What are you listening to now?

Implementing "Now Playing" feature in modern XMPP

Ozcan Oguz
ozcan@oyd.org.tr

1st February 2026, Brussels
FOSDEM 2026

mailto:ozcan@oyd.org.tr
mailto:ozcan@oyd.org.tr

It's the year 2005...

MSN Messenger was the king at the time. Some friends were using official client, some Pidgin, some Adium...

Below your name, everyone can see:

J Iron Maiden - Wasted Years

It's awesome! You can brag about your music taste :)

The Golden Era of "Now Playing"

e MSN Messenger (via WMP)
e Pidgin (with plugins)

e aMSN

e Adium

All had some form of music status sharing

Then it disappeared

MSN Messenger and similar apps are gone

Mobile messaging took over

Centralised platforms never brought it back

Rising streaming services did not implement such feature
Within time, we forgot it existed

| use XMPP+OMEMO daily and regularly.
A few months ago, with a friend of mine, we figured out that we were listening to the same song.

It was a song from an old Turkish symphonic metal band Almora.

It was the time when | remembered the old times.

And there comes the question:
"Can | bring this "Now Playing" feature to my daily XMPP client?"
| started to think about building such protocol...

But wait...

The XMPP specification already exists!

XEP-0118: User Tune

Published: 2004, Last updated: 2008

The journey

1. Discovery: Finding XEP-0118

2. Research: Understanding PEP and MPRIS
3. Implementation: Writing the code for Dino
4. Contribution: Open a PR and publish it

Phase 1: Discovery

The protocol already exists!

XEP-0118: User Tune

Published: March 2004
Last Updated: 2008
Status: Draft Standard
22 years old but barely implemented.

What XEP-0118 defines

A simple way to tell your contacts:

What you're listening to (artist, track name)

From where (album)

How long the track is

User rating of the track, stars 1-10

And much more: a link to it, extra details like genre, composer, performer etc.

Built on a widely used standard
Personal Eventing Protocol (XEP-0163)

XMPP clients already use this XEP for status, mood etc.

The protocol part seems OK

The XMPP spec was straightforward, seems easy to implement and the base protocol is already widely known/
used.

But implementation is an issue

| am always using XMPP with OMEMO, and personally my desktop client is Dino, while my mobile client is
Conversations.

Surprisingly, neither of them had support on User Tune; the supported clients usually do not have good
OMEMO implementation...

...50 | decided to implement it in modern clients. But here comes the question (again)...

Phase 2: Research

How do | know what is playing?

The challenge

XMPP clients doesn't play music.
Lollypop does. VLC does. Firefox does.

How do | ask them what's playing?

Then | realised...

When | play a song regardless of the app | used, its structured details and controls appear in the system tray's
PulseAudio menu.

|, mem_ swapl net 19g1s8d X R = [i\k
W
L |

The Sentinel
*s Judas Priest e II P

So, there must be a system wide API!

After a little research

Platform API
GNU/BSD MPRIS (DBus)
Android MediaSessionAPI

Windows SystemMediaTransportControls

Mac OS (private API)

GNU/Linux and Android are my main targets, for Dino | will use DBus.

MPRIS

Media Player Remote Interfacing Specification

Almost every media player speaks it:

o VLC

e Lollypop

e Firefox

e MPV

e DRM bloatware (Spotify etc.)

D-Bus: The Message Bus

VLC
org.mpris.MediaPlayer2.vic

Firefox

Lollypop

org.mpris.MediaPlayer2.Lollypop org.mpris.MediaPlayer2 firefox

Register

.-\),Bus SGSSiln T / g

Message Bus

1. Discover players
2. Subscribe to changes
3. Receive metadata

Dino
TuneManager

Which data | get from MPRIS?

e PlaybackStatus: playing, paused, stopped
e Metadata: artist, title, album, length, URL
e Signals: real time change notifications!

So, | do not need anything else for XEP-0118!

e MPRIS tells me what's playing
e D-Bus delivers the notifications
e The mapping to XEP-0118 is direct

Time to write code.

Phase 3: Implementation

Connecting everything together

The architecture

MPRIS Watcher
D-Bus integration

TuneManager
Coordinates everything

D-Bus
Session Bus

Component 1: XMPP Module

Tune : Object {
? artist { ; ;b
7?7 title { ; ;)
? source { ; ;)
length { ; ; = -1; }
? track { ; ;b
? uri { ; 5 U

And create the XML stanza.

Publishing via PEP

publish tune(XmppStream stream, Tune? tune) {
StanzaNode tune node = build tune node(tune);

Pubsub.PublishOptions options = Pubsub.PublishOptions()
.set persist items()
.set max items("1")
.set send last published item("on sub and presence")
.set access model (Pubsub.ACCESS MODEL PRESENCE);

yield stream.get module(Pubsub.Module.IDENTITY)
.publish(stream, , NS URI, "current", tune node, options);

Receiving Notifications

Module : XmppStreamModule {
tune received(XmppStream stream,
Jid jid, Tune? tune);

attach(XmppStream stream) {
stream.get module(Pubsub.Module.IDENTITY)
.add filtered notification(
stream, NS URI,
on pubsub item,
on pubsub retract,
on pubsub delete

Component 2: D-Bus Interfaces

[DBus (name = "org.freedesktop.DBus")]
FreedesktopDBus : Object {
[] list names() throws Error;
name_owner_ changed (name,
old owner,
new owner);

}

"org.mpris.MediaPlayer2.Player")]
MprisPlayer : Object {
playback status { ;)
HashTable< , Variant> metadata { 7}

DR GENE

Component 3: TuneManager

TuneManager : StreamInteractionModule, Object {
DEBOUNCE MS = 1000;

HashMap< , MprisPlayerWatcher> player watchers;
Tune? last published tune = ;
debounce source = 0;

contact tune changed(Account account,
Jid jid, Tune? tune);

The tricky parts

1. Multiple players: What if VLC **and** Firefox are open?

2. Rapid changes: Skip 5 tracks in 3 seconds?

3. Lifecycle: Players start, stop, crash

4, My skills: I'd not consider myself experienced C and Vala :)

Play - Publish

- Publish

- Publish

- Publish
Pause - Clear
Resume - Publish

The debouncing problem
Without it:

6 server requests within 5 seconds.

The solution: Wait and see

When something changes, wait 1 second.

If not

If somet

ning else changes, publish.

ning changes, reset the timer.

Result: One clean publish per user action.

Where to show the tune?
Options:

e Contact list (too crowded)
e Separate panel (too hidden)
e Conversation header (great)

Component 4: Ul Integration

update conversation topic() {
Tune? tune = tune manager.get contact tune(
conversation.account, conversation.counterpart);

(tune !=) {
conversation topic = "J " + tune.artist + " — " + tune.title;

The result

When chatting with someone playing music:

J MW MM L I ey WAL LA WO
symlink pointing to libqlite.so0.0.1 to /
fosdem2@07f.de

I Lollypop DBus ‘ ’ Dino (me) XMPP server ‘ Dno (friend) ’ Friend's screen

T) T) T) T I —
You start playing a song
PropertiesChanged
“Playng: Enjoy the Silence”
Signal recewed
Wait 1 second
(debounce)

Build XEP}O118 XML

—

Publish to PEP node

v

PubSub notification

Parse tgne data

L

Update conversation header
» Depeche Mode — Enjoy the Silence
1

You pause the music
PropertiesChanged
“Paused”
Signal recewved
Publish empty tune
PubSub notification
Clear tune display
I Lollypop DBus ‘ ’ Dino (me) ’ XMPP server ‘ Dno (friend) ’ Friend's screen

From player to your friend's screen.

Phase 4: Contribution

Making it usable for everyone

Implement XEP- @

0118: User Tune

L) 0 comments [£2] 0 reviews 14 files +825-1HEHENE

0 ooguz * January 30,2026 “O- 1 commit

The Present

Where are we now?

Compatibility

Client User tune OMEMO
Dino v (my patch) full
Psi+ v (built-in) ~ (partial)
Gajim ~ (plugin) v fu
Conversations X v fu
Monocles v (built-in) Vv fu
Monal X v fu

Now Dino supports both OMEMO and User tune together natively.

Why it s was not supported in new clients?

e Mobile: APIs are restrictive

e Prioritization: "Nice to have" vs core features

e Awareness: Some people don't know the XEP exists
e Time has changed: We are not looking for it

Server support

Every modern server supports this.

e ejabberd
e Prosody
e Metronome

No extra configuration needed since it uses PEP. But still, public servers may have different configurations, I've
tried on 07f.de

Next steps

Get the PR merged into Dino

Make improvements on Dino (app selection etc.)
Conversations will be my next target

Encourage other clients to implement

Encourage people to use and contribute to XMPP!

Try it yourself!

The patch is available right now.

1. Clone the repo (my fork @ GH) -> ooguz/dino
2. Build: meson compile -C build

3. Enable sharing in preferences

4. Play music!

Let's bring it back

The "Now Playing" feature brought joy in the 2000s.

It can bring joy again.

Thank You!

> Now playing: The Audience - Questions

ozcan@oyd.org.tr
https://ooguz.dev
Ox2D33E2BD3D9/75818
0oo0@5222.de (XMPP+OMEMO)

mailto:ozcan@oyd.org.tr
https://ooguz.dev/
mailto:oo@5222.de
mailto:ozcan@oyd.org.tr
https://ooguz.dev/
mailto:oo@5222.de

