: sched cls name entrypoint tag 61£771b5£f10a00fc
; 1nt SEC("tc") entrypoint(struct sk buff *ctx) loaded at 2026-01-28T15:37:22+0100 wuid O
0: (b7) r0O = 0 xlated 40B Jited 31B memlock 4096B map ids 286,284
; 1f (enable feature a) btf 1d 319
1: (18) rl = map[id:286] [0]+0
3: (71) rl = *(u8 *) (rl +0)
.
4: (95) exit




The naive fix? - Dead code maintains refcount

e resolve_pseudo_Ildimm64 runs early

o Does a flat scan, converting FDs to pointers

o Adds map to env>used_maps

o Increments map refcount ‘bpf_map_inc(map);’
e Majority of verification happens...
e Dead code elimination happens

o opt_hard_wire_dead_code_branches

o Qopt_remove_dead_code

o opt_remove_nops
e But map refcounts are never released after pointers are eliminated ==



https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20572
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20542
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20540
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21061
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21087
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21114

First workaround - The double load

e | oad our program once, maps set to max_entries 1
e Read back the jitted code, see which maps remain
e Change LDIMMG64 of unused maps FDs to load imm OXDEADCODE
e | oad with modified instructions and only used maps with full max_entries
e \Works (sort of), but...
o Loading takes long, a lot of tailcall programs, and large programs
o We still have to create maps, not free, even small ones
o We risk hitting the 64 map limit on the first run
o We cannot gate unsupported map types behind features (arena maps)
o Reading back instructions impossible when kernel.kptr_restrict +
‘net.core.bpf_jit_harden are set.




Second workaround - matching userspace logic

e \Write userspace logic that matches the logic in eBPF to disable maps
e \We did not go this route
o If the compiler re-orders code, the compiled program may not match
userspace logic, even though sources do
o Chances for human error are significant
o Burdon on maintainers undesirable



Final workaround - reachability analysis

e \What if we knew before loading which instructions in our program are reachable
under the given load time configuration?

e A reachability analysis if you will

e Applicable to both maps, tailcalls to hardcoded slots and bpf-to-bpf functions

e Addresses most concerns, but did cost some engineering effort



Reachability analysis - basic block

rO = 0

rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4
rl =0

*(u32 *) (rl0 -8) = rl
r2 = rl10

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l
r0 += 56

rl = r0

r0 = 1

1if rl !'= 0x0 goto pc+l
r0O = 0

rQ <<= 1

exit
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Reachability analysis - basic block
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rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4

rl = 0

*(u32 *) (rl0 -8) = rl

r2 = rl0

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

r0 += 56

rl = r0

r0 = 1

1if rl !'= 0x0 goto pc+l

ro = 0
rg <<= 1
exlit




Reachability analysis - basic block
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Reachability analysis - basic block

rO = 0

rl = map[1d:281][0]+0
rl = *(u8 *) (rl +0)

1f r1l == 0x0 goto pc+l4

rl = 0

*(u32 *) (rl0 -8) = rl

r2 = rl0

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

rO0O += 56
rl r0

r0 1
1if rl !'= 0x0 goto pc+l

r0

r0




Reachability analysis - basic block

=0

= map[id:281][0]+0

= *(u8 *)(rl +0)

rl == ) goto pc+14

ro = 0

rl = map[1d:281][0]+0 = G

rl = *(8 =) (rl +0) *(u32 *)(r1e -8) = rl
1if rl == 0x0 goto pc+14 : r2 = rle
: r2 += -8
rl = 0 : rl = map[id:279]
*(u32 *) (rl0 -8) = rl - call htab map lookup elem#294448

r2 = rl0 if ro == goto pc+l

r2 += -8

rl = map[1d:279]

call htab map lookup elem#294448
1if rO0 == 0x0 goto pc+l

r0 += 56
rl = 0 : IX0 goto pc+l

r0 = 1
1if rl !'= 0x0 goto pc+l

r0

r0




Reachability analysis - load time config

r0 = 0
; Get polnter to .rodata map
l: rl = map[1d:281][0]+0
; Deref variable at offset
3: rl = *(u8 *) (rl +0)
; Compare to some constant

4. 1f rl1 == goto pc+l1l4




Reachability analysis - backtracking

0
map[1d:281] [0]+0
*(u8 *) (rl +0)
0
*(u6d *) (rl0 -16)
r2 == 0x123 goto pc+200

goto pc+l1l4




Reachability analysis - sigh extension

r0 = 0
Get polnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
Cast slb to 64-bit
rl <<= 48
rl s>>= 48
Compare to some constant

1f rl s> goto pc+14

r0 = 0
Get poilnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
Cast slb to 32-bit
wl <<= 24 ; new 1n ISAvV3
wl s>>= 24
Compare to some constant

1f wl s> goto pc+14




Reachability analysis - masks

rO = 0
Get polnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
rl &= 0x01
Compare to some constant

1f rl == goto pc+14

r0 = 0
Get poilnter to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
rl = *(ule *) (rl +0)
Mask and shift bitfield
rl &= 0x04
rl >>= 2
Compare to some constant

1f r1 == goto pc+14




Reachability analysis - 64 bit constants

r0 = 0
Get pointer to .rodata map
rl = map[1d:281] [0]+0
Deref varilable at offset
= *(ule *) (rl +0)
LD64IMM, branching instructions have a 32-bit 1mm
= OXFFFFFFFFFEFFEFEFFEF
Compare reglster to register

1f rl == goto pc+1l4




Reachability analysis - edge cases

: r0 0 #define CONFIG (name)
. rl map[1id:281]1[0]1+0 (* ({

: rl = *(ulé *) (rl +0) vodd SouE; .
X (ul6 *) (rl0 -8) = asm volatile ("%0 = stringilify (name) 11" \

"=r" (out)); \
(typeof (name) *)out; \

: r8 = *(uloc *) (rl0 -8) 1))

if r8 == goto pc+14
1f (CONFIG (enable feature a))

}




Conclusions / final notes

e Reachability analysis seems like a good tool for optimization
o Reducing map creation and un-releasable maps
o Reducing load time by pruning unused tail calls and global functions
e The verifier could be improved with regards to map refcounting
o But even then this likely has a place
e This system has false negatives but no false positives
e |s this a Cilium specific use case? Or might this be useful elsewhere?
e Can we make signing work with this? (at some point in the future)
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