How to Reliably Measure Software Performance

Augusto de Oliveira, Kemal Akkoyun

FOSDEM 2026

Performance
matters.

Performance
matters.

Performance
matters

tttttttttttttttttttttttt

Performance
matters

eee

Performance has real business impact

e Google: 500ms delay = 20% traffic drop
e Yahoo: 400ms faster = 5-9% more traffic
e Cloud costs: $675B+ market by 2024 (Gartner)

[1]

"Not all fast software is world-class,
but all world-class software is fast."

— Tobi Lutke, CEO of Shopify

Users feel the difference

Response Time
100-200ms
300-500ms
1-3s

5-10s+

User Perception
Minimally noticeable
Quick but slightly slow
Amount of work noticeable

User switches away

Write benchmarks.
Run them continuously.

Quick poll

Who here has written a benchmark? -

11

Who here has written a benchmark? L

OF)

Who has been surprised by the results? &

But first... why is software slow?

Optimizers can't save us

e CPUs don't recognize bad algorithms

o Won't swap bubble sort for quicksort
e Compilers rely on heuristics

o Can't restructure your data layout
e Big O hides real-world costs

o Cache misses, branch mispredictions invisible

[1]

14

Matrix multiplication optimization study:

60,000x speedup

through systematic tuning

This is why we need to measure.

[2]

15

How to Desigh Benchmarks

representative and

repeatable

17

The Art of Writing Benchmarks

Macro vs. Micro Benchmarks

19

Macro vs. Micro Benchmarks

Microbenchmarks

e Test isolated functions/operations
e Nanosecond-level precision
e Prone to compiler tricks

o Risk: not representative

20

Macro vs. Micro Benchmarks

Microbenchmarks

e Test isolated functions/operations
e Nanosecond-level precision
e Prone to compiler tricks

o Risk: not representative

Macrobenchmarks

e Test end-to-end workflows
e Realistic workloads
e Higher variance

e Risk: hard to isolate cause

21

Choose the right tool

Use Case
Comparing algorithms
Validating optimizations
Regression detection
Capacity planning

User experience

22

Benchmark Type
Micro

Micro

Both

Macro

Macro

Choose the right tool

Use Case
Comparing algorithms
Validating optimizations
Regression detection
Capacity planning

User experience

Best practice: Use both in your pipeline

23

Benchmark Type
Micro

Micro

Both

Macro

Macro

Representative workloads

What does your application actually do?

24

Representative workloads

What does your application actually do?

e CPU-bound: Number crunching, compression, encryption

25

Representative workloads

What does your application actually do?

e CPU-bound: Number crunching, compression, encryption

e |[/O-bound: Database queries, API calls, file operations

26

Representative workloads

What does your application actually do?

e CPU-bound: Number crunching, compression, encryption
e |[/O-bound: Database queries, API calls, file operations

o Mixed: Most real-world applications

27

Representative workloads

What does your application actually do?

e CPU-bound: Number crunching, compression, encryption
e |[/O-bound: Database queries, API calls, file operations

o Mixed: Most real-world applications

Your benchmark workload should match your production workload.

28

Workload archetypes

Archetype
Idle
Latency
Throughput

Enterprise

Pattern
Background workers, minimal load
Microservices, APIs
Queue workers, batch processing

Business apps with DB/API calls

Characteristics
Low RPS, minimal CPU, few workers
High RPS, low CPU per request
Moderate RPS, high CPU, many clients
Moderate RPS, mixed CPU / I/O

29

30

Workload archetypes
Archetype Pattern Characteristics
Idle Background workers, minimal load Low RPS, minimal CPU, few workers
Latency Microservices, APIs High RPS, low CPU per request

Throughput Queue workers, batch processing = Moderate RPS, high CPU, many clients
Enterprise Business apps with DB/API calls Moderate RPS, mixed CPU / I/O

Choose the archetype that matches your application's behavior.

How to Desigh Benchmarks: Case Study

g SFirst time?

32

An non-repeatable benchmark

e Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

33

An non-repeatable benchmark

o Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

o System under test: Spring app instrumented (or not) with dd-trace-java.

34

An non-repeatable benchmark

o Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.
e System under test: Spring app instrumented (or not) with dd-trace-java.

o Workload: As many requests as possible by 5 concurrent users.

35

An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

e System under test: Spring app instrumented (or not) with dd-trace-java.

Workload: As many requests as possible by 5 concurrent users.

e 20 second warmup, 15 seconds of actual measurements.

36

p50 latency

150 e Warmup
—~ 1251 Measurements
E .
>, 100 - °.
O °
c
B 75 7 ...
E ® 9 ® N
S 50 - e
o

25 A
O I I I I
0 10 20 30

time (s)

37

38

p50 latency

150 - e Warmup
- 1254 ° Measurements
£ .
- 100 H .
(®) °
(e
L 751 e
i) ®e . .
8 50] 00 o0 o0
o

25 -
O | | | |
0 10 20 30
time (s)

Many false positives and high coeff. of variation (= standard deviation [mean) of 11.80%.

39

p50 latency

150 - e Warmup
- 1254 ° Measurements
£ .
- 100 H .
(®) °
(e
L 751 e
i) ®e . .
8 50] 00 o0 o0
o

25 -
O | | | |
0 10 20 30
time (s)

Many false positives and high coeff. of variation (= standard deviation [mean) of 11.80%.

Are we running the benchmark long enough?

p50 latency

~N
92}
1

Ul
o
I

p50 latency (

N
Ul
1

e Warmup
Measurements

o

0 50 100 150 200 250

time (s)

40

p50 latency
150 1 . e Warmup
- 125 - Measurements
g []
>, 1001 ¢
O °
C °
L 7519 ..
©
—_— ’o
¥
8 50 A -
o
25 -
O | | | | | |
0 50 100 150 200 250
time (s)

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

41

p50 latency
150 - . e Warmup
- 125 - Measurements
g []
>, 1001 ¢
O °
(e °
L 7519 ..
©
—_— ’o
¥
8 50 A -
o
25 -
O | | | | | |
0 50 100 150 200 250
time (s)

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

For how long should we run the benchmark?

42

p50 latency (ms

p50 latency

~
Ul
1

U1
o
1

N
192}
1

o

e Warmup
Measurements

100 150 200 250

time (s)

measurements
30
60
90

43
coeff. of variation

6.95%
5.23%
4.59%

p50 latency (ms

p50 latency

150 7 e Warmup
125 - * Measurements
1004 -

751 %

501 ¥

25 7] ® o %90

O I I I 1 . 1 I
0 50 100 150 200 250
time (s)

measurements
30
60
90

coeff. of variation
6.95%
5.23%
4.59%

Tip #2: Collect enough samples to reduce intra-run variation (N = 30).

44

p50 latency (ms

p50 latency

~
Ul
1

U1
o
1

N
192}
1

e Warmup
Measurements

o

0 50 100 150 200 250

measurements
30
60
90

coeff. of variation
6.95%
5.23%
4.59%

Tip #2: Collect enough samples to reduce intra-run variation (N = 30).

But what about inter-run variation?

45

Time [ms]

575 580 585 590 595 600 605 610

Impact of initial state on FFT benchmark results [3]

46

47

o
O
o
wn —
=
Q
-
o ©
c o :
_ @© Q% m
O O ° B
W Mc 0000" o
oo $
. =
N |
> ° o oo et (@)
@)
(-
Q
e)
O
o % o
LN |
o o oo o oo et m
°
®
o
° e oo 00"& - O
Q]
®e
o ®
°
° o0 © 0‘0000)
T T T T T
o LN o LN o o
LN N o M~ LN
— — —

(sw) Aduaje| ggd

time (s)

p50 latency (ms)

24

23 -

22 A

21

20 -

19 -

P50 latency

........
......

18

0 25

50 75 100
time (s)

125

150

48

49
Run# mean + stddev coeff. of variation

N N N N N
o = N w NN
1 1 1 1

p50 latency (ms)

=
O
1

=
(00)

p50 latency

1 20.08 +0.63ms 3.16%
2 20.63+0.56ms 2.72%
3 20.31+£0.45ms 2.23%
.................. 4 20.19+0.54ms 2.66%
TR PR U S S - 20.26 2 0.63 ms | 311%
all 20.29+0.60ms 2.94%

0 25 50 75 100 125 150

time (s)

p50 latency (ms)

24

23 -

22 A

21 A

20 -

19

18

P50 latency

75 100 125
time (s)

150

Run #
1

2
3
4
5

all

mean = stddev
20.08 £ 0.63 ms
20.63 + 0.56 ms
20.31 £ 0.45 ms
20.19 £ 0.54 ms
20.26 £ 0.63 ms
20.29 + 0.60 ms

50
coeff. of variation

3.16%
2.72%
2.23%
2.66%
3.11%

2.94%

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M = 5).

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).
Tip #2: Collect enough samples to reduce intra-run variation (N = 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M = 5).

Coefficient of variation: 11.80% - 2.94%

51

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).
Tip #2: Collect enough samples to reduce intra-run variation (N = 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M = 5).

Coefficient of variation: 11.80% - 2.94%

Tip #4: Use deterministic inputs.

52

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).
Tip #2: Collect enough samples to reduce intra-run variation (N = 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M = 5).

Coefficient of variation: 11.80% - 2.94%

Tip #4: Use deterministic inputs.

Tip #5: Use load generators that avoid the coordinated omission problem (e.g., k6).

53

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).
Tip #2: Collect enough samples to reduce intra-run variation (N = 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M = 5).

Coefficient of variation: 11.80% - 2.94%

Tip #4: Use deterministic inputs.

Tip #5: Use load generators that avoid the coordinated omission problem (e.g., k6).

Slow system - load generator slows down - artificially better latencies.

Gil Tene, "How NOT to Measure Latency" [4]

54

Interpreting Benchmark Results

mean throughput

108

107 A

throughput (req/s)
= = = = =
o o o o o
N w H (O)] (@)

101 A

100

Interpreting Benchmark Results

°
° °
5 6 7
commit

improvement? :
[]
®
9 10

11

56

Interpreting Benchmark Results

mean throughput

108

107 -

= =
o o
U (0)}

1 1

throughput (req/s)
=
o
N

103 A
°
102 A
101 A
100 . .
before after

commit

57

mean throughput

throughput (req/s)
= = =
o o =
o u o

O
()]
]

O
o
]

[before
after

Interpreting Benchmark Results

before

commit

1
after

58

mean throughput

[before
after

throughput (req/s)

before after 0 10 20 30
commit count

How can we tell if the difference is big enough?

Interpreting Benchmark Results

59

Interpreting Benchmark Results

60

Interpreting Benchmark Results

how big the difference is

how big the noise is

61

Interpreting Benchmark Results

how big the difference is

how big the noise is

62

Interpreting Benchmark Results

how big the difference is

how big the noise is

t > critical value

63

Interpreting Benchmark Results

how big the difference is

how big the noise is
t > critical value

false positive rate

64

Interpreting Benchmark Results

how big the difference is

how big the noise is
t > critical value

a = false positive rate

65

Interpreting Benchmark Results

how big the difference is

how big the noise is

t > critical value(a)

66

Interpreting Benchmark Results

how big the difference is

how big the noise is

1 — T2

—
2 2
i_|_ﬁ
ni no

t > critical value(a)

67/

Interpreting Benchmark Results

how big the difference is

how big the noise is

1 — T2
t —

S5

ni na

t > critical value(a)

t > todf

63

Interpreting Benchmark Results

t=

how big the difference is

how big the noise is

1 — T2

—
2 2
i+i
ni UD;

t > critical value(a)

t > toar

Hypothesis test (t-test).

69

Another approach: changepoint detection

Event Speakers
Sunday
How to Reliably Measure Software Performance Kemal Akkoyun, Augusto de
Oliveira

I Continuous Performance Engineering HowTo Henrik Ingo

Start End

11:50 12:30

13:50 14:30

/70

Tip #1: Long enough benchmarks.
Tip #2: Enough samples (N = 30).
Tip #3: Enough runs (M = 5).

Tip #4: Deterministic inputs.

Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing to determine if improvements/regressions are
statistically significant.

Interpreting Benchmark Results

71

Tip #1: Long enough benchmarks.
Tip #2: Enough samples (N = 30).
Tip #3: Enough runs (M = 5).

Tip #4: Deterministic inputs.

Tip #5: Avoid coordinated omission.
Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Interpreting Benchmark Results

72

Tip #1: Long enough benchmarks.
Tip #2: Enough samples (N = 30).
Tip #3: Enough runs (M = 5).

Tip #4: Deterministic inputs.

Tip #5: Avoid coordinated omission.
Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Tip #7: Control your benchmarking environment.

Interpreting Benchmark Results

/3

Tip #1: Long enough benchmarks.
Tip #2: Enough samples (N = 30).
Tip #3: Enough runs (M = 5).

Tip #4: Deterministic inputs.

Tip #5: Avoid coordinated omission.
Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Fip#7: Control your benchmarking environment.
Tip #0

Interpreting Benchmark Results

74

How to Control Your Benchmarking Environment

CERN fto Gran Sasso Neutrino Beam

Gran Sasso

[S]

77

O years
~€100M <*

nature

News Published: 22 September 2011

Particles break light-speed limit

Geoff Brumfiel

Nature (2011) | Cite this article

2879 Accesses | 13 Citations | 854 Altmetric | Metrics

79

1 [1]
] ln-mllsn:....
EENNe ey
=TT

Loose fiber optic cable that caused the measurement error [8]

80

Most of us aren't building
/30km tunnels.

But we deal with "loose cables" every day when measuring software performance.

81

Layer Sources of Noise
Network
Temperature
External , ,
Vibration

Virtualization

Memory layout

Application
PP Compilation/linking
Scheduling
Kernel]
Caching
cPU Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

How to Control Your Benchmarking Environment

82

Mitigations

Use dedicated on-prem hardware
Use bare metal cloud instances

Set up fixed builds (e.g., disable ASLR)

Set CPU affinity
Set process priority
Warm up or drop caches

Disable SMT
Disable DFS

Layer Sources of Noise
Network
Temperature
External , ,
Vibration

Virtualization

Memory layout

Application
PP Compilation/linking
Scheduling
Kernel .
Caching
CPU Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

How to Control Your Benchmarking Environment

83

Mitigations

Use dedicated on-prem hardware
Use bare metal cloud instances

Set up fixed builds (e.g., disable ASLR)

Set CPU affinity
Set process priority
Warm up or drop caches

Disable SMT
Disable DFS

Layer

External

How to Control Your Benchmarking Environment

Sources of Noise

Virtualization

Mitigations

Use bare metal cloud instances

84

Layer

External

How to Control Your Benchmarking Environment

Sources of Noise Mitigations

Virtualization Use bare metal cloud instances

Noisy neighbor problem.

85

Layer Sources of Noise Mitigations
External Virtualization Use bare metal cloud instances
Noisy neighbor problem.

Kernel- and CPU-layer mitigations require bare metal access.

How to Control Your Benchmarking Environment

86

Layer Sources of Noise Mitigations
, Set CPU affinity
Scheduling ..
Kernel Set process priority

Cachin
d Warm up or drop caches

Set CPU affinity
taskset —-c 0 ./benchmark

Set process priority
nice -n -5 ./benchmark

Drop filesystem cache
echo 3 > /proc/sys/vm/drop_caches && sync

How to Control Your Benchmarking Environment

87

Layer

CPU

How to Control Your Benchmarking Environment

Sources of Noise

Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Mitigations

Disable SMT
Disable DFS

88

Layer

CPU

How to Control Your Benchmarking Environment

Sources of Noise

Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Mitigations

Disable SMT
Disable DFS

89

Layer Sources of Noise Mitigations

Simultaneous multithreading (SMT) contention Disable SMT
Dynamic frequency scaling (DFS) Disable DFS

Multiple hardware threads share the same core.

How to Control Your Benchmarking Environment

90

Layer Sources of Noise Mitigations

Simultaneous multithreading (SMT) contention Disable SMT

CPU
Dynamic frequency scaling (DFS) Disable DFS

Multiple hardware threads share the same core.

Disable SMT
echo off > /sys/devices/system/cpu/smt/control

How to Control Your Benchmarking Environment

91

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

How to Control Your Benchmarking Environment

92

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, EEIIEIIA vs.

How to Control Your Benchmarking Environment

93

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, EEIIEIIA vs.

latency

3000 — -

2500 -
2
— 2000 A
>
@]
c
315001 —
5 .

1000 A

N l N 0l
o & & R0
Q o°

How to Control Your Benchmarking Environment

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, EEIIEIIA vs.

latency
3000
o e

2500 -
[
§ 2000 -
>
@)
@

1000 A

N 0 AN he2
o o 0,4(“ RN
QN

How to Control Your Benchmarking Environment

Task
smt-1
smt-2
no-smt-1

no-smt-2

mean + stddev
1537.64 + 367.29 ms
1536.88 + 366.84 ms
737.37 £0.32ms
737.93+1.74 ms

coeff. of variation
23.887 %

23.869 %

0.044 %

0.235%

95

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, EEIIEIIA vs.

latency

Task

3000

2500 A

2000 A

latency (ms)

1500 N a— =

1000 A

smt-1
smt-2
no-smt-1

no-smt-2

How to Control Your Benchmarking Environment

100x less variation

mean + stddev
1537.64 + 367.29 ms
1536.88 + 366.84 ms
737.37 £0.32ms
737.93+1.74 ms

coeff. of variation
23.887 %
23.869 %

0.044 %

0.235 %

96

Layer

CPU

How to Control Your Benchmarking Environment

Sources of Noise

Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Mitigations

Disable SMT
Disable DFS

97

98

Layer Sources of Noise Mitigations

Simultaneous multithreading (SMT) contention Disable SMT
Dynamic frequency scaling (DFS) Disable DFS

Dynamic frequency scaling (DFS) adjusts the CPU frequency to match the workload.

How to Control Your Benchmarking Environment

Layer Sources of Noise Mitigations

CPU Simultaneous multithreading (SMT) contention Disable SMT
Dynamic frequency scaling (DFS) Disable DFS

Dynamic frequency scaling (DFS) adjusts the CPU frequency to match the workload.

Pin clock rate
echo 2500000 > /sys/devices/system/cpu/cpux/cpufreq/scaling_max_freq

Set scaling governor to "performance"
echo performance > /sys/devices/system/cpu/cpux/cpufreq/scaling_governor

Disable frequency boosting (Turbo-Boost, Intel CPUs only)
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo

How to Control Your Benchmarking Environment

99

100

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

How to Control Your Benchmarking Environment

101

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, m m

How to Control Your Benchmarking Environment

102

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, m m

latency
750 1 - -

700 -

650 -

latency (ms)

600 -

550 ~
»)

&5’ &9’ c\‘\‘f c\‘\‘f c\‘@’ &9 c\‘\% &9
o0 o0

How to Control Your Benchmarking Environment

103

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, m m

latency Task mean + stddev coeff. of variation
07 - 0" dfs-1 533.97 £ 2.046 ms 0.383 %
2 007 dfs-8 578.67 +0.287 ms 0.050 %
5 020" no-dfs-1 738.18 +0.306 ms 0.041 %
s 600- _ no-dfs-8 739.18 +0.351ms 0.047 %
550 A a8 P N

A S 0,&9’1,&\61,6’@’0;,&9’%
N A\ A\ o

How to Control Your Benchmarking Environment

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, m m

latency

750 A

(@) (@) ~
o ol o
o o o

1 1 1

latency (ms)

550 -

6"\‘9:\' 6‘\9:)’ 6‘\6'& 6&‘9'%

o o o

10x less variation

How to Control Your Benchmarking Environment

N 1 D 2
(o7 &ST &S &G
T ST S

Task
dfs-1
dfs-8
no-dfs-1
no-dfs-8

mean + stddev
533.97 + 2.046 ms
578.67 + 0.287 ms
738.18 £ 0.306 ms
739.18 £ 0.351 ms

coeff. of variation

0.050 %

0.047 %

104

105

SMT and DFS experiments by Dmytro Yurchenko

CPU-level tweaks at Denis Bakhvalov's
"Performance Analysis and Tuning on Modern CPUs" [1]

How to Control Your Benchmarking Environment

https://www.linkedin.com/in/dmytro-y-/

106

Layer Sources of Noise Mitigations

External Vibration Don't shout in the datacenter

How to Control Your Benchmarking Environment

107
& Shouting_in the Datacenter

O Aod statals

+ Dmic VO oporations ¢ 3econd broaen Qe by istency
een GG GREEE Y24 XTI €0

]
!

erya

Y

3
1
L
]
]

=

Shouting in the Datacenter

Bryan Cantrill
8.08K subscribers

4.8M views 17 years ago

Brendan Gregg from Sun's Fishworks team makes an interesting
discovery about inducing disk latency. For a ca. 2020 retrospective on

this 2008 video: @ * Bryan Cantrill talks Sun Microsystems, DT' ...more

How to Control Your Benchmarking Environment

https://www.youtube.com/watch?v=tDacjrSCeq4
https://www.youtube.com/watch?v=tDacjrSCeq4

Integrating Benchmarks Into Your Workflows

Architecture Overview

Creates GitLab
pipeline

)

SDE

Gets actionable
insight from

GitLab

Assigns Posts PR
Cljob to EPIKUB Comments
> ubernetes > GitHub
Runner
A
Uploads
benchmarking Only
results to macrobenchmarks
| ! !
. BP Datadog
Artifacts Storage BP Ul Dashboards

Integrating Benchmarks Into Your Workflows

109

110

Feedback Loop

Code cl«\ange]—% M?crobenchmarksH PR-level gate H Merge to main

@ microbenchmarks @ check-big-regressions
Merge to ma:nHacrobeml«marks Pre-release gateH Release
@ macrobenchmarks & check-slo-breaches

[SLO file

Integrating Benchmarks Into Your Workflows

111

Feedback Loop

Code cl«amge, }%[M?crobencl«marksH PR-level gate H Merge to main

® microbenchmarks @ check-big-regressions

Integrating Benchmarks Into Your Workflows

Feedback Loop

Code change HﬂlicrobenckmarksH PR-level gate]%[Merge to main

Integrating Benchmarks Into Your Workflows

@ microbenchmarks

@ check-big-regressions

Blocking PRs is the main line of
defense

pr-commenter bot commented yesterday - edited ~

Benchmarks [profiler]

Benchmark execution time: 2026-01-3118:02:19

Comparing candidate commit b622e@f in PR branch levi/messages with baseline commit f7f9271 in branch master .

scenario:walk_stack/1
« [l wall_time [+8.706us; +8.711us] or [+68.682%; +68.723%)]
scenario:php-profiler-exceptions-with-profiler

« B cpu_usage_percentage [-4.235%; -3.725%)]

112

113

Feedback Loop

Merge to main Macrobenchmarks Pre-release gate Release
@ macrobenchmarks & check-slo-breaches
SLO file

Integrating Benchmarks Into Your Workflows

114

Feedback Loop

Merge to main Macrobenchmarks Pre-release gate Release
@& macrobenchmarks & check-slo-breaches
SLO file

Blocking releases is only
the last line of defense

20:36 Gitlab Cl ApP . Performance SLOs for dd-trace-py were almost breached! Please investigate.

()/; Cl job: - Cl pipeline: - Commit: - Dashboard: Performance

Integrating Benchmarks Into Your Workflows

Feedback Loop

atest SLOs, measurements and conclusions for non-passing checks per project, scenario and metric N2 w
- Q search
. = ol e 1 o Pl o
1 = ¥ PROJECT SCENARIO METRIC UOM | CONCLUSION SLO MEASUREMENT
= [
- = A = nginx-datadog normal_operation--only-tracing agg_http_req_duration_p50 ms warning 0.1062 0.1037
= dd-trace-py normal_operation--tracing-profiling-en... agg_http_req_duration_p95 ms warning 95.0000 89.8457

dd-trace-java SLO check status trend

4 3
METRIC
exclude_null{sum:apm_sdk_slo.warning{project:
dd-trace-py AND (branc... branch:master) AND (s
cenario:high* OR scenario:normal*)}.as_count())

2 ci_job_id:1059194335 ci_pipeline_id:72382674
commit:3031c56b

0— . etric:agg_http_req_duration_p95
Jul20 Jul27 project:dd-trace-py gt

scenario:normal_operation--tracing-profiling-

dd-trace-py SLO check status trend enabled

& View CI pipeline

warning

I I & View (I job

& View commit

0— T
n Jul2o Jul 27 12h 02:00 Aug 01 A

Integrating Benchmarks Into Your Workflows

115

116
Open Source Tools

Start running benchmarks continuously today:

e bencher.dev - Continuous benchmarking platform

e hyperfine - CLI benchmark tool

e github-action-benchmark - GitHub Action

e chronologer - Benchmark tracking

Integrating Benchmarks Into Your Workflows

https://bencher.dev/
https://github.com/sharkdp/hyperfine
https://github.com/benchmark-action/github-action-benchmark
https://github.com/dandavison/chronologer

Conclusion

118
Key Takeaways

1. Control your benchmarking environment
Bare metal, isolation, disable SMT, disable DFS

Conclusion

119
Key Takeaways

1. Control your benchmarking environment
Bare metal, isolation, disable SMT, disable DFS

2.Design your benchmarks
Representative and repeatable

Conclusion

Key Takeaways

1. Control your benchmarking environment
Bare metal, isolation, disable SMT, disable DFS

2.Design your benchmarks
Representative and repeatable

3. Interpret benchmark results
Statistics matter (hypothesis testing)

Conclusion

120

Key Takeaways

1. Control your benchmarking environment
Bare metal, isolation, disable SMT, disable DFS

2.Design your benchmarks
Representative and repeatable

3. Interpret benchmark results
Statistics matter (hypothesis testing)

4. Integrate benchmarks into your workflows
Run continuously, catch regressions early

Conclusion

121

Yy
|
]

© Aos sttt

+ D VO operatons por secons broken down by lstency
eon GG GOEEE Y44 XI &0

o
1

“
Y o oo

e — ame
o 1w .
= &
. 2
- L= ¥ =
-): = ._,.,__._-_H.--.-‘."_-Pl-ll-—-_,
T e . e s i —
e ___t = e o
&~ ‘ - -
\' Dk VO aperations per Becond G &

o

eell AR ceEE=

’ ,’/""

=

Shouting in the Datacenter
Bryan Cantrill m
8.08K subscribers
4.8M views 17 years ago
Brendan Gregg from Sun's Fishworks team makes an interesting

discovery about inducing disk latency. For a ca. 2020 retrospective on
this 2008 video: @ - Bryan Cantrill talks Sun Microsystems, DT ...more

-

Don't shout in the datacenter

Conclusion

122

hn
=X
C
©
L
—

124

References

[1] Bakhvalov, D. (2020). Performance Analysis and Tuning on Modern CPUs. https://github.com/dendibakh/perf-book. Accessed Jan 2026.

[2] Leiserson, C. et al. (2020). "There's plenty of room at the Top: What will drive computer performance after Moore's law?" Science, 368(6495).

[3] Kalibera, T., Bulej, L., and Tuma, P. (2005). "Benchmark Precision and Random Initial State." In Proceedings of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS), pages 182-196. SCS.

[4] Tene, G. (2015). "How NOT to Measure Latency." https://www.youtube.com/watch?v=IJ8ydIuPFeU. Accessed Jan 2026.

[5] Universitat Mlnster. "Neutrino oscillations in the neutrino beam from CERN to Gran Sasso." https://www.uni-
muenster.de/Physik.KP/en/AGFrekers/forschung/opera.html. Accessed Jan 2026.

[6] CERN. (1999). "From Geneva to Gran Sasso in 2.5 milliseconds!". https://home.cern/news/press-release/cern/geneva-gran-sasso-25-milliseconds. Accessed Jan
2026.

[7] Wikipedia. "OPERA experiment." https://en.wikipedia.org/wiki/OPERA experiment. Accessed Jan 2026.

[8] Strassler, M. (2012). "OPERA: What Went Wrong." https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-
light/opera-what-went-wrong/. Accessed Jan 2026.

[9] Gregg, B. (2020). Systems Performance: Enterprise and the Cloud, 2nd ed. Addison-Wesley. Chapter 2.8, "Visualizations."

[10] Valles, A. (2009). "Performance Insights to Intel Hyper-Threading Technology." https://web.archive.org/web/20150217050949/https://software.intel.com/en-
us/articles/performance-insights-to-intel-hyper-threading-technology/. Accessed Jan 2026.

[11] Gregg, B. (2014). "Frequency Trails: Outliers." https://www.brendangregg.com/FrequencyTrails/outliers.html#Causes. Accessed Jan 2026.

[12] Gregg, B. (2020). "Systems Performance: Enterprise and the Cloud.", p. 233, "P-states and C-states."

[13] Humenay, E., Tarjan, D., and Skadron, K. (2007). "Impact of Process Variations on Multicore Performance Symmetry."

[14] Linux Kernel Documentation. "CPUFreq Governors." https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt. Accessed Jan 2026.

[15] ArchWiki. "CPU frequency scaling." https://wiki.archlinux.org/title/CPU_frequency scaling. Accessed Jan 2026.

[16] Intel. "Intel Server Board and System Products Update on Intel Turbo Boost Technology Support with Low Power Intel Xeon Processor 3400/5500/5600 Series."
https://cdrdv2-public.intel.com/840590/white paper_turbo boost on low power processor.pdf. Accessed Jan 2026.

https://github.com/dendibakh/perf-book
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.uni-muenster.de/Physik.KP/en/AGFrekers/forschung/opera.html
https://www.uni-muenster.de/Physik.KP/en/AGFrekers/forschung/opera.html
https://home.cern/news/press-release/cern/geneva-gran-sasso-25-milliseconds
https://en.wikipedia.org/wiki/OPERA_experiment
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/
https://web.archive.org/web/20150217050949/https://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/
https://web.archive.org/web/20150217050949/https://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/
https://www.brendangregg.com/FrequencyTrails/outliers.html#Causes
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://wiki.archlinux.org/title/CPU_frequency_scaling
https://cdrdv2-public.intel.com/840590/white_paper_turbo_boost_on_low_power_processor.pdf

