
https://www.pengutronix.de

Netboot without throwing a FIT

Ahmad Fatoum – a.fatoum@pengutronix.de

Kernel Devroom

mailto:a.fatoum@pengutronix.de

 2/19

 Ahmad Fatoum
 Pengutronix

 a3f 
 a.fatoum@pengutronix.de

@a3f@fosstodon.org 

About Me

 Kernel and Bootloader Porting
 Driver and Graphics

Development
 System Integration
 Embedded Linux Consulting

https://github.com/a3f
mailto:a.fatoum@pengutronix.de
https://fosstodon.org/@a3f

 3/19

My present netbooting

 Unpack the rootfs into an (NFS) exported directory
 Self-describing: includes kernel, initramfs, DT and bootloader spec 🔗

host$ cat /home/a3f/nfsroot/rock3a/loader/entries/rk3568-rock-3a.conf
title PTXdist - Pengutronix-DistroKit rk3568-rock-3a
version 6.18
linux /boot/Image
devicetree /boot/rk3568-rock-3a.dtb
linux-appendroot true

barebox$ boot nfs://192.168.10.15:2049/home/a3f/nfsroot/rock3a

 Boot it! 🚀

https://uapi-group.org/specifications/specs/boot_loader_specification/

 4/19

 User permissions are wrong when extracting without sudo
→ Manually patch specific service

e.g., chmod -R gu-s, service drop-ins
 Extract in fakeroot environment.→

Example: poky-nfsroot 🔗
 Patching NFS server to use map file?→

 NFS may require network config changes (e.g. due to Ethernet Switches)
 → Dynamically adapt configuration
 USB Ethernet Adapter→

 usb9pfs since v6.12. → Talk at FOSDEM 2025 🔗
 OS Build system has baked-in assumption about images

(e.g., ROOTFS_POSTPROCESS_COMMAND)

But some workarounds are needed

[Match]
Name=br0
KernelCommandLine=!nfsroot

🚀

https://github.com/ejoerns/poky-nfsroot
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-6103-usb9pfs-network-booting-without-the-network/

 5/19

Userspace says no

 Lots of hardcoded assumptions about the boot block device
e.g., no concept of an active partition (important for A/B setups!)

 Adding verified boot to the mix complicates things..
 Even more things that need to be nfsroot aware, e.g. dm-verity setup needs to be skipped
 Often results in the rootfs ceasing to be self-describing:

 Signed kernel image in separate raw partition
 Logic moves into boot scripts or kernel container image

Everyone needs to take care to keep it working..

But I just want to network boot the kernel :(
Reproducing kernel issues often needs full userspace

What’s the minimum we need to network boot only the kernel?

🚀

 6/19

Userspace says no

 Lots of hardcoded assumptions about the boot block device
e.g., no concept of an active partition (important for redundant setups!)

 Adding verified boot to the mix complicates things..
 Even more things that need to be nfsroot aware, e.g. dm-verity setup needs to be skipped
 Often results in the rootfs ceasing to be self-describing:

 Signed kernel image in separate raw partition
 Logic moves into boot scripts or kernel container image

Everyone needs to take care to keep it working, or..

But I just want to network boot the kernel :(
Reproducing kernel issues often needs full userspace

What’s the minimum we need to network boot only the kernel?

🚀

💥

 7/19

Userspace says no

 Lots of hardcoded assumptions about the boot block device
e.g., no concept of an active partition (important for redundant setups!)

 Adding verified boot to the mix complicates things..
 Even more things that need to be nfsroot aware, e.g. dm-verity setup needs to be skipped
 Often results in the rootfs ceasing to be self-describing:

 Signed kernel image in separate raw partition
 Logic moves into boot scripts or kernel partition

Everyone needs to take care to keep it working..

But I just want to network boot the kernel :(
 Reproducing kernel issues often needs full userspace
 What’s the minimum we need to network boot only the kernel?

 8/19

MVP: Minimum Viable (kernel netboot) Payload

1) Avoid messing with rootfs and OS build systems
 Assumption: no out-of-tree modules

2) Network boot only the kernel and its inputs
 Kernel
 Device Tree
 Modules

Kernel

Modules

DT

 9/19

{
 description = "Linux-6.19.0-rc6";
 #address-cells = <0x1>;
 timestamp = <0x697a0898>;
 configurations {
 conf-11 {
 compatible = "fsl,imx8mm-ddr4-evk",
 "fsl,imx8mm";
 description = "FSL i.MX8MM DDR4 EVK";
 kernel = "kernel";
 ramdisk = "ramdisk";
 fdt = "fdt-11";
 };
 conf-419 {
 compatible = "radxa,rock3a",
 "rockchip,rk3568";
 description = "Radxa ROCK 3A";
 kernel = "kernel";
 ramdisk ="ramdisk";
 fdt = "fdt-419";
 };
 };
};

images {
 kernel {
 /* … */
 };
 ramdisk {
 /* … */
 };
 fdt-11 {
 /* … */
 };
 fdt-419 {
 /* … */
 };
};

FIT: Flattened Image Tree

FIT FIT

https://fitspec.osfw.foundation 🔗

https://fitspec.osfw.foundation/

 10/19

{
 description = "Linux-6.19.0-rc6";
 #address-cells = <0x1>;
 timestamp = <0x697a0898>;
 configurations {
 conf-11 {
 compatible = "fsl,imx8mm-ddr4-evk",
 "fsl,imx8mm";
 description = "FSL i.MX8MM DDR4 EVK";
 kernel = "kernel";
 ramdisk = "ramdisk";
 fdt = "fdt-11";
 };
 conf-419 {
 compatible = "radxa,rock3a",
 "rockchip,rk3568";
 description = "Radxa ROCK 3A";
 kernel = "kernel";
 ramdisk ="ramdisk";
 fdt = "fdt-419";
 };
 };
};

FIT: Matching

/ {
 compatible = "radxa,rock3a",
 "rockchip,rk3568"

 /* 6700~ more lines omitted */
};

 No match❌

Bootloader DT

FIT

 11/19

{
 description = "Linux-6.19.0-rc6";
 #address-cells = <0x1>;
 timestamp = <0x697a0898>;
 configurations {
 conf-11 {
 compatible = "fsl,imx8mm-ddr4-evk",
 "fsl,imx8mm";
 description = "FSL i.MX8MM DDR4 EVK";
 kernel = "kernel";
 ramdisk = "ramdisk";
 fdt = "fdt-11";
 };
 conf-419 {
 compatible = "radxa,rock3a",
 "rockchip,rk3568";
 description = "Radxa ROCK 3A";
 kernel = "kernel";
 ramdisk ="ramdisk";
 fdt = "fdt-419";
 };
 };
};

FIT: Matching

/ {
 compatible = "radxa,rock3a",
 "rockchip,rk3568"

 /* 6700~ more lines omitted */
};

 ✅ Match!

FIT

Bootloader DT

 12/19

{
 description = "Linux-6.19.0-rc6";
 #address-cells = <0x1>;
 timestamp = <0x697a0898>;
 configurations {
 conf-11 {
 compatible = "fsl,imx8mm-ddr4-evk",
 "fsl,imx8mm";
 description = "FSL i.MX8MM DDR4 EVK";
 kernel = "kernel";
 ramdisk = "ramdisk";
 fdt = "fdt-11";
 };
 conf-419 {
 compatible = "radxa,rock3a",
 "rockchip,rk3568";
 description = "Radxa ROCK 3A";
 kernel = "kernel";
 ramdisk ="ramdisk";
 fdt = "fdt-419";
 };
 };
};

images {
 kernel {
 description = "Linux-6.19.0-rc6";
 type = "kernel_noload";
 arch = "arm64";
 os = "linux";
 compression = "gzip";
 data = /* 10281261 bytes omitted */;
 load = <0x0>;
 entry = <0x0>;
 };
 ramdisk {
 description = "Ramdisk";
 type = "ramdisk";
 arch = "arm64";
 compression = "none";
 os = "linux";
 data = /* 2020830 bytes omitted */;
 };
 fdt-11 {
 description = "imx8mm-ddr4-evk.dtb";
 type = "flat_dt";
 arch = "arm64";
 compression = "gzip";
 data = /* 9777 more bytes omitted */;
 };
 fdt-419 {
 description = "rk3568-rock-3a.dtb";
 type = "flat_dt";
 arch = "arm64";
 compression = "gzip";
 data = /* 13423 more bytes omitted */;
 };
};

FIT: Booting

FIT FIT

 13/19

FIT in Linux

 Since v6.10: make ARCH=arm64 image.fit
 Contains kernel and all enabled device trees

Kernel DT

 14/19

What about modules?

 Possible mismatch with rootfs
 But we can’t build everything into the kernel
 Solution: Linux transparently handles concatenated CPIOs
 Let’s install modules into an initramfs!

 Since v6.19: make modules-cpio-pkg
 Soon hopefully: initrd inclusion into FIT by Simon Glass:

[PATCH v9 0/6] scripts/make_fit: Support ramdisks and faster operations 🔗

 But who loads to the modules?

__

 Take care of some quirks with modules-cpio-pkg:

 Modules are not stripped Enable → CONFIG_DEBUG_INFO_SPLIT
 Modules are -rw------ → chmod go+r modules-*

Kernel

Initramfs

DT

Modules

https://lore.kernel.org/all/20260106162738.2605574-1-sjg@chromium.org/#r

 15/19

Making use of initrd modules

$ mount -o bind /lib/modules ${NEW_ROOT_MOUNT}/lib/modules

 Get the initramfs modules into the rootfs Kernel

Initramfs

DT

Modules/rdinit

by Stefan Kerkmann

 16/19

Putting it all together

make all modules-cpio-pkg

modules="$(echo modules-"$(make kernelrelease)"-*.cpio)"

gzip -f $cpio
cat ${cpio}.gz rsinit.cpio.gz >modules.cpio.gz

make image.fit FIT_EXTRA_ARGS=--ramdisk=modules.cpio.gz

 But: Bootloader does more than mere booting, e.g.:
 Command line fixups (root=, console=, … etc.)
 Apply fixups and overlays to Device Tree

 Bootloader integration would be → nice

 17/19

A last missing puzzle piece

 barebox supports late override of boot artifacts:
 Boot as usual, but at the very end switch out boot artifacts

e.g., replace the Device Tree or the initramfs
 Let’s put it on steroids

 Replace individual artifacts from a FIT image
 Support replacing the kernel image
 Support appending the initrd on the fly
 Fetch the boot override description over the network

Upstreaming in progress. Current state 🔗

https://barebox.org 🔗

https://github.com/a3f/barebox/tree/devboot
https://barebox.org/

 18/19

It's demo time 

https://asciinema.org/a/nKgzBaxIQuX18iAG

 19/19

Thanks for listening!

 Future Outlook:
 Network Block Device as

alternative to NFS?
 With barebox newly supporting

dm-verity, self-describing rootfs
with bootloader specification may
be in reach again

Questions?
The FIT image

generated on Slide 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

