ISOVALENT

now part of cIsco

eBPF Hookpoint Gotchas: I
Why Your Program Fires (or Falis) in Unexpected Ways

N

. . ale
Chris Tarazi, Sr. Staff Software Engineer o0
Donia Chaiehloudj, Software Engineer and Community o

Overview

e Tracing hookpoint overview

e Generic gotchas:
e Kernel versions
e Different architectures
e Performance

e uprobe dynamic links gotchas
o kprobe/uprobe inlining gotchas
 Nested executions gotchas

© 2024 Isovalent. All Rights Reserved. |SOV{'}J;E§I

Tracing hookpoint overview

Hookpoint Stability Kerr_1e| Mechanism Use case
version
kprobe *Any kernel function No guarantees 26.9 Various Dynamic debugging,
entry / exit, offsets (interrupt-based, kernel internals

optimization exists)

uprobe Userspace function No guarantees 3.5 Same as kprobe Dynamic debugging,
entry / exit, offsets (userspace traps application internals

into kernel)

fprobe Function entry / exit Same as kprobe/uprobe | 5.5 ftrace (NOP More efficient kernel
patching + function tracing
trampoline)

tracepoint Kernel static points Designed to not break 2.6.28 NOP patching Production tracing and

(exceptions possible) performance accounting

*Inlined functions, blacklisted functions, or functions marked as notrace are excluded from probes.

© 2024 Isovalent. All Rights Reserved. ISOVALENT 3

now part of cIsco

Hookpoints performance overview

Empty probe attached:
Case nsfop Overheadnsfop Overhead percent
no probe attached 117 0 0%
tracepoint empty 132 15 13%
fentry empty 141 24 21%
kprobe empty 254 137 17% HOOprint ranking
Probe with a simple map increment attached: A v tra C e p OI ﬂtS
Case nsfop Overhead nsfop Overhead percent v
no probe attached 17 0 0% * w fp ro b e S .
—— 35 30% * & Kkprobes (&% slow due to interrupt-based implementation)
fentry simple 159 42 36%
kprobe simple 277, 160 136%
Probe with a complex map increment attached:
Case nsfop Overhead nsfop Overhead percent ¢ N Ote . . .
o overhead depends on whether function is in the hot path or
no probe attached 17 0 0% n Ot
tracepoint complex 213 96 82% . o
o overhead may not be direct translation to system slowdown
fentry complex 220 103 88%
kprobe complex 346 229 196%

source: https://mastodon.ivan.computer/@mastodon/110737250286611183

© 2024 Isovalent. All Rights Reserved. ISOVALENT 4

now part of cIsco

https://mastodon.ivan.computer/@mastodon/110737250286611183

Gotcha #1
Kernel

versions

LENT

Gotcha #1: Kernel versions

kprobes, fprobes have no stability guarantee:

© 2024 Isovalent. All Rights Reserved. ISOV{'}WI;,QEJ:.{I

Gotcha #1: Kernel versions

kprobes, fprobes have no stability guarantee:

e kernel internal functions can change with any new release:
o function is renamed. removed, inlined: Failed to attach because the symbol not found
o function arguments changed, struct field changed: Reads the wrong argument - garbage data

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #1: Kernel versions

kprobes, fprobes have no stability guarantee:

e kernel internal functions can change with any new release:
o function is renamed. removed, inlined: Failed to attach because the symbol not found
o function arguments changed, struct field changed: Reads the wrong argument - garbage data
e Alternatives
o Use tracepoints which are more reliable if possible
m Statically defined instrumentation points added by kernel developers
m Guaranteed stable ABI: arguments are documented and maintained
m # cat /sys/kernel/debug/tracing/available_events

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #1: Kernel versions

kprobes, fprobes have no stability guarantee:

e kernel internal functions can change with any new release:
o function is renamed: “Failed to attach: symbol not found”
o function is removed: “Attached: 0 events”
o function inlined: “Failed to attach: symbol not found”
o function arguments changed: “Reads wrong argument: garbage data”
e Alternatives
o Use tracepoints which are more reliable if possible
m Statically defined instrumentation points added by kernel developers
m Guaranteed stable ABI: arguments are documented and maintained
m # cat /sys/kernel/debug/tracing/available_events

Q: What if there is no tracepoint for the function you want to cover, what is your option?

Hardcode the function name and hope it doesn't change
Write separate BPF programs for each kernel version
Use CO-RE with BTF for automatic adaptation

Abandon eBPF and use kernel modules instead

COw>

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #1: Kernel versions

kprobes, fprobes have no stability guarantee:

e kernel internal functions can change with any new release:
o function is renamed: “Failed to attach: symbol not found”
o function is removed: “Attached: 0 events”
o function inlined: “Failed to attach: symbol not found”
o function arguments changed: “Reads wrong argument: garbage data”
e Alternatives
o Use tracepoints which are more reliable if possible
m Statically defined instrumentation points added by kernel developers
m Guaranteed stable ABI: arguments are documented and maintained
m # cat /sys/kernel/debug/tracing/available_events

Q: What if there is no tracepoint for the function you want to cover, what is your option?

Hardcode the function name and hope it doesn't change
Write separate BPF programs for each kernel version
Use CO-RE with BTF for automatic adaptation

Abandon eBPF and use kernel modules instead

o0 w>»

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #1: Kernel versions

kprobes, fprobes have no stability guarantee:

e kernel internal functions can change with any new release:
o function is renamed: “Failed to attach: symbol not found”
o function is removed: “Attached: 0 events”
o function inlined: “Failed to attach: symbol not found”
o function arguments changed: “Reads wrong argument: garbage data”
e Alternatives
o Use tracepoints which are more reliable if possible
m Statically defined instrumentation points added by kernel developers
m Guaranteed stable ABI: arguments are documented and maintained

m # cat /sys/kernel/debug/tracing/available_events
o CO-RE (Compile Once Run Everywhere) with BTF

m CO-RE = BPF programs adapt to kernel at load time
m BTF (BPF Type Format) = Type information embedded in kernel

e.g: bpftool btf dump file /sys/kernel/btf/vmlinux > vmlinux.h)
m Relocations = libbpf adjusts offsets automatically

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

L

Gotcha #2

Architectures

Gotcha #2: Different architectures

kprobes have an unfriendly interface: the context passed to a kprobe program is struct pt_regs which is a struct representing the
registers. It stores the function parameters.

e Same BPF code behaves differently on x86_64 vs arm64:
o kprobe
m different registers (RDI vs XO0)

© 2024 Isovalent. All Rights Reserved. ISOVALENT 13

now part of cIsco

Gotcha #2: Different architectures

kprobes have an unfriendly interface: the context passed to a kprobe program is struct pt_regs which is a struct representing the
registers. It stores the function parameters.

e Same BPF code behaves differently on x86_64 vs arm64:
o kprobe
m different registers (RDI vs XO0)
e Alternatives
o Use other hook points: fprobes, tracepoints (no raw_tracepoints)
o libbpf provides helpers for access (tools/lib/bpf/bpf_tracing.h)

© 2024 Isovalent. All Rights Reserved. ISOVALENT 14

now part of cIsco

https://elixir.bootlin.com/linux/v5.18.1/source/tools/lib/bpf/bpf_tracing.h

Gotcha #3
Dynamic Links

Gotcha #3: uprobe dynamic links

// libmath.c
int add(int a, int b) {
return a + b;

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

© 2024 Isovalent. All Rights Reserved. |SOV{‘}W|;E!;{I

16

Gotcha #3: uprobe dynamic links

// libmath.c
int add(int a, int b) {
return a + b;

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

// Attach uprobe to add()

sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg®, argil); }'

Symbhol table:

| |
| add() > offset 0x1140 | ¢ Probe attaches HERE
| |

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

17

Gotcha #3: uprobe dynamic links

// libmath.c === Running main program ===

int add(int a, int b) { LD_LIBRARY_PATH=. ./main
return a + b; add called: 2 + 3

} Result: 5

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

// Attach uprobe to add()

sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg®, argil); }'

Symbhol table:

| |
| add() > offset 0x1140 | ¢ Probe attaches HERE
| |

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

18

Gotcha #3: uprobe dynamic links

// libmath.c === Running main program ===

int add(int a, int b) { LD_LIBRARY_PATH=. ./main
return a + b; add called: 2 + 3

} Result: 5

// main.c: loads, attaches and runs add():

int result = add(2, 3); // bpftrace output

printf("Result: %d\n", result); sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg@, argl); }'

// Attach uprobe to add() Attaching 1 probe...

sudo bpftrace -e 'uprobe:./libmath.so:add { uprobe: add(2, 3)

printf("uprobe: add(%d, %d)\n", arg®, argil); }'

Symbhol table:

| |
| add() > offset 0x1140 | ¢ Probe attaches HERE
| |

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

19

Gotcha #3: uprobe dynamic links
Update library

// libmath.c

// Insert new functions

int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom

int add(int a, int b) { return a + b; }

© 2024 Isovalent. All Rights Reserved. |SOV{'}W|;E!;{I

20

Gotcha #3: uprobe dynamic links

Update library

// libmath.c

// Insert new functions

int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom

int add(int a, int b) { return a + b; }

© 2024 Isovalent. All Rights Reserved.

== Running main program ===
LD_LIBRARY_PATH=. ./main

add called: 2 + 3

Result: 5

// bpftrace output

sudo bpftrace -e 'uprobe:./libmath.so:add ({
printf("uprobe: add(%d, %d)\n", arg@, argl); }'

Attaching 1 probe...
uprobe: add(2, 3)

ISOVALENT

now part of cIsco

21

Gotcha #3: uprobe dynamic links
Update library

== Running main program ===

// libmath.c LD_LIBRARY_PATH=. ./main
// Insert new functions add called: 2 + 3
int subtract(int a, int b) { return a - b; } Result: 5

int multiply(int a, int b) { return a * b; }

// add function is now at the bottom

int add(int a, int b) { return a + b; } // bpftrace output
sudo bpftrace -e 'uprobe:./libmath.so:add ({
printf("uprobe: add(%d, %d)\n", arg@, argl); }'
Attaching 1 probe...
uprobe: add(2, 3)

Q: Your uprobe is tracing add(). A colleague updates libmath.c and adds nhew functions. You run your program
again. What do you see?

add(2, 3) - everything works fine

subtract(2, 3) - probe fires on wrong function
Nothing - probe silently stops working
None of the above

CoOow>»

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

22

Gotcha #3: uprobe broken dynamic links -

Update library

// libmath.c

// Insert new functions

int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom

int add(int a, int b) { return a + b; }

== Running main program ===
LD_LIBRARY_PATH=. ./main

add called: 2 + 3

Result: 5

// bpftrace output

sudo bpftrace -e 'uprobe:./libmath.so:add ({
printf("uprobe: add(%d, %d)\n", arg@, argl); }'

Attaching 1 probe...
uprobe: add(2, 3)

Q: Your uprobe is tracing add(). A colleague updates libmath.c and adds nhew functions. You run your program

again. What do you see?

add(2, 3) - everything works fine

subtract(2, 3) - probe fires on wrong function
Nothing - probe silently stops working
None of the above

o0 w>

© 2024 Isovalent. All Rights Reserved.

ISOVALENT

now part of cIsco

23

Gotcha #3: uprobe broken dynamic links -
Update library

== Running main program ===

// libmath. so LD_LIBRARY_PATH=. ./main
// Insert new functions add called: 2 + 3
int subtract(int a, int b) { return a - b; } Result: 5

int multiply(int a, int b) { return a * b; }
// add function is now at the bottom
int add(int a, int b) { return a + b; } // bpftrace output

sudo bpftrace -e 'uprobe:./libmath.so:add ({
printf("uprobe: add(%d, %d)\n", arg@, argl); }'

Attaching 1 probe...
Symbol table AFTER update: uprobe: add(2, 3)

| |
| subtract > offset 0x1140 | ¢ Probe still points here! X

| multiply > offset 0x1180 |

| add > offset 0x11c® | ¢ add() is now HERE
l |

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #3: uprobe broken dynamic links
Conclusion

e Problem
o Library recompiled/updated, uprobe are attached to the old offset
e Inproduction:
o Library updates are rare... but they happen (security patches!)
o your monitoring may silently break without warning
e Solutions:
o Monitor for file changes (inotifywait)
o Use a supervisor program that monitors updates to the relevant shared libraries to
re-attach your uprobes after updates

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

25

Gotcha #4:
uprobe/kprob e

LENT

w part of CIsco

27

What is Inlining is an optimization

o e o where a function call is
inflinin g ? replaced with the actual code

of the function itself at the
point of call.

Gotcha #4: kprobe/uprobe inlining

// target.c

#include <stdio.h>
#include <stdlib.h>

int add(int a, int b) {

return a + b;
¥

int main(int argc, char *argv[]) {
int x = atoi(argv[1]);

if (x < 5) {
printf("Usage: %d <number>\n", x);
return 0O;

}

int result = add(x, 10);
printf("add(%d, 10) = %d\n", x, result);

return O;

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

29

Gotcha #4: kprobe/uprobe inlining

// target.c Compilation without any optimisation:

#include <stdio.h> # gcc -g -00 -o target_00 target.c
#include <stdlib.h>

Disassembled program, symbol of the function is present:

int add(int a, int b) {
return a + b: # nm target_00 | grep add

} 00000000000007d8 T add

int main(int argc, char *argv[]) {
int x = atoi(argv[1]);

if (x < 5) {
printf("Usage: %d <number>\n", x);
return 0O;

}

int result = add(x, 10);
printf("add(%d, 10) = %d\n", x, result);

return O;

© 2024 Isovalent. All Rights Reserved. ISOVALENT 30

now part of cIsco

Gotcha #4: kprobe/uprobe inlining

// target.c Compilation without any optimisation:

#include <stdio.h> # gcc -g -00 -o target_00 target.c
#include <stdlib.h>

Disassembled program, symbol of the function is present:

int add(int a, int b) {
return a + b; # nm target_00 | grep add

} 00000000000007d8 T add

int main(int argc, char *argv[]) {

int x = atoiCargv[1]); Compilation with a level of optimisation O2:

gcc -g -02 -0 target_02 target.c

if (x < 5) {
printf("Usage: %d <number>\n", x);
return O;

}

int result = add(x, 10);
printf("add(%d, 10) = %d\n", x, result);

return O;

© 2024 Isovalent. All Rights Reserved. ISOVALENT 31

now part of cIsco

Gotcha #4: kprobe/uprobe inlining

// target.c Compilation without any optimisation:

#include <stdio.h> # gcc -g -00 -o target_00 target.c
#include <stdlib.h>

)) . Disassembled program, symbol of the function is present:
int add(int a, int b) {

. # nm target_00 | grep add
t + b;
y return @ 00000000000007d8 T add

int main(int argc, char *argv[]) {

int x = atoi(argv[1]); Compilation with a level of optimisation 02::

gcc -g -02 -o target_02 target.c

if (x < 5) {
printf(;Usage: %d <number>\n", x); Disassembled program, symbol of the function is present:
return 0;

} # nm target_02 | grep add

0000000000000860 T add

int result = add(x, 10);
printf("add(%d, 10) = %d\n", x, result);

return O;

© 2024 Isovalent. All Rights Reserved. ISOVALENT 32

now part of cIsco

Demo
selective

LENT

I should be able to attach to
add() function in both cases:
without and with
optimisation?!

33

Gotcha #4: kprobe/uprobe selective inlining

1. Build non-optimised and optimised versions

gcc -g -00 -o target_00 target.c
gcc -g -02 -o target_02 target.c

3. Trace 00 (no optimization).

Terminal 1:

sudo bpftrace -e 'uprobe:./target_00:addf {
printf("addf called!\n"); }'

Terminal 2:
./target_00 3
./target_00 10

< 5:
>= 5:

early return

X
X calls addf

Result: "addf called!" [

© 2024 Isovalent. All Rights Reserved.

2. Check symbols - addf exists in BOTH binaries!
nm target_00 | grep addf
0000000000000760 T addf

nm target_02 | grep addf

0000000000000760 T addf ~ Symbol exists!

4. Trace 02 (optimized) - SAME probe, SAME
program

Terminal 1:

sudo bpftrace -e 'uprobe:./target_02:addf {
printf("addf called!\n"); }'

Terminal 2:

./target_02 3 # nothing

./target_02 10 # nothing!

Result: SILENCE X (function inlined)

ISOVALENT

now part of cIsco

34

Gotcha #4: kprobe/uprobe selective inlining

5. Compare disassembly - WHY? # 6. Solution: Attach at offset (uprobe/kprobe)
00: main CALLS addf # Find where addf is inlined:

objdump -d target_00 | grep -A 15 "<main>:" objdump -d target_02

.. # main at Ox6cHO, "add wO,wl,#06xa" at Ox6e8

bl <addf> — BRANCH to addf function # offset = Ox6e8-0x6cH = 0Ox28

02: main has addf INLINED sudo bpftrace -e 'uprobe:./target_02:main+0x28 {
objdump -d target_02 | grep -A 15 "<main>:" printf("Hit inlined addf!\n"); }'

#

add we, we, #0xa ~ This IS addf(x,10), no # Now ./target_02 10 triggers: "Hit inlined addf!" [4
branch!

© 2024 Isovalent. All Rights Reserved. ISOVALENT 35

now part of cIsco

Gotcha #4: kprobe/uprobe selective inlining

Disassembled binary

No optimisation
objdump -d -S --disassemble=main ./target_00

00600000000BB7f8 <main>:

/l ...
int main(int argc, char *argv[]) {
7€8: a%bd7bfd stp x29, x30, [sp, #-48]!
7fc: 910003fd mov X29, sp
800: b9001fel str we, [sp, #28]
804: f9000bel str x1, [sp, #16]
int x = atoi(argv[1]);
808: 9400bel ldr x0, [sp, #16]
80c: 91002000 add X0, x0, #0x8
810: 9400000 ldr x0, [x0]
814: 97ffff8f bl 650 <atoi@plt>
818: b9002bel str we, [sp, #40]
if (x < 5) {
8lc: b9402beb ldr we, [sp, #40]
/l ...
}
int result = addf(x, 10);
840: 52800141 mov wl, #0Oxa
844: b9402be0 ldr we, [sp, #40]
848: 97ffffe4 bl 7d8 <add>
84c: b9002fel str wl, [sp, #44]
//

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #4: kprobe/uprobe selective inlining

Disassembled binary

No optimisation
objdump -d -S --disassemble=main ./target_00

00600000000BB7f8 <main>:

/l ...
int main(int argc, char *argv[]) {
7€8: a%bd7bfd stp x29, x30, [sp, #-48]!
7fc: 910003fd mov X29, sp
800: b9001fel str we, [sp, #28]
804: f9000bel str x1, [sp, #16]
int x = atoi(argv[1]);
808: 9400bel ldr x0, [sp, #16]
80c: 91002000 add X0, x0, #0x8
810: 9400000 ldr x0, [x0]
814: 97ffff8f bl 650 <atoi@plt>
818: b9002bel str we, [sp, #40]
if (x < 5) {
8lc: b9402beb ldr we, [sp, #40]
/l ...
}
int result = addf(x, 10);
840: 52800141 mov wl, #0Oxa
844: b9402be0 ldr we, [sp, #40]
848: 97ffffe4 bl 7d8 <add>
84c: b9002fel str wl, [sp, #44]
//

© 2024 Isovalent. All Rights Reserved.

Optimised

objdump -d -S --disassemble=main ./target_02

00000000000006c0
/]

6c0: a2a0103e0
6c4: a9bf7bfd
//

if (x < 5) {
6e0: 7100101f
6e4: 5400012d
¥

//

6e8: 11002803
6ec: 90000001
6f0: 52800040
6f4: 91228021
6f8: 97ffffdé

int result =

//

ISOVALENT

now part of cIsco

<main>:

mov
stp

int x = atoi(argv[1]);

cmp
b.le

add
adrp
mov
add
bl

addf(x, 10);

int main(int argc, char =*argv[]) {

X0,

x29, x30, [sp, #-16]!

wo,
708

w3,
x1,
wo,
x1,
650

x1

#0x4
<main+0x48>

wO, #0Oxa

0 <__abi_tag-0x278>

#0x2
x1, #0x8a0

<__printf_chk@plt>

printf("addf(%d, 10) = %d\n", x, result);

/] #2

37

Gotcha #4: kprobe/uprobe selective inlining

Conclusion

The Problem

« Symbol exists in binary (visible with nm)

« But compiler inlined the function into the caller

« uprobe is attached on symbol but it never fires,
- executed instructions inlined in the caller

How to Detect Selective Inlining?
1. Show disassembly code
objdump -d s
1lvm-dwarfdump <your_binary>
2. Check if function is inlined
not inlined: bl <function> = real call
inlined: <instruction> - No b1, just the instructions directly

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

38

Gotcha #4: kprobe/uprobe selective inlining

Conclusion
The Problem Solution: Use uprobe or kprobe + offset
« Symbol exists in binary (visible with nm) 1. Look inside the caller function's disassembly

« But compiler inlined the function into the caller 2. Find the instruction that does the work (e.g., add for addition)
« uprobe is attached on symbol but it never fires, 3. Calculate offset: instr_address - fnc_start_address
— executed instructions inlined in the caller 4. Probe to the offset:

uprobe:binary:<caller_function>+<offset>

How to Detect Selective Inlining? — Fires when execution reaches that exact instruction
1. Show disassembly code
objdump -d s Caveats

1lvm-dwarfdump <your_binary> Il Multiple probes for all callsites of your function

Offsets change with every recompilation
Different compiler versions = different offsets
Not practical for production, useful for debugging

2. Check if functionis inlined
not inlined: b1 <function> - real call

inlined: <instruction> - No b1, just the instructions directly

© 2024 Isovalent. All Rights Reserved. ISOVALENT 39

now part of cIsco

Gotcha #5:

kprobe/uprob e
inlining

Gotcha #5: kprobe/uprobe inlining

// target.c
int allocate_resource(int size) {
if (size <= 0 || size >= 1024) return -1;

int resource_id = 0;

for (int i = 0; i < size; i++) { ... } // Loop
snprintf(log_buffer, ...); // String formatting
printf("%s\n", log_buffer); // I/0

return resource_id;

© 2024 Isovalent. All Rights Reserved. |SOV{’}W|;E!;{I

a1

Gotcha #5: kprobe/uprobe inlining

// target.c
int allocate_resource(int size) {
if (size <= 0 || size >= 1024) return -1;

int resource_id = 0;

for (int 1 = 0; i < size; i++) { ... } // Loop
snprintf(log_buffer, ...); // String formatting
printf("%s\n", log_buffer); // I/0

return resource_id;

Q: How many symbols does this generate when compiling with the following command: gcc -O2 -o target_gcc target.c ?

AV

B. 2

C. 10

D. wth are symbols?

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

Gotcha #5: kprobe/uprobe inlining

A typical scenario...

// target.c

int allocate_resource(int size) {
if (size <= 0 || size >= 1024) return -1;

int resource_id = 0;

for (int i = 0; i < size; i++) { ... } // Loop

snprintf(log_buffer,

)

// String formatting

printf("%s\n", log_buffer); // I/0

return resource_id;

Q: How many symbols does this generate when compiling with the following command: gcc -02 -o target_gcc target.c ?

A1

B. 2

C. 10

D. wth are symbols?

© 2024 Isovalent. All Rights Reserved.

$ nm target | grep -E "allocate_resource"
0O0000000000B0c40 T allocate_resource
0000000000000aed t allocate_resource.part.0

ISOVALENT

43

Gotcha #5: kprobe/uprobe partial inlining

GCC Optimisation

gcc's -fpartial-inlining (enabled by -02) splits functions based on execution patterns:

Fast path example:

- quick validation
- error path

Slow path example, extracted to .part:

- complex error handling
- complex processes

© 2024 Isovalent. All Rights Reserved.

Before:

allocate_resource()

if (size<0||size=1024)
return -1
for (i=0; i<size; i++)

resource_id += ..
snprintf(log_ buffer .)
printf("%s", log_buffer)
return resource_id

ISOVALENT

now part of cIsco

gcce

After:

allocate_resource()

if (size<0]||size=
return -1
jump to .part.0

1024)

Oxc20

allocate_resource.pa

for (i=0;
resource_id +=

printf("%s", log_bu
return resource_id

snprintf(log_buffer,

rt.o

i<size; i++)

.)
ffer)

Oxb90

44

Gotcha #5: kprobe/uprobe partial
inlining
GGG Optimisation

e Smaller hot/fast code - fits better in instruction cache

e Better branch prediction - CPU expects the fast path
e Reduced register pressure - cold/slow path variables don't pollute hot path

© 2024 Isovalent. All Rights Reserved. ISOV{}J;E’;{I

45

Gotcha #5: kprobe/uprobe partial
inlining
QWW@@W inlining

2. Check symbol table - see the split!
nm target_partial | grep allocate_resource
Oxc20 T allocate_resource

0xb90 t allocate_resource.part.o

3. Compare sizes
readelf -s target_partial | grep allocate_resource

4. Probe the wrapper (catches valid calls)

sudo bpftrace -e 'uprobe:./target_partial:allocate_resource {
printf("allocate_resource called\n");

} 1

5. Probe the error path

sudo bpftrace -e 'uprobe:./target_partial:allocate_resource.part.0 {
printf("error path called!\n");

} 1

6. Run the target and observe
./target_partial

© 2024 Isovalent. All Rights Reserved. ISOVALENT 46

now part of cIsco

Demo partial

LENT

So what about
kprobe/uprobe
attachments and symbols?

47

Gotcha #5: kprobe/uprobe partial inlining

Why probe misses events?

Program output:
./target

// Hot path
allocate_resource(-5) = -1

allocate_resource(9999) = -1
Allocated resource #2424 (size=100 bytes)
Total allocated so far: 100 bytes

// Cold path

allocate_resource(100) = 2424

Allocated resource #3024 (size=256 bytes)
Total allocated so far: 356 bytes

allocate_resource(256) = 3024

© 2024 Isovalent. All Rights Reserved.

PROBE: allocate_resource

$ sudo bpftrace -e 'uprobe:...:allocate_resource {...}'

Attaching 1 probe...
(nothing) ¢ SILENT! No events!

PROBE: allocate_resource.part.0

$ sudo bpftrace -e 'uprobe:...:allocate_resource.part.0 {...}'

Attaching 1 probe...
allocate_resource called with size=100
allocate_resource called with size=256

T ACTUAL ALLOCATIONS!

ISOVALENT 48

now part of cIsco

Gotcha #5: kprobe/uprobe partial inlining
Alternatives

« generally: look for alternative functions that has defined tracepoints (not 1:1 translation)
« uprobe: gcc -0O2 -fnopartial-inlining -0 <output> <your_program>

« kprobe:
e Kkernel recompilation in production is not common - identify symbols using tools

1. Check for suffixed symbols
nm <your_binary> | grep -E "\.(part|cold|isral|constprop)"

2. Verify with DWARF
1lvm-dwarfdump <your binary>| grep -A5 "<your_function>"

3. See source mapping
objdump -S <your_binary> | grep -A30 "<your_function>:"

© 2024 Isovalent. All Rights Reserved. |SOV{'}J;EJ§I

49

Gotcha #6:

missed
executions

LENT

Gotcha #6: missed executions

bpftool p | grep misses

5845: tracing name fentry_do_sys_openat?2 tag xxx gpl recursion_misses 9482
5847: Kkprobe name kprobe_do_sys_openat?2 tag xxx gpl recursion_misses 245
11066: tracepoint name tracepoint_lock_contention_begin_1 tag xxx gpl recursion_misses 25

© 2024 Isovalent. All Rights Reserved. ISOV{'}WI;E!:.{I 51

Gotcha #6: missed executions

bpftool p | grep misses

5845: tracing name fentry_do_sys_openat?2 tag xxx gpl recursion_misses 9482
5847: Kkprobe name Kprobe_do_sys_openat?2 tag xxx gpl recursion_misses 245
11066: tracepoint name tracepoint_lock_contention_begin_1 tag xxx gpl recursion_misses 25

Question: What does a "recursion_miss" counter represent?

A) The number of times the BPF program failed to execute due to missing kernel functions

B) How many times recursion protection prevented a program from running again while already executing
C) A count of recursive function calls that the BPF verifier rejected
D) The number of missed hardware events due to recursion in the perf subsystem

© 2024 Isovalent. All Rights Reserved. ISOV{'}WI;”EJ:.{I 52

Gotcha #6: missed executions

bpftool p | grep misses

5845: tracing name fentry_do_sys_openat?2 tag xxx gpl recursion_misses 9482
5847: Kkprobe name Kprobe_do_sys_openat?2 tag xxx gpl recursion_misses 245
11066: tracepoint name tracepoint_lock_contention_begin_1 tag xxx gpl recursion_misses 25

Question: What does a "recursion_miss" counter represent?

A) The number of times the BPF program failed to execute due to missing kernel functions

B) How many times recursion prevented the BPF program from running again while already executing
C) A count of recursive function calls that the BPF verifier rejected

D) The number of missed hardware events due to recursion in the perf subsystem

© 2024 Isovalent. All Rights Reserved. ISOVALENT 53

now part of cIsco

Gotcha #6: missed executions

e Dbe aware! your tracing programs may not always execute
e must assume that you will not always see all events in the kernel when using tracing programs (kprobes, fprobes, tracepoints)
e why you should care?

o security monitoring

o debugging
o elc

e we will discuss
o Kkprobes
o fprobes

o tracepoints

© 2024 Isovalent. All Rights Reserved. ISOVALENT 54

now part of cIsco

Gotcha #6: missed executions

e probes can miss executions in two different ways (only if Example 1

on the sam? CPU) do_sys_openat2() [kprobe attached, in progress]
a. recursion of the program

. L~ bpf_trace_printk
b. nested executions of any other eBPF programs e e Q
L spin_Tlock(trace_printk_lock) [contention occurs]

L contention_begin [tracepoint BPF prog fires]
e how does a probe recurse?

; . i L~ bpf_trace_printk()
a. aprobe on a function which calls another function L spin_lock(t intk_lock)
with another probe attached — don't do this! SIPLN EEL PR Bl T LEE

b. within a probe, interrupt fires in which the interrupt L contention_begin [tracepoint executes again]

handler calls the function that has a probe attached - L SKIPPED (nmissed++)
i |
random misses! Example 2:

do_sys_openat2() [probed, in progress]
L IRQ/NMI fires

L- 1RQ handler calls do_sys_openat2()
L SKIPPED (nmissed++)

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco 55

kprobes execution misses

e Kkprobe misses are handled at two different layers
o handler / attach layer
m Kprobe-specific recursion check
o BPF program execution (JIT)
m per CPU recursion check

© 2024 Isovalent. All Rights Reserved. ISOV{'}WI;E':,{I

56

kprobe: handler / attach layer

e 3 handlers
e int3 (breakpoint), fallback default behavior with:
m CONFIG_KPROBES_ON_FTRACE=n
and no optimization

© 2024 Isovalent. All Rights Reserved. ISOV{}J;E’;{I

57

kprobe: handler / attach layer

e 3 handlers
e int3 (breakpoint), fallback default behavior with:
m CONFIG_KPROBES_ON_FTRACE=n
and no optimization
« kprobe ftrace handler relies on:
m CONFIG_KPROBES_ON_FTRACE=y

© 2024 Isovalent. All Rights Reserved. |SOV{'}J;E§I

58

kprobe: handler / attach layer

e 3 handlers
e int3 (breakpoint), fallback default behavior with:
m CONFIG_KPROBES_ON_FTRACE=n
and no optimization
« kprobe ftrace handler relies on:
m CONFIG_KPROBES_ON_FTRACE=y
o ‘'opt”
m CONFIG_KPROBES_ON_FTRACE=n
m CONFIG_OPTPROBES=y (automatically enabled
x86/x86-64 & non-preemptive kernel)

m "debug.kprobes_optimization" sysctl = 1
Handler Optimized
int3 (breakpoint) No
kprobe ftrace, opt Yes
© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

59

kprobe: handler / attach layer

int handler(...) {

e 3handlers if (kprobe_running()) {

e int3 (breakpoint), fallback default behavior with: kppobes_inc_nmj_ssed_count(. e) ;
m CONFIG_KPROBES_ON_FTRACE=n }

and no optimization
« kprobe ftrace handler relies on:

m CONFIG_KPROBES_ON_FTRACE=y t
° Mopt"
m CONFIG_KPROBES_ON_FTRACE=n static inline struct kprobe *kprobe_running(void)
m CONFIG_OPTPROBES=y (automatically enabled {
x86/x86-64 & non—preemptlve lfernel) return __this_cpu_read(current_kprobe);
m '"debug.kprobes_optimization" sysctl = 1 y
Handler Optimized DECLARE_PER_CPU(struct kprobe *, current_kprobe);
int3 (breakpoint) No
kprobe ftrace, opt Yes
© 2024 Isovalent. All Rights Reserved. ISOV{'}WI;”EJ:.{I 60

kprobe: BPF program execution layer

e once the handlers proceed to invoke the BPF program, additional checks are made
e trace_call_bpf()
o called for kprobes programs
o checks if there is any BPF program running on the same CPU as the kprobe program

if (unlikely(__this_cpu_inc_return(bpf_prog_active) = 1)) {
/*
* since some bpf program is already running on this cpu,
% don't call into another bpf program (same or different)
* and don't send kprobe event into ring-buffer,
* so return zero here

*/

bpf_prog_inc_misses_counters(...);

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

61

fprobe: handler layer

e handler uses ftrace_test_recursion_trylock() int handler(...) {

o allows 1level of nesting per CPU, per execution
context

return;

© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

if (ftrace_test_recursion_trylock(...) < 0) {

62

fprobe: handler layer

e handler uses ftrace_test_recursion_trylock() int handler(...) {

o allows 1level of nesting per CPU, per execution
context

return;

f CPU \

exec ctx 1 (IRQ) exec ctx 2 (NMI)
fprobe A fprobe A’

_ J

A\
A\
© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco

if (ftrace_test_recursion_trylock(...) < 0) {

63

fprobe: handler layer

e handler uses ftrace_test_recursion_trylock() int handler(...) {
o allows 1level of nesting per CPU, per execution
oM if (ftrace_test_recursion_trylock(...) < 0) {
return;
}
}
4 CPU N 4 CPU N
exec ctx 1 (IRQ) exec ctx 2 (NMI)
fprobe A fprobe A’ exec ctx 1 (IRQ) exec ctx 1 (IRQ)
fprobe A fprobe A’

- / _ J

X 4

© 2024 Isovalent. All Rights Reserved. ISOVALENT 64

now part of cIsco

fprobe: BPF program execution layer

e BPF trampoline-based /* At BPF program execution layer */

e two entrypoints for trampoline if (unlikely(this_cpu_inc_return(*(prog->active)) !'= 1))
o __bpf_prog_enter_recur() {
o __bpf_prog_enter_sleepable_recur()

bpf_prog_inc_misses_counter(prog);
e per program check results in execution misses only for

self-recursion
1:1
fprobe — BPF trampoline
© 2024 Isovalent. All Rights Reserved. ISOVALENT

now part of cIsco 65

kprobe & fprobe comparison

e notice the difference between the checks:

o -> and (from previous slide)

Feature Kprobes Fprobes

Hook type basis Primarily interrupt-based (int3) or optimized (jump | BPF trampoline-based

ins.)

Handler layer check Misses if any other kprobe is running Allows 1 level of execution
nesting/recursion, misses on further
levels

BPF execution layer check Misses if any other BPF program is running on the | Misses only on self-recursion (exact

same CPU same fprobe program)

Nesting/recursion tolerance No nesting or recursion of any BPF program on the | Allows nesting of different BPF programs
same CPU on the same CPU. Only prevents
self-recursion

e tracepoints: similar to kprobes (per CPU check) except without the kprobe-specific restrictions
e raw tracepoints: similar to fprobes (per program check) since they are both trampoline-based except without the
fprobe-specific restrictions

© 2024 Isovalent. All Rights Reserved. ISOVALENT 66

now part of cIsco

BPF LSM hooks

SEC("kprobe/do_sys_openat2") SEC("1lsm/file_open")

int BPF_KPROBE(kprobe_do_sys_openat2, ..) { int BPF_PROG(lsm_file_open, struct file *file, ..)
{

}

»

SEC("fentry/do_sys_openat2")
int BPF_PROG(fentry_do_sys_openat2, ..) {

© 2024 Isovalent. All Rights Reserved. ISOVALENT 67

now part of cIsco

BPF LSM hooks

SEC("kprobe/do_sys_openat2") SEC("1lsm/file_open")

int BPF_KPROBE(kprobe_do_sys_openat2, ..) { int BPF_PROG(lsm_file_open, struct file *file, ..)
{

}

»

SEC("fentry/do_sys_openat2")
int BPF_PROG(fentry_do_sys_openat2, ..) {

-> otherwise, use tracepoints as they are the highest performance tracing hook type

© 2024 Isovalent. All Rights Reserved. ISOVALENT 68

now part of cIsco

hookpoint missed execution summary

Hookpoint Kprobe fprobe / trampoline tracepoint / perf event | raw tracepoint
When misses occur Per CPU: Per program: Per CPU: Per program:
e Any nested e Self nested e Nested BPF e Nested BPF
kprobes fprobe programs programs
e Nested BPF
programs
© 2024 Isovalent. All Rights Reserved. |SOVAW|;E!;{I

69

Key Takeways

Performance

e Use tracepoints where
possible

Kernel versions
e Use BTF and CORE
System Architecture

e use fprobe or tracepoint (no
raw) instead of kprobe
e libbpf helpers

- same code, # architectures

© 2024 Isovalent. All Rights Reserved.

kprobe/uprobe

Dynamic Links

e Library updated - offsets change
- probe breaks silently

e Re-attach probes after library
updates or use tracepoints

Selective Inlining

e Symbol exists but some call sites
are inlined

e Solution: Trace the caller function or
use offset

Partial Inlining

e Compiler splits function into
fast/slow paths, missing probes

e Solution: kprobe: probe the .part
suffix function, uprobe: compile
with no partial inlining

ISOVALENT

now part of cIsco

Missed Executions

kprobes

e Cannotrecurse

e Use optimized kprobes if
necessary, otherwise prefer
fprobes or tracepoints

fprobes, tracepoints
e Limited recursion
kprobes, fprobes, tracepoints

e [If cannot tolerate any missed
executions, consider BPF
LSM.

70

Thanks, Credits & Resources

| chris 7h
I'm curious if folks have run into any interesting eBPF hookpoint (kprobe, fprobe, tracepoint, cgroup, etc) gotchas or limitations that were surprising that you know of. Putting

together a talk for FOSDEM (with @Donia) so wanted to see if folks had any interesting real world examples to share.

Happy to make the proper attribution / credit as well.
)g:)j b i 5 +5 Derniére réponse aujourd’hui a 12 h 50

J, Thanks (in order of responses in the Slack thread) Martynas Pumputis, Mahé Tardy, Paul Chaignon, Daniel Borkman, Dylan Reimerink,
Jiri Olsa, Kornilios Kourtis, Kev Sheldrake.

J, Thanks as well to Masami Hiramatsu.

LPC Talks:

e Kernel func tracing in the face of compiler optimization (https://www.youtube.com/watch?v=kOYEsChbw-0)
e \Where have all the kprobes gone (https://www.youtube.com/watch?v=Erqy3rxDp4q)

Articles:

e Bouncing on trampolines to run eBPF programs (https://bootlin.com/blog/bouncing-on-trampolines-to-run-ebpf-programs/)

e eBPF Tracepoints, Kprobes, or Fprobes: Which One Should You Choose? (https://labs.iximiuz.com/tutorials/ebpf-tracing-46a570d1)
e An introduction to KProbes (https://Iwn.net/Articles/132196/)

e Linux Tracing Technologies Guide (https://docs.kernel.org/trace/)

LKML:
e kprobe: Support nested kprobes (https://Iwn.net/ml/linux-kernel/158894789510.14896.13461271606820304664.stgit@devnote?/)

© 2024 Isovalent. All Rights Reserved. ISOVALENT 71

now part of cIsco

https://www.youtube.com/watch?v=kOYEsChbw-0
https://www.youtube.com/watch?v=Erqy3rxDp4g
https://bootlin.com/blog/bouncing-on-trampolines-to-run-ebpf-programs/
https://labs.iximiuz.com/tutorials/ebpf-tracing-46a570d1
https://lwn.net/Articles/132196/
https://docs.kernel.org/trace/
https://lwn.net/ml/linux-kernel/158894789510.14896.13461271606820304664.stgit@devnote2/

