
eBPF Reachability
Analysis

Speaker: Dylan Reimerink

@me

● Dylan Reimerink
● Software Engineer - Isovalent @ Cisco
● Cilium committer
● Maintainer of ebpf-go (cilium/ebpf)
● Maintainer of docs.ebpf.io

https://ebpf-go.dev/
http://docs.ebpf.io

Acknowledgement

● Timo Beckers
○ Cilium committer
○ ebpf-go maintainer
○ co-author of reachability analysis

● Robin Gögge
○ Cilium reviewer + org member
○ ebpf-go reviewer
○ Primary reachability analysis reviewer

Modernizing Cilium

● Cilium is over 10 years old, one of the first eBPF users
● Cilium compiles its eBPF programs at runtime (for now)
● Our goal is to pre-compile all eBPF programs

○ Faster program loading
○ Smaller docker images (not shipping clang toolchain and dependencies)
○ Less attack surface
○ Less complexity, so hopefully less bugs

● Working towards this since 2023

Load time configuration

● Cilium has a significant amount of optional features and settings
○ Cilium has 94 datapath settings (at the moment)

● Disabled features were conditionally compiled with pre-processor macros
● Compile time config needs to become load time config

○ v5.1 bpf: dead code elimination
○ v5.5 Track read-only map contents as known scalars in BPF verifiers

volatile const bool enable_feature_a;

int SEC("tc") entrypoint(struct __sk_buff *ctx) {
 if (enable_feature_a) {
 // ...
 }
 return TC_ACT_OK;
}

https://lists.openwall.net/netdev/2018/12/29/11
https://lore.kernel.org/bpf/20191009201458.2679171-1-andriin@fb.com/

The “problemˮ

● Cilium core value: Only pay for what you use
● So how do I prevent paying for a map I donʼt use?
#ifdef ENABLE_FEATURE_A
struct {
 __uint(type, BPF_MAP_TYPE_HASH);
 __type(key, struct some_key);
 __type(value, struct some_value);
 __uint(max_entries, 1000000);
} feature_a_map SEC(".maps");
#endif

int SEC("tc") entrypoint(struct __sk_buff *ctx) {
#ifdef ENABLE_FEATURE_A
 struct some_key key = {/*...*/};
 struct some_value *val = bpf_map_lookup_elem(&feature_a_map, &key);
 // ...
#endif
 return TC_ACT_OK;
}

The naive fix?

struct {
 __uint(type, BPF_MAP_TYPE_HASH);
 __type(key, struct some_key);
 __type(value, struct some_value);
 __uint(max_entries, 1000000);
} feature_a_map SEC(".maps");

volatile const bool enable_feature_a;

int SEC("tc") entrypoint(struct __sk_buff *ctx) {
 if (enable_feature_a) {
 struct some_key key = {/*...*/};
 struct some_value *val = bpf_map_lookup_elem(&feature_a_map, &key);
 // ...
 }
 return TC_ACT_OK;
}

The naive fix?

$ sudo bpftool prog dump xlated id 2390
int entrypoint(struct __sk_buff * ctx):
; int SEC("tc") entrypoint(struct __sk_buff *ctx)
 0: (b7) r0 = 0
; if (enable_feature_a)
 1: (18) r1 = map[id:281][0]+0
 3: (71) r1 = *(u8 *)(r1 +0)
; if (enable_feature_a)
 4: (15) if r1 == 0x0 goto pc+14
 5: (b7) r1 = 0
; struct some_key key = {/*...*/};
 6: (63) *(u32 *)(r10 -8) = r1
 7: (bf) r2 = r10
 8: (07) r2 += -8
 9: (18) r1 = map[id:279]
 11: (85) call __htab_map_lookup_elem#294448
 12: (15) if r0 == 0x0 goto pc+1
 13: (07) r0 += 56
 14: (bf) r1 = r0
 15: (b7) r0 = 1
 16: (55) if r1 != 0x0 goto pc+1
 17: (b7) r0 = 0
 18: (67) r0 <<= 1
; }
 19: (95) exit

$ sudo bpftool prog
2390: sched_cls name entrypoint tag 61f771b5f10a00fc
 loaded_at 2026-01-28T15:32:14+0100 uid 0
 xlated 160B jited 97B memlock 4096B map_ids 281,279
 btf_id 310

The naive fix?  Dead code maintains refcount

$ sudo bpftool prog dump xlated id 2392
int entrypoint(struct __sk_buff * ctx):
; int SEC("tc") entrypoint(struct __sk_buff *ctx)
 0: (b7) r0 = 0
; if (enable_feature_a)
 1: (18) r1 = map[id:286][0]+0
 3: (71) r1 = *(u8 *)(r1 +0)
; }
 4: (95) exit

$ sudo bpftool prog
2392: sched_cls name entrypoint tag 61f771b5f10a00fc
 loaded_at 2026-01-28T15:37:22+0100 uid 0
 xlated 40B jited 31B memlock 4096B map_ids 286,284
 btf_id 319

The naive fix?  Dead code maintains refcount

● resolve_pseudo_ldimm64 runs early
○ Does a flat scan, converting FDs to pointers
○ Adds map to `env→used_maps`
○ Increments map refcount `bpf_map_inc(map);`

● Majority of verification happens…
● Dead code elimination happens

○ opt_hard_wire_dead_code_branches
○ opt_remove_dead_code
○ opt_remove_nops

● But map refcounts are never released after pointers are eliminated 😔

https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20572
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20542
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L20540
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21061
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21087
https://elixir.bootlin.com/linux/v6.18.6/source/kernel/bpf/verifier.c#L21114

First workaround - The double load

● Load our program once, maps set to max_entries 1
● Read back the jitted code, see which maps remain
● Change LDIMM64 of unused maps FDs to load imm 0xDEADC0DE
● Load with modified instructions and only used maps with full max_entries
● Works (sort of), but…

○ Loading takes long, a lot of tailcall programs, and large programs
○ We still have to create maps, not free, even small ones
○ We risk hitting the 64 map limit on the first run
○ We cannot gate unsupported map types behind features (arena maps)
○ Reading back instructions impossible when `kernel.kptr_restrict` +

`net.core.bpf_jit_harden` are set.

Second workaround - matching userspace logic

● Write userspace logic that matches the logic in eBPF to disable maps
● We did not go this route

○ If the compiler re-orders code, the compiled program may not match
userspace logic, even though sources do

○ Chances for human error are significant
○ Burdon on maintainers undesirable

Final workaround - reachability analysis

● What if we knew before loading which instructions in our program are reachable
under the given load time configuration?

● A reachability analysis if you will
● Applicable to both maps, tailcalls to hardcoded slots and bpf-to-bpf functions
● Addresses most concerns, but did cost some engineering effort

Reachability analysis - basic block

 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u8 *)(r1 +0)
 4: if r1 == 0x0 goto pc+14
 5: r1 = 0
 6: *(u32 *)(r10 -8) = r1
 7: r2 = r10
 8: r2 += -8
 9: r1 = map[id:279]
 11: call __htab_map_lookup_elem#294448
 12: if r0 == 0x0 goto pc+1
 13: r0 += 56
 14: r1 = r0
 15: r0 = 1
 16: if r1 != 0x0 goto pc+1
 17: r0 = 0
 18: r0 <<= 1
 19: exit

Reachability analysis - basic block

 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u8 *)(r1 +0)
 4: if r1 == 0x0 goto pc+14

 5: r1 = 0
 6: *(u32 *)(r10 -8) = r1
 7: r2 = r10
 8: r2 += -8
 9: r1 = map[id:279]
 11: call __htab_map_lookup_elem#294448
 12: if r0 == 0x0 goto pc+1

 13: r0 += 56
 14: r1 = r0
 15: r0 = 1
 16: if r1 != 0x0 goto pc+1

 17: r0 = 0
 18: r0 <<= 1
 19: exit

Reachability analysis - basic block

 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u8 *)(r1 +0)
 4: if r1 == 0x0 goto pc+14

 5: r1 = 0
 6: *(u32 *)(r10 -8) = r1
 7: r2 = r10
 8: r2 += -8
 9: r1 = map[id:279]
 11: call __htab_map_lookup_elem#294448
 12: if r0 == 0x0 goto pc+1

 13: r0 += 56
 14: r1 = r0
 15: r0 = 1
 16: if r1 != 0x0 goto pc+1

 17: r0 = 0
 18: r0 <<= 1
 19: exit

Reachability analysis - basic block

 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u8 *)(r1 +0)
 4: if r1 == 0x0 goto pc+14

 5: r1 = 0
 6: *(u32 *)(r10 -8) = r1
 7: r2 = r10
 8: r2 += -8
 9: r1 = map[id:279]
 11: call __htab_map_lookup_elem#294448
 12: if r0 == 0x0 goto pc+1

 13: r0 += 56

 14: r1 = r0

 15: r0 = 1
 16: if r1 != 0x0 goto pc+1

 17: r0 = 0

 18: r0 <<= 1

 19: exit

Reachability analysis - basic block

--- #0 p:[], b:#6, f:#1
 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u8 *)(r1 +0)
 4: if r1 == 0x0 goto pc+14
--- #1 p:[#0], b:#3, f:#2
 5: r1 = 0
 6: *(u32 *)(r10 -8) = r1
 7: r2 = r10
 8: r2 += -8
 9: r1 = map[id:279]
 11: call __htab_map_lookup_elem#294448
 12: if r0 == 0x0 goto pc+1
--- #2 p:[#1], f:#3
 13: r0 += 56
--- #3 p:[#1,#2], b:#5 f:#4
 14: r1 = r0
 15: r0 = 1
 16: if r1 != 0x0 goto pc+1
--- #4 p:[#3], f:#5
 17: r0 = 0
--- #5 p:[#3,#4], f:#6
 18: r0 <<= 1
--- #6 p:[#0,#5]
 19: exit

Reachability analysis - load time config

 0: r0 = 0
 ; Get pointer to .rodata map
 1: r1 = map[id:281][0]+0
 ; Deref variable at offset
 3: r1 = *(u8 *)(r1 +0)
 ; Compare to some constant
 4: if r1 == 0x0 goto pc+14

Reachability analysis - backtracking

--- #0 p:[], b:#55, f:#1
 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u8 *)(r1 +0)
 4: r3 = 0
 5: r2 = *(u64 *)(r10 -16)
 6: if r2 == 0x123 goto pc+200
--- #1 p:[#0], b:#3, f:#2
 7: r3 = 1
 8: if r1 == 0x0 goto pc+14

Reachability analysis - sign extension

 0: r0 = 0
 ; Get pointer to .rodata map
 1: r1 = map[id:281][0]+0
 ; Deref variable at offset
 3: r1 = *(u16 *)(r1 +0)
 ; Cast s16 to 64-bit
 4: r1 <<= 48
 5: r1 s>>= 48
 ; Compare to some constant
 6: if r1 s> 0x0A goto pc+14

 0: r0 = 0
 ; Get pointer to .rodata map
 1: r1 = map[id:281][0]+0
 ; Deref variable at offset
 3: r1 = *(u16 *)(r1 +0)
 ; Cast s16 to 32-bit
 4: w1 <<= 24 ; new in ISAv3
 5: w1 s>>= 24
 ; Compare to some constant
 6: if w1 s> 0x0A goto pc+14

Reachability analysis - masks

 0: r0 = 0
 ; Get pointer to .rodata map
 1: r1 = map[id:281][0]+0
 ; Deref variable at offset
 3: r1 = *(u16 *)(r1 +0)
 4: r1 &= 0x01
 ; Compare to some constant
 5: if r1 == 0x00 goto pc+14

 0: r0 = 0
 ; Get pointer to .rodata map
 1: r1 = map[id:281][0]+0
 ; Deref variable at offset
 3: r1 = *(u16 *)(r1 +0)
 ; Mask and shift bitfield
 4: r1 &= 0x04
 5: r1 >>= 2
 ; Compare to some constant
 6: if r1 == 0x00 goto pc+14

Reachability analysis - 64 bit constants

 0: r0 = 0
 ; Get pointer to .rodata map
 1: r1 = map[id:281][0]+0
 ; Deref variable at offset
 3: r1 = *(u16 *)(r1 +0)
 ; LD64IMM, branching instructions have a 32-bit imm
 4: r2 = 0xFFFFFFFFFFFFFFFF
 ; Compare register to register
 6: if r1 == r2 goto pc+14

Reachability analysis - edge cases

 0: r0 = 0
 1: r1 = map[id:281][0]+0
 3: r1 = *(u16 *)(r1 +0)
 4: *(u16 *)(r10 -8) = r1
 ...
 80: r8 = *(u16 *)(r10 -8)
 81: if r8 == 0x00 goto pc+14

#define CONFIG(name) \
(*({ \
 void *out; \
 asm volatile("%0 = " __stringify(name) " ll" \
 : "=r"(out)); \
 (typeof(name) *)out; \
}))

if (CONFIG(enable_feature_a)) {
 //...
}

Conclusions / final notes

● Reachability analysis seems like a good tool for optimization
○ Reducing map creation and un-releasable maps
○ Reducing load time by pruning unused tail calls and global functions

● The verifier could be improved with regards to map refcounting
○ But even then this likely has a place

● This system has false negatives but no false positives
● Is this a Cilium specific use case? Or might this be useful elsewhere?
● Can we make signing work with this? (at some point in the future)

Questions?

Thank
you!

