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Performance

matters.
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Performance

matters.
Low latency.
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Performance

matters.
Low latency. High throughput.
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Performance

matters.
Low latency. High throughput. Better user experience.
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Performance has real business impact

Google: 500ms delay → 20% traffic drop

Yahoo: 400ms faster → 5-9% more traffic

Cloud costs: $675B+ market by 2024 (Gartner)

[1]
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"Not all fast software is world-class,
but all world-class software is fast."

— Tobi Lutke, CEO of Shopify
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Users feel the difference

Response Time User Perception

100-200ms Minimally noticeable

300-500ms Quick but slightly slow

1-3s Amount of work noticeable

5-10s+ User switches away
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Write benchmarks.

Run them continuously.
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Quick poll
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Who here has written a benchmark?
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Who here has written a benchmark?

Who has been surprised by the results?
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But first... why is software slow?
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Optimizers can't save us

CPUs don't recognize bad algorithms

Won't swap bubble sort for quicksort

Compilers rely on heuristics

Can't restructure your data layout

Big O hides real-world costs

Cache misses, branch mispredictions invisible

[1]
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Matrix multiplication optimization study:

60,000x speedup
through systematic tuning

This is why we need to measure.

[2]
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How to Design Benchmarks
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representative  and

repeatable
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The Art of Writing Benchmarks
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Macro vs. Micro Benchmarks
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Macro vs. Micro Benchmarks

Microbenchmarks

Test isolated functions/operations

Nanosecond-level precision

Prone to compiler tricks

Risk: not representative
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Macro vs. Micro Benchmarks

Microbenchmarks

Test isolated functions/operations

Nanosecond-level precision

Prone to compiler tricks

Risk: not representative

Macrobenchmarks

Test end-to-end workflows

Realistic workloads

Higher variance

Risk: hard to isolate cause
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Choose the right tool

Use Case Benchmark Type

Comparing algorithms Micro

Validating optimizations Micro

Regression detection Both

Capacity planning Macro

User experience Macro
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Choose the right tool

Use Case Benchmark Type

Comparing algorithms Micro

Validating optimizations Micro

Regression detection Both

Capacity planning Macro

User experience Macro

Best practice: Use both in your pipeline
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Representative workloads

What does your application actually do?
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Representative workloads

What does your application actually do?

CPU-bound: Number crunching, compression, encryption

I/O-bound: Database queries, API calls, file operations

Mixed: Most real-world applications

Your benchmark workload should match your production workload.
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Workload archetypes

Archetype Pattern Characteristics

Idle Background workers, minimal load Low RPS, minimal CPU, few workers

Latency Microservices, APIs High RPS, low CPU per request

Throughput Queue workers, batch processing Moderate RPS, high CPU, many clients

Enterprise Business apps with DB/API calls Moderate RPS, mixed CPU / I/O
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Workload archetypes

Archetype Pattern Characteristics

Idle Background workers, minimal load Low RPS, minimal CPU, few workers

Latency Microservices, APIs High RPS, low CPU per request

Throughput Queue workers, batch processing Moderate RPS, high CPU, many clients

Enterprise Business apps with DB/API calls Moderate RPS, mixed CPU / I/O

Choose the archetype that matches your application's behavior.
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How to Design Benchmarks: Case Study
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An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.
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An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

System under test: Spring app instrumented (or not) with dd-trace-java.

Workload: As many requests as possible by 5 concurrent users.

20 second warmup, 15 seconds of actual measurements.

36



37



Many false positives and high coeff. of variation (= standard deviation / mean) of 11.80%.
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Many false positives and high coeff. of variation (= standard deviation / mean) of 11.80%.

Are we running the benchmark long enough?
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Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).
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Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

For how long should we run the benchmark?
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# measurements coeff. of variation

30 6.95%

60 5.23%

90 4.59%
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# measurements coeff. of variation

30 6.95%

60 5.23%

90 4.59%

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).
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# measurements coeff. of variation

30 6.95%

60 5.23%

90 4.59%

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

But what about inter-run variation?
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Impact of initial state on FFT benchmark results [3]
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Run # mean ± stddev coeff. of variation

1 20.08 ± 0.63 ms 3.16%

2 20.63 ± 0.56 ms 2.72%

3 20.31 ± 0.45 ms 2.23%

4 20.19 ± 0.54 ms 2.66%

5 20.26 ± 0.63 ms 3.11%

all 20.29 ± 0.60 ms 2.94%
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Run # mean ± stddev coeff. of variation

1 20.08 ± 0.63 ms 3.16%

2 20.63 ± 0.56 ms 2.72%

3 20.31 ± 0.45 ms 2.23%

4 20.19 ± 0.54 ms 2.66%

5 20.26 ± 0.63 ms 3.11%

all 20.29 ± 0.60 ms 2.94%

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).
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Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

Coefficient of variation: 11.80% → 2.94%
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Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

Coefficient of variation: 11.80% → 2.94%

Tip #4: Use deterministic inputs.

Tip #5: Use load generators that avoid the coordinated omission problem (e.g., k6).

Slow system → load generator slows down → artificially better latencies.

Gil Tene, "How NOT to Measure Latency" [4]
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Interpreting Benchmark Results
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Interpreting Benchmark Results
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How can we tell if the difference is big enough?
Interpreting Benchmark Results
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Interpreting Benchmark Results
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how big the difference is

how big the noise is

Interpreting Benchmark Results

61



t = 
how big the difference is

how big the noise is

Interpreting Benchmark Results
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t = 
how big the difference is

how big the noise is

t > critical value

Interpreting Benchmark Results
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t = 
how big the difference is

how big the noise is

t > critical value

false positive rate

Interpreting Benchmark Results
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t = 
how big the difference is

how big the noise is

t > critical value

α = false positive rate

Interpreting Benchmark Results
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t = 
how big the difference is

how big the noise is

t > critical value(α)
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t = 
how big the difference is

how big the noise is

t > critical value(α)
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t = 
how big the difference is

how big the noise is

t > critical value(α)

Hypothesis test (t-test).

Interpreting Benchmark Results
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Another approach: changepoint detection
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Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing to determine if improvements/regressions are
statistically significant.

Interpreting Benchmark Results
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Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Interpreting Benchmark Results
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Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Tip #7: Control your benchmarking environment.

Interpreting Benchmark Results
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Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Tip #7
Tip #0

: Control your benchmarking environment.

Interpreting Benchmark Results
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How to Control Your Benchmarking Environment
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[5]
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5 years

~€100M 
[6, 7]
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Loose fiber optic cable that caused the measurement error [8]
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Most of us aren't building

730km tunnels.
But we deal with "loose cables" every day when measuring software performance.
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Layer Sources of Noise Mitigations

External

Network
Temperature
Vibration

Virtualization

Use dedicated on-prem hardware
Use bare metal cloud instances

Application
Memory layout

Compilation/linking
Set up fixed builds (e.g., disable ASLR)

Kernel
Scheduling

Caching

Set CPU affinity

Set process priority
Warm up or drop caches

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

External Virtualization Use bare metal cloud instances

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

External Virtualization Use bare metal cloud instances

Noisy neighbor problem.

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

External Virtualization Use bare metal cloud instances

Noisy neighbor problem.

Kernel- and CPU-layer mitigations require bare metal access.

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

Kernel
Scheduling
Caching

Set CPU affinity

Set process priority
Warm up or drop caches

# Set CPU affinity
taskset -c 0 ./benchmark

# Set process priority
nice -n -5 ./benchmark

# Drop filesystem cache
echo 3 > /proc/sys/vm/drop_caches && sync

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

Disable SMT

Disable DFS

Multiple hardware threads share the same core.

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

Multiple hardware threads share the same core.

# Disable SMT
echo off > /sys/devices/system/cpu/smt/control

How to Control Your Benchmarking Environment
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What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

How to Control Your Benchmarking Environment
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What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core  vs. separate cores

How to Control Your Benchmarking Environment
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What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core  vs. separate cores
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What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core  vs. separate cores

Task mean ± stddev coeff. of variation

smt-1 1537.64 ± 367.29 ms 23.887 %

smt-2 1536.88 ± 366.84 ms 23.869 %

no-smt-1 737.37 ± 0.32 ms 0.044 %

no-smt-2 737.93 ± 1.74 ms 0.235 %

How to Control Your Benchmarking Environment
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What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core  vs. separate cores

Task mean ± stddev coeff. of variation

smt-1 1537.64 ± 367.29 ms 23.887 %

smt-2 1536.88 ± 366.84 ms 23.869 %

no-smt-1 737.37 ± 0.32 ms 0.044 %

no-smt-2 737.93 ± 1.74 ms 0.235 %

100x less variation

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

Disable SMT

Disable DFS

Dynamic frequency scaling (DFS) adjusts the CPU frequency to match the workload.

How to Control Your Benchmarking Environment
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Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

Dynamic frequency scaling (DFS) adjusts the CPU frequency to match the workload.

# Pin clock rate
echo 2500000 > /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq

# Set scaling governor to "performance"
echo performance > /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

# Disable frequency boosting (Turbo-Boost, Intel CPUs only)
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo

How to Control Your Benchmarking Environment
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What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

How to Control Your Benchmarking Environment
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What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on  vs. DFS off

How to Control Your Benchmarking Environment
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What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on  vs. DFS off

How to Control Your Benchmarking Environment
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What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on  vs. DFS off

Task mean ± stddev coeff. of variation

dfs-1 533.97 ± 2.046 ms 0.383 %

dfs-8 578.67 ± 0.287 ms 0.050 %

no-dfs-1 738.18 ± 0.306 ms 0.041 %

no-dfs-8 739.18 ± 0.351 ms 0.047 %

How to Control Your Benchmarking Environment
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What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on  vs. DFS off

Task mean ± stddev coeff. of variation

dfs-1 533.97 ± 2.046 ms 0.383 %

dfs-8 578.67 ± 0.287 ms 0.050 %

no-dfs-1 738.18 ± 0.306 ms 0.041 %

no-dfs-8 739.18 ± 0.351 ms 0.047 %

10x less variation

How to Control Your Benchmarking Environment
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SMT and DFS experiments by Dmytro Yurchenko

CPU-level tweaks at Denis Bakhvalov's
"Performance Analysis and Tuning on Modern CPUs" [1]

How to Control Your Benchmarking Environment
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https://www.linkedin.com/in/dmytro-y-/


Layer Sources of Noise Mitigations

External Vibration Don't shout in the datacenter

How to Control Your Benchmarking Environment
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 Shouting in the Datacenter

How to Control Your Benchmarking Environment
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https://www.youtube.com/watch?v=tDacjrSCeq4
https://www.youtube.com/watch?v=tDacjrSCeq4


Integrating Benchmarks Into Your Workflows
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Architecture Overview

Integrating Benchmarks Into Your Workflows
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Feedback Loop

Integrating Benchmarks Into Your Workflows
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Feedback Loop

Integrating Benchmarks Into Your Workflows
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Feedback Loop

Integrating Benchmarks Into Your Workflows
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Feedback Loop

Integrating Benchmarks Into Your Workflows
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Feedback Loop

Integrating Benchmarks Into Your Workflows
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Feedback Loop

Integrating Benchmarks Into Your Workflows
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Open Source Tools

Start running benchmarks continuously today:

bencher.dev - Continuous benchmarking platform

hyperfine - CLI benchmark tool

github-action-benchmark - GitHub Action

chronologer - Benchmark tracking

Integrating Benchmarks Into Your Workflows
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https://bencher.dev/
https://github.com/sharkdp/hyperfine
https://github.com/benchmark-action/github-action-benchmark
https://github.com/dandavison/chronologer


Conclusion
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Key Takeaways

1. Control your benchmarking environment

Bare metal, isolation, disable SMT, disable DFS

Conclusion
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Key Takeaways

1. Control your benchmarking environment

Bare metal, isolation, disable SMT, disable DFS

2. Design your benchmarks

Representative and repeatable

3. Interpret benchmark results

Statistics matter (hypothesis testing)

4. Integrate benchmarks into your workflows

Run continuously, catch regressions early

Conclusion
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Don't shout in the datacenter

Conclusion
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Thanks!
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