
How to Reliably Measure Software Performance

Augusto de Oliveira, Kemal Akkoyun

FOSDEM 2026

Performance

matters.

2

Performance

matters.
Low latency.

3

Performance

matters.
Low latency. High throughput.

4

Performance

matters.
Low latency. High throughput. Better user experience.

5

Performance has real business impact

Google: 500ms delay → 20% traffic drop

Yahoo: 400ms faster → 5-9% more traffic

Cloud costs: $675B+ market by 2024 (Gartner)

[1]

6

"Not all fast software is world-class,
but all world-class software is fast."

— Tobi Lutke, CEO of Shopify

7

Users feel the difference

Response Time User Perception

100-200ms Minimally noticeable

300-500ms Quick but slightly slow

1-3s Amount of work noticeable

5-10s+ User switches away

8

Write benchmarks.

Run them continuously.

9

Quick poll

10

Who here has written a benchmark?

11

Who here has written a benchmark?

Who has been surprised by the results?

12

But first... why is software slow?

13

Optimizers can't save us

CPUs don't recognize bad algorithms

Won't swap bubble sort for quicksort

Compilers rely on heuristics

Can't restructure your data layout

Big O hides real-world costs

Cache misses, branch mispredictions invisible

[1]

14

Matrix multiplication optimization study:

60,000x speedup
through systematic tuning

This is why we need to measure.

[2]

15

How to Design Benchmarks

16

representative and

repeatable

17

The Art of Writing Benchmarks

18

Macro vs. Micro Benchmarks
19

Macro vs. Micro Benchmarks

Microbenchmarks

Test isolated functions/operations

Nanosecond-level precision

Prone to compiler tricks

Risk: not representative

20

Macro vs. Micro Benchmarks

Microbenchmarks

Test isolated functions/operations

Nanosecond-level precision

Prone to compiler tricks

Risk: not representative

Macrobenchmarks

Test end-to-end workflows

Realistic workloads

Higher variance

Risk: hard to isolate cause

21

Choose the right tool

Use Case Benchmark Type

Comparing algorithms Micro

Validating optimizations Micro

Regression detection Both

Capacity planning Macro

User experience Macro

22

Choose the right tool

Use Case Benchmark Type

Comparing algorithms Micro

Validating optimizations Micro

Regression detection Both

Capacity planning Macro

User experience Macro

Best practice: Use both in your pipeline

23

Representative workloads

What does your application actually do?

24

Representative workloads

What does your application actually do?

CPU-bound: Number crunching, compression, encryption

25

Representative workloads

What does your application actually do?

CPU-bound: Number crunching, compression, encryption

I/O-bound: Database queries, API calls, file operations

26

Representative workloads

What does your application actually do?

CPU-bound: Number crunching, compression, encryption

I/O-bound: Database queries, API calls, file operations

Mixed: Most real-world applications

27

Representative workloads

What does your application actually do?

CPU-bound: Number crunching, compression, encryption

I/O-bound: Database queries, API calls, file operations

Mixed: Most real-world applications

Your benchmark workload should match your production workload.

28

Workload archetypes

Archetype Pattern Characteristics

Idle Background workers, minimal load Low RPS, minimal CPU, few workers

Latency Microservices, APIs High RPS, low CPU per request

Throughput Queue workers, batch processing Moderate RPS, high CPU, many clients

Enterprise Business apps with DB/API calls Moderate RPS, mixed CPU / I/O

29

Workload archetypes

Archetype Pattern Characteristics

Idle Background workers, minimal load Low RPS, minimal CPU, few workers

Latency Microservices, APIs High RPS, low CPU per request

Throughput Queue workers, batch processing Moderate RPS, high CPU, many clients

Enterprise Business apps with DB/API calls Moderate RPS, mixed CPU / I/O

Choose the archetype that matches your application's behavior.

30

How to Design Benchmarks: Case Study

31

32

An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

33

An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

System under test: Spring app instrumented (or not) with dd-trace-java.

34

An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

System under test: Spring app instrumented (or not) with dd-trace-java.

Workload: As many requests as possible by 5 concurrent users.

35

An non-repeatable benchmark

Goal: Measuring dd-trace-java instrumentation overhead on a Spring app.

System under test: Spring app instrumented (or not) with dd-trace-java.

Workload: As many requests as possible by 5 concurrent users.

20 second warmup, 15 seconds of actual measurements.

36

37

Many false positives and high coeff. of variation (= standard deviation / mean) of 11.80%.

38

Many false positives and high coeff. of variation (= standard deviation / mean) of 11.80%.

Are we running the benchmark long enough?

39

40

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

41

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

For how long should we run the benchmark?

42

measurements coeff. of variation

30 6.95%

60 5.23%

90 4.59%

43

measurements coeff. of variation

30 6.95%

60 5.23%

90 4.59%

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

44

measurements coeff. of variation

30 6.95%

60 5.23%

90 4.59%

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

But what about inter-run variation?

45

Impact of initial state on FFT benchmark results [3]

46

47

48

Run # mean ± stddev coeff. of variation

1 20.08 ± 0.63 ms 3.16%

2 20.63 ± 0.56 ms 2.72%

3 20.31 ± 0.45 ms 2.23%

4 20.19 ± 0.54 ms 2.66%

5 20.26 ± 0.63 ms 3.11%

all 20.29 ± 0.60 ms 2.94%

49

Run # mean ± stddev coeff. of variation

1 20.08 ± 0.63 ms 3.16%

2 20.63 ± 0.56 ms 2.72%

3 20.31 ± 0.45 ms 2.23%

4 20.19 ± 0.54 ms 2.66%

5 20.26 ± 0.63 ms 3.11%

all 20.29 ± 0.60 ms 2.94%

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

50

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

Coefficient of variation: 11.80% → 2.94%

51

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

Coefficient of variation: 11.80% → 2.94%

Tip #4: Use deterministic inputs.

52

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

Coefficient of variation: 11.80% → 2.94%

Tip #4: Use deterministic inputs.

Tip #5: Use load generators that avoid the coordinated omission problem (e.g., k6).

53

Tip #1: Run benchmarks for longer to uncover perturbations (e.g., warmup effects).

Tip #2: Collect enough samples to reduce intra-run variation (N ≥ 30).

Tip #3: Rerun benchmarks multiple times to reduce inter-run variation (M ≥ 5).

Coefficient of variation: 11.80% → 2.94%

Tip #4: Use deterministic inputs.

Tip #5: Use load generators that avoid the coordinated omission problem (e.g., k6).

Slow system → load generator slows down → artificially better latencies.

Gil Tene, "How NOT to Measure Latency" [4]

54

Interpreting Benchmark Results

55

Interpreting Benchmark Results

56

Interpreting Benchmark Results

57

Interpreting Benchmark Results

58

How can we tell if the difference is big enough?
Interpreting Benchmark Results

59

Interpreting Benchmark Results

60

how big the difference is

how big the noise is

Interpreting Benchmark Results

61

t =
how big the difference is

how big the noise is

Interpreting Benchmark Results

62

t =
how big the difference is

how big the noise is

t > critical value

Interpreting Benchmark Results

63

t =
how big the difference is

how big the noise is

t > critical value

false positive rate

Interpreting Benchmark Results

64

t =
how big the difference is

how big the noise is

t > critical value

α = false positive rate

Interpreting Benchmark Results

65

t =
how big the difference is

how big the noise is

t > critical value(α)

Interpreting Benchmark Results

66

t =
how big the difference is

how big the noise is

t > critical value(α)

Interpreting Benchmark Results

67

t =
how big the difference is

how big the noise is

t > critical value(α)

Interpreting Benchmark Results

68

t =
how big the difference is

how big the noise is

t > critical value(α)

Hypothesis test (t-test).

Interpreting Benchmark Results

69

Another approach: changepoint detection
70

Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing to determine if improvements/regressions are
statistically significant.

Interpreting Benchmark Results

71

Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Interpreting Benchmark Results

72

Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Tip #7: Control your benchmarking environment.

Interpreting Benchmark Results

73

Tip #1: Long enough benchmarks.

Tip #2: Enough samples (N ≥ 30).
Tip #3: Enough runs (M ≥ 5).

Tip #4: Deterministic inputs.
Tip #5: Avoid coordinated omission.

Tip #6: Use hypothesis testing.

But what about inter-experiment variation?

Tip #7
Tip #0

: Control your benchmarking environment.

Interpreting Benchmark Results

74

How to Control Your Benchmarking Environment

75

76

[5]

77

5 years

~€100M
[6, 7]

78

79

Loose fiber optic cable that caused the measurement error [8]

80

Most of us aren't building

730km tunnels.
But we deal with "loose cables" every day when measuring software performance.

81

Layer Sources of Noise Mitigations

External

Network
Temperature
Vibration

Virtualization

Use dedicated on-prem hardware
Use bare metal cloud instances

Application
Memory layout

Compilation/linking
Set up fixed builds (e.g., disable ASLR)

Kernel
Scheduling

Caching

Set CPU affinity

Set process priority
Warm up or drop caches

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment

82

Layer Sources of Noise Mitigations

External

Network
Temperature
Vibration

Virtualization

Use dedicated on-prem hardware
Use bare metal cloud instances

Application
Memory layout

Compilation/linking
Set up fixed builds (e.g., disable ASLR)

Kernel
Scheduling

Caching

Set CPU affinity

Set process priority
Warm up or drop caches

CPU
Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

Disable SMT

Disable DFS

How to Control Your Benchmarking Environment

83

Layer Sources of Noise Mitigations

External Virtualization Use bare metal cloud instances

How to Control Your Benchmarking Environment

84

Layer Sources of Noise Mitigations

External Virtualization Use bare metal cloud instances

Noisy neighbor problem.

How to Control Your Benchmarking Environment

85

Layer Sources of Noise Mitigations

External Virtualization Use bare metal cloud instances

Noisy neighbor problem.

Kernel- and CPU-layer mitigations require bare metal access.

How to Control Your Benchmarking Environment

86

Layer Sources of Noise Mitigations

Kernel
Scheduling
Caching

Set CPU affinity

Set process priority
Warm up or drop caches

Set CPU affinity
taskset -c 0 ./benchmark

Set process priority
nice -n -5 ./benchmark

Drop filesystem cache
echo 3 > /proc/sys/vm/drop_caches && sync

How to Control Your Benchmarking Environment

87

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment

88

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment

89

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

Disable SMT

Disable DFS

Multiple hardware threads share the same core.

How to Control Your Benchmarking Environment

90

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

Multiple hardware threads share the same core.

Disable SMT
echo off > /sys/devices/system/cpu/smt/control

How to Control Your Benchmarking Environment

91

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

How to Control Your Benchmarking Environment

92

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core vs. separate cores

How to Control Your Benchmarking Environment

93

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core vs. separate cores

How to Control Your Benchmarking Environment

94

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core vs. separate cores

Task mean ± stddev coeff. of variation

smt-1 1537.64 ± 367.29 ms 23.887 %

smt-2 1536.88 ± 366.84 ms 23.869 %

no-smt-1 737.37 ± 0.32 ms 0.044 %

no-smt-2 737.93 ± 1.74 ms 0.235 %

How to Control Your Benchmarking Environment

95

What's the impact of disabling SMT?

bare metal, dynamic frequency scaling (DFS) disabled

2 CPU-bound tasks, same core vs. separate cores

Task mean ± stddev coeff. of variation

smt-1 1537.64 ± 367.29 ms 23.887 %

smt-2 1536.88 ± 366.84 ms 23.869 %

no-smt-1 737.37 ± 0.32 ms 0.044 %

no-smt-2 737.93 ± 1.74 ms 0.235 %

100x less variation

How to Control Your Benchmarking Environment

96

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

How to Control Your Benchmarking Environment

97

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention

Dynamic frequency scaling (DFS)

Disable SMT

Disable DFS

Dynamic frequency scaling (DFS) adjusts the CPU frequency to match the workload.

How to Control Your Benchmarking Environment

98

Layer Sources of Noise Mitigations

CPU
Simultaneous multithreading (SMT) contention
Dynamic frequency scaling (DFS)

Disable SMT
Disable DFS

Dynamic frequency scaling (DFS) adjusts the CPU frequency to match the workload.

Pin clock rate
echo 2500000 > /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq

Set scaling governor to "performance"
echo performance > /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Disable frequency boosting (Turbo-Boost, Intel CPUs only)
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo

How to Control Your Benchmarking Environment

99

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

How to Control Your Benchmarking Environment

100

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on vs. DFS off

How to Control Your Benchmarking Environment

101

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on vs. DFS off

How to Control Your Benchmarking Environment

102

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on vs. DFS off

Task mean ± stddev coeff. of variation

dfs-1 533.97 ± 2.046 ms 0.383 %

dfs-8 578.67 ± 0.287 ms 0.050 %

no-dfs-1 738.18 ± 0.306 ms 0.041 %

no-dfs-8 739.18 ± 0.351 ms 0.047 %

How to Control Your Benchmarking Environment

103

What's the impact of disabling DFS?

bare metal, simultaneous multithreading (SMT) disabled

Varying number of CPU-bound tasks, same core, DFS on vs. DFS off

Task mean ± stddev coeff. of variation

dfs-1 533.97 ± 2.046 ms 0.383 %

dfs-8 578.67 ± 0.287 ms 0.050 %

no-dfs-1 738.18 ± 0.306 ms 0.041 %

no-dfs-8 739.18 ± 0.351 ms 0.047 %

10x less variation

How to Control Your Benchmarking Environment

104

SMT and DFS experiments by Dmytro Yurchenko

CPU-level tweaks at Denis Bakhvalov's
"Performance Analysis and Tuning on Modern CPUs" [1]

How to Control Your Benchmarking Environment

105

https://www.linkedin.com/in/dmytro-y-/

Layer Sources of Noise Mitigations

External Vibration Don't shout in the datacenter

How to Control Your Benchmarking Environment

106

 Shouting in the Datacenter

How to Control Your Benchmarking Environment

107

https://www.youtube.com/watch?v=tDacjrSCeq4
https://www.youtube.com/watch?v=tDacjrSCeq4

Integrating Benchmarks Into Your Workflows

108

Architecture Overview

Integrating Benchmarks Into Your Workflows

109

Feedback Loop

Integrating Benchmarks Into Your Workflows

110

Feedback Loop

Integrating Benchmarks Into Your Workflows

111

Feedback Loop

Integrating Benchmarks Into Your Workflows

112

Feedback Loop

Integrating Benchmarks Into Your Workflows

113

Feedback Loop

Integrating Benchmarks Into Your Workflows

114

Feedback Loop

Integrating Benchmarks Into Your Workflows

115

Open Source Tools

Start running benchmarks continuously today:

bencher.dev - Continuous benchmarking platform

hyperfine - CLI benchmark tool

github-action-benchmark - GitHub Action

chronologer - Benchmark tracking

Integrating Benchmarks Into Your Workflows

116

https://bencher.dev/
https://github.com/sharkdp/hyperfine
https://github.com/benchmark-action/github-action-benchmark
https://github.com/dandavison/chronologer

Conclusion

117

Key Takeaways

1. Control your benchmarking environment

Bare metal, isolation, disable SMT, disable DFS

Conclusion

118

Key Takeaways

1. Control your benchmarking environment

Bare metal, isolation, disable SMT, disable DFS

2. Design your benchmarks

Representative and repeatable

Conclusion

119

Key Takeaways

1. Control your benchmarking environment

Bare metal, isolation, disable SMT, disable DFS

2. Design your benchmarks

Representative and repeatable

3. Interpret benchmark results

Statistics matter (hypothesis testing)

Conclusion

120

Key Takeaways

1. Control your benchmarking environment

Bare metal, isolation, disable SMT, disable DFS

2. Design your benchmarks

Representative and repeatable

3. Interpret benchmark results

Statistics matter (hypothesis testing)

4. Integrate benchmarks into your workflows

Run continuously, catch regressions early

Conclusion

121

Don't shout in the datacenter

Conclusion

122

Thanks!

123

References
[1] Bakhvalov, D. (2020). Performance Analysis and Tuning on Modern CPUs. https://github.com/dendibakh/perf-book. Accessed Jan 2026.
[2] Leiserson, C. et al. (2020). "There's plenty of room at the Top: What will drive computer performance after Moore's law?" Science, 368(6495).
[3] Kalibera, T., Bulej, L., and Tuma, P. (2005). "Benchmark Precision and Random Initial State." In Proceedings of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS), pages 182-196. SCS.
[4] Tene, G. (2015). "How NOT to Measure Latency." https://www.youtube.com/watch?v=lJ8ydIuPFeU. Accessed Jan 2026.
[5] Universität Münster. "Neutrino oscillations in the neutrino beam from CERN to Gran Sasso." https://www.uni-
muenster.de/Physik.KP/en/AGFrekers/forschung/opera.html. Accessed Jan 2026.
[6] CERN. (1999). "From Geneva to Gran Sasso in 2.5 milliseconds!". https://home.cern/news/press-release/cern/geneva-gran-sasso-25-milliseconds. Accessed Jan
2026.
[7] Wikipedia. "OPERA experiment." https://en.wikipedia.org/wiki/OPERA_experiment. Accessed Jan 2026.
[8] Strassler, M. (2012). "OPERA: What Went Wrong." https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-
light/opera-what-went-wrong/. Accessed Jan 2026.
[9] Gregg, B. (2020). Systems Performance: Enterprise and the Cloud, 2nd ed. Addison-Wesley. Chapter 2.8, "Visualizations."
[10] Valles, A. (2009). "Performance Insights to Intel Hyper-Threading Technology." https://web.archive.org/web/20150217050949/https://software.intel.com/en-
us/articles/performance-insights-to-intel-hyper-threading-technology/. Accessed Jan 2026.
[11] Gregg, B. (2014). "Frequency Trails: Outliers." https://www.brendangregg.com/FrequencyTrails/outliers.html#Causes. Accessed Jan 2026.
[12] Gregg, B. (2020). "Systems Performance: Enterprise and the Cloud.", p. 233, "P-states and C-states."
[13] Humenay, E., Tarjan, D., and Skadron, K. (2007). "Impact of Process Variations on Multicore Performance Symmetry."
[14] Linux Kernel Documentation. "CPUFreq Governors." https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt. Accessed Jan 2026.
[15] ArchWiki. "CPU frequency scaling." https://wiki.archlinux.org/title/CPU_frequency_scaling. Accessed Jan 2026.
[16] Intel. "Intel Server Board and System Products Update on Intel Turbo Boost Technology Support with Low Power Intel Xeon Processor 3400/5500/5600 Series."
https://cdrdv2-public.intel.com/840590/white_paper_turbo_boost_on_low_power_processor.pdf. Accessed Jan 2026.

124

https://github.com/dendibakh/perf-book
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.uni-muenster.de/Physik.KP/en/AGFrekers/forschung/opera.html
https://www.uni-muenster.de/Physik.KP/en/AGFrekers/forschung/opera.html
https://home.cern/news/press-release/cern/geneva-gran-sasso-25-milliseconds
https://en.wikipedia.org/wiki/OPERA_experiment
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/
https://web.archive.org/web/20150217050949/https://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/
https://web.archive.org/web/20150217050949/https://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/
https://www.brendangregg.com/FrequencyTrails/outliers.html#Causes
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://wiki.archlinux.org/title/CPU_frequency_scaling
https://cdrdv2-public.intel.com/840590/white_paper_turbo_boost_on_low_power_processor.pdf

