
© 2024 Isovalent. All Rights Reserved. 1

eBPF Hookpoint Gotchas:
Why Your Program Fires (or Fails) in Unexpected Ways

Chris Tarazi, Sr. Staff Software Engineer
Donia Chaiehloudj, Software Engineer and Community

© 2024 Isovalent. All Rights Reserved. 2

Overview

• Tracing hookpoint overview
• Generic gotchas:

• Kernel versions
• Different architectures
• Performance

• uprobe dynamic links gotchas
• kprobe/uprobe inlining gotchas
• Nested executions gotchas

© 2024 Isovalent. All Rights Reserved. 3

Tracing hookpoint overview

Inlined functions, blacklisted functions, or functions marked as notrace are excluded from probes.

Hookpoint Scope Stability Kernel
version Mechanism Use case

kprobe *Any kernel function
entry / exit, offsets

No guarantees 2.6.9 Various
(interrupt-based,
optimization exists)

Dynamic debugging,
kernel internals

uprobe Userspace function
entry / exit, offsets

No guarantees 3.5 Same as kprobe
(userspace traps
into kernel)

Dynamic debugging,
application internals

fprobe Function entry / exit Same as kprobe/uprobe 5.5 ftrace (NOP
patching +
trampoline)

More efficient kernel
function tracing

tracepoint Kernel static points Designed to not break
(exceptions possible)

2.6.28 NOP patching Production tracing and
performance accounting

© 2024 Isovalent. All Rights Reserved. 4

Hookpoints performance overview

Hookpoint ranking
• 🥇 tracepoints
• 🥈 fprobes
• 🥉 kprobes (🦥 slow due to interrupt-based implementation)

● note:
○ overhead depends on whether function is in the hot path or

not
○ overhead may not be direct translation to system slowdown

source: https://mastodon.ivan.computer/@mastodon/110737250286611183

https://mastodon.ivan.computer/@mastodon/110737250286611183

© 2024 Isovalent. All Rights Reserved. 5

Gotcha #1
Kernel
versions

© 2024 Isovalent. All Rights Reserved. 6

Gotcha #1 Kernel versions

kprobes, fprobes have no stability guarantee:

© 2024 Isovalent. All Rights Reserved. 7

Gotcha #1 Kernel versions

kprobes, fprobes have no stability guarantee:

● kernel internal functions can change with any new release:
○ function is renamed. removed, inlined: Failed to attach because the symbol not found
○ function arguments changed, struct field changed: Reads the wrong argument → garbage data

© 2024 Isovalent. All Rights Reserved. 8

Gotcha #1 Kernel versions

kprobes, fprobes have no stability guarantee:

● kernel internal functions can change with any new release:
○ function is renamed. removed, inlined: Failed to attach because the symbol not found
○ function arguments changed, struct field changed: Reads the wrong argument → garbage data

● Alternatives
○ Use tracepoints which are more reliable if possible

■ Statically defined instrumentation points added by kernel developers
■ Guaranteed stable ABI: arguments are documented and maintained
■ # cat /sys/kernel/debug/tracing/available_events

© 2024 Isovalent. All Rights Reserved. 9

Gotcha #1 Kernel versions

kprobes, fprobes have no stability guarantee:

● kernel internal functions can change with any new release:
○ function is renamed: “Failed to attach: symbol not foundˮ
○ function is removed: “Attached: 0 eventsˮ
○ function inlined: “Failed to attach: symbol not foundˮ
○ function arguments changed: “Reads wrong argument: garbage dataˮ

● Alternatives
○ Use tracepoints which are more reliable if possible

■ Statically defined instrumentation points added by kernel developers
■ Guaranteed stable ABI: arguments are documented and maintained
■ # cat /sys/kernel/debug/tracing/available_events

Q What if there is no tracepoint for the function you want to cover, what is your option?

A. Hardcode the function name and hope it doesn't change
B. Write separate BPF programs for each kernel version
C. Use CORE with BTF for automatic adaptation
D. Abandon eBPF and use kernel modules instead

© 2024 Isovalent. All Rights Reserved. 10

Gotcha #1 Kernel versions

kprobes, fprobes have no stability guarantee:

● kernel internal functions can change with any new release:
○ function is renamed: “Failed to attach: symbol not foundˮ
○ function is removed: “Attached: 0 eventsˮ
○ function inlined: “Failed to attach: symbol not foundˮ
○ function arguments changed: “Reads wrong argument: garbage dataˮ

● Alternatives
○ Use tracepoints which are more reliable if possible

■ Statically defined instrumentation points added by kernel developers
■ Guaranteed stable ABI: arguments are documented and maintained
■ # cat /sys/kernel/debug/tracing/available_events

Q What if there is no tracepoint for the function you want to cover, what is your option?

A. Hardcode the function name and hope it doesn't change
B. Write separate BPF programs for each kernel version
C. Use CORE with BTF for automatic adaptation
D. Abandon eBPF and use kernel modules instead

© 2024 Isovalent. All Rights Reserved. 11

Gotcha #1 Kernel versions

kprobes, fprobes have no stability guarantee:

● kernel internal functions can change with any new release:
○ function is renamed: “Failed to attach: symbol not foundˮ
○ function is removed: “Attached: 0 eventsˮ
○ function inlined: “Failed to attach: symbol not foundˮ
○ function arguments changed: “Reads wrong argument: garbage dataˮ

● Alternatives
○ Use tracepoints which are more reliable if possible

■ Statically defined instrumentation points added by kernel developers
■ Guaranteed stable ABI: arguments are documented and maintained
■ # cat /sys/kernel/debug/tracing/available_events

○ CORE Compile Once Run Everywhere) with BTF
■ CORE  BPF programs adapt to kernel at load time
■ BTF BPF Type Format) = Type information embedded in kernel

e.g: bpftool btf dump file /sys/kernel/btf/vmlinux > vmlinux.h)
■ Relocations = libbpf adjusts offsets automatically

© 2024 Isovalent. All Rights Reserved. 12

Gotcha #2
Architectures

© 2024 Isovalent. All Rights Reserved. 13

Gotcha #2 Different architectures

kprobes have an unfriendly interface: the context passed to a kprobe program is struct pt_regs which is a struct representing the
registers. It stores the function parameters.

● Same BPF code behaves differently on x86_64 vs arm64
○ kprobe

■ different registers RDI vs X0

© 2024 Isovalent. All Rights Reserved. 14

Gotcha #2 Different architectures

kprobes have an unfriendly interface: the context passed to a kprobe program is struct pt_regs which is a struct representing the
registers. It stores the function parameters.

● Same BPF code behaves differently on x86_64 vs arm64
○ kprobe

■ different registers RDI vs X0
● Alternatives

○ Use other hook points: fprobes, tracepoints (no raw_tracepoints)
○ libbpf provides helpers for access (tools/lib/bpf/bpf_tracing.h)

https://elixir.bootlin.com/linux/v5.18.1/source/tools/lib/bpf/bpf_tracing.h

© 2024 Isovalent. All Rights Reserved. 15

Gotcha #3
Dynamic Links

© 2024 Isovalent. All Rights Reserved. 16

Gotcha #3: uprobe dynamic links
*/ libmath.c
int add(int a, int b) {
 return a + b;
}

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

© 2024 Isovalent. All Rights Reserved. 17

Gotcha #3: uprobe dynamic links
*/ libmath.c
int add(int a, int b) {
 return a + b;
}

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

// Attach uprobe to add()
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'

Symbol table:
┌──────────────────────────┐
│ add() → offset 0x1140 │ ← Probe attaches HERE
└──────────────────────────┘

© 2024 Isovalent. All Rights Reserved. 18

Gotcha #3: uprobe dynamic links
*/ libmath.c
int add(int a, int b) {
 return a + b;
}

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

// Attach uprobe to add()
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'

Symbol table:
┌──────────────────────────┐
│ add() → offset 0x1140 │ ← Probe attaches HERE
└──────────────────────────┘

=== Running main program ===
LD_LIBRARY_PATH=. ./main
add called: 2 + 3
Result: 5

© 2024 Isovalent. All Rights Reserved. 19

Gotcha #3: uprobe dynamic links
=== Running main program ===
LD_LIBRARY_PATH=. ./main
add called: 2 + 3
Result: 5

// bpftrace output
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'
Attaching 1 probe...
uprobe: add(2, 3)

*/ libmath.c
int add(int a, int b) {
 return a + b;
}

// main.c: loads, attaches and runs add():
int result = add(2, 3);
printf("Result: %d\n", result);

// Attach uprobe to add()
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'

Symbol table:
┌──────────────────────────┐
│ add() → offset 0x1140 │ ← Probe attaches HERE
└──────────────────────────┘

© 2024 Isovalent. All Rights Reserved. 20

Gotcha #3: uprobe dynamic links
Update library
// libmath.c
// Insert new functions
int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom
int add(int a, int b) { return a + b; }

© 2024 Isovalent. All Rights Reserved. 21

Gotcha #3: uprobe dynamic links
Update library
// libmath.c
// Insert new functions
int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom
int add(int a, int b) { return a + b; }

=== Running main program ===
LD_LIBRARY_PATH=. ./main
add called: 2 + 3
Result: 5

// bpftrace output
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'
Attaching 1 probe...
uprobe: add(2, 3)

© 2024 Isovalent. All Rights Reserved. 22

Gotcha #3: uprobe dynamic links
Update library
// libmath.c
// Insert new functions
int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom
int add(int a, int b) { return a + b; }

=== Running main program ===
LD_LIBRARY_PATH=. ./main
add called: 2 + 3
Result: 5

// bpftrace output
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'
Attaching 1 probe...
uprobe: add(2, 3)

Q Your uprobe is tracing add(). A colleague updates libmath.c and adds new functions. You run your program
again. What do you see?

A. add(2, 3) - everything works fine
B. subtract(2, 3) - probe fires on wrong function
C. Nothing - probe silently stops working
D. None of the above

© 2024 Isovalent. All Rights Reserved. 23

Gotcha #3: uprobe broken dynamic links 󰺼
Update library
// libmath.c
// Insert new functions
int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom
int add(int a, int b) { return a + b; }

=== Running main program ===
LD_LIBRARY_PATH=. ./main
add called: 2 + 3
Result: 5

// bpftrace output
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'
Attaching 1 probe...
uprobe: add(2, 3)

Q Your uprobe is tracing add(). A colleague updates libmath.c and adds new functions. You run your program
again. What do you see?

A. add(2, 3) - everything works fine
B. subtract(2, 3) - probe fires on wrong function
C. Nothing - probe silently stops working
D. None of the above

© 2024 Isovalent. All Rights Reserved. 24

Gotcha #3: uprobe broken dynamic links 󰺼
Update library
// libmath.so
// Insert new functions
int subtract(int a, int b) { return a - b; }
int multiply(int a, int b) { return a * b; }
// add function is now at the bottom
int add(int a, int b) { return a + b; }

=== Running main program ===
LD_LIBRARY_PATH=. ./main
add called: 2 + 3
Result: 5

// bpftrace output
sudo bpftrace -e 'uprobe:./libmath.so:add {
printf("uprobe: add(%d, %d)\n", arg0, arg1); }'
Attaching 1 probe...
uprobe: add(2, 3)Symbol table AFTER update:

┌──────────────────────────┐
│ subtract → offset 0x1140 │ ← Probe still points here! ❌
│ multiply → offset 0x1180 │
│ add → offset 0x11c0 │ ← add() is now HERE
└──────────────────────────┘

© 2024 Isovalent. All Rights Reserved. 25

Gotcha #3: uprobe broken dynamic links 󰺼
Conclusion

● Problem
○ Library recompiled/updated, uprobe are attached to the old offset

● In production:
○ Library updates are rare... but they happen (security patches!
○ your monitoring may silently break without warning

● Solutions:
○ Monitor for file changes (inotifywait)
○ Use a supervisor program that monitors updates to the relevant shared libraries to

re-attach your uprobes after updates

© 2024 Isovalent. All Rights Reserved. 26

Gotcha #4
uprobe/kprob e
inlining

© 2024 Isovalent. All Rights Reserved. 27

What is
inlining?

© 2024 Isovalent. All Rights Reserved. 28

What is
inlining?

Inlining is an optimization
where a function call is
replaced with the actual code
of the function itself at the
point of call.

© 2024 Isovalent. All Rights Reserved. 29

Gotcha #4: kprobe/uprobe inlining
./ target.c

#include <stdio.h>
#include <stdlib.h>

int add(int a, int b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 int x = atoi(argv[1]);

 if (x < 5) {
 printf("Usage: %d <number>\n", x);
 return 0;
 }

 int result = add(x, 10);
 printf("add(%d, 10) = %d\n", x, result);

 return 0;
}

© 2024 Isovalent. All Rights Reserved. 30

Gotcha #4: kprobe/uprobe inlining
./ target.c

#include <stdio.h>
#include <stdlib.h>

int add(int a, int b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 int x = atoi(argv[1]);

 if (x < 5) {
 printf("Usage: %d <number>\n", x);
 return 0;
 }

 int result = add(x, 10);
 printf("add(%d, 10) = %d\n", x, result);

 return 0;
}

Compilation without any optimisation:
gcc -g -O0 -o target_O0 target.c

Disassembled program, symbol of the function is present:
nm target_O0 | grep add
00000000000007d8 T add

© 2024 Isovalent. All Rights Reserved. 31

Gotcha #4: kprobe/uprobe inlining

./ target.c

#include <stdio.h>
#include <stdlib.h>

int add(int a, int b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 int x = atoi(argv[1]);

 if (x < 5) {
 printf("Usage: %d <number>\n", x);
 return 0;
 }

 int result = add(x, 10);
 printf("add(%d, 10) = %d\n", x, result);

 return 0;
}

Compilation without any optimisation:
gcc -g -O0 -o target_O0 target.c

Disassembled program, symbol of the function is present:
nm target_O0 | grep add
00000000000007d8 T add

Compilation with a level of optimisation O2
gcc -g -O2 -o target_O2 target.c

© 2024 Isovalent. All Rights Reserved. 32

Gotcha #4: kprobe/uprobe inlining
./ target.c

#include <stdio.h>
#include <stdlib.h>

int add(int a, int b) {
 return a + b;
}

int main(int argc, char *argv[]) {
 int x = atoi(argv[1]);

 if (x < 5) {
 printf("Usage: %d <number>\n", x);
 return 0;
 }

 int result = add(x, 10);
 printf("add(%d, 10) = %d\n", x, result);

 return 0;
}

Compilation without any optimisation:
gcc -g -O0 -o target_O0 target.c

Disassembled program, symbol of the function is present:
nm target_O0 | grep add
00000000000007d8 T add

Compilation with a level of optimisation O2
gcc -g -O2 -o target_O2 target.c

Disassembled program, symbol of the function is present:
nm target_O2 | grep add
0000000000000860 T add

© 2024 Isovalent. All Rights Reserved. 33

Demo
selective
inlining

I should be able to attach to
add() function in both cases:
without and with
optimisation?!

© 2024 Isovalent. All Rights Reserved. 34

Gotcha #4: kprobe/uprobe selective inlining
1. Build non-optimised and optimised versions
gcc -g -O0 -o target_O0 target.c
gcc -g -O2 -o target_O2 target.c

2. Check symbols - addf exists in BOTH binaries!
nm target_O0 | grep addf
0000000000000760 T addf

nm target_O2 | grep addf
0000000000000760 T addf ← Symbol exists!

3. Trace O0 (no optimization).
Terminal 1:
sudo bpftrace -e 'uprobe:./target_O0:addf {
printf("addf called!\n"); }'

Terminal 2:
./target_O0 3 # x < 5: early return
./target_O0 10 # x >= 5: calls addf

Result: "addf called!" ✅

4. Trace O2 (optimized) - SAME probe, SAME
program
Terminal 1:
sudo bpftrace -e 'uprobe:./target_O2:addf {
printf("addf called!\n"); }'

Terminal 2:
./target_O2 3 # nothing
./target_O2 10 # nothing!
Result: SILENCE ❌ (function inlined)

© 2024 Isovalent. All Rights Reserved. 35

Gotcha #4: kprobe/uprobe selective inlining

5. Compare disassembly - WHY?
O0: main CALLS addf
objdump -d target_O0 | grep -A 15 "<main>:"
...
bl <addf> ← BRANCH to addf function

O2: main has addf INLINED
objdump -d target_O2 | grep -A 15 "<main>:"
...
add w0, w0, #0xa ← This IS addf(x,10), no
branch!

6. Solution: Attach at offset (uprobe/kprobe)
Find where addf is inlined:
objdump -d target_O2
main at 0x6c0, "add w0,w0,#0xa" at 0x6e8
offset = 0x6e8-0x6c0 = 0x28

sudo bpftrace -e 'uprobe:./target_O2:main+0x28 {
printf("Hit inlined addf!\n"); }'

Now ./target_O2 10 triggers: "Hit inlined addf!" ✅

© 2024 Isovalent. All Rights Reserved. 36

Gotcha #4: kprobe/uprobe selective inlining
Disassembled binary
No optimisation
objdump -d -S .-disassemble=main ./target_O0

00000000000007f8 <main.:
./ ...
int main(int argc, char *argv[]) {
 7f8: a9bd7bfd stp x29, x30, [sp, #-48]!
 7fc: 910003fd mov x29, sp
 800: b9001fe0 str w0, [sp, #28]
 804: f9000be1 str x1, [sp, #16]
 int x = atoi(argv[1]);
 808: f9400be0 ldr x0, [sp, #16]
 80c: 91002000 add x0, x0, #0x8
 810: f9400000 ldr x0, [x0]
 814: 97ffff8f bl 650 <atoi@plt>
 818: b9002be0 str w0, [sp, #40]

 if (x < 5) {
 81c: b9402be0 ldr w0, [sp, #40]
./ ...
 }

 int result = addf(x, 10);
 840: 52800141 mov w1, #0xa
 844: b9402be0 ldr w0, [sp, #40]
 848: 97ffffe4 bl 7d8 <add>
 84c: b9002fe0 str w0, [sp, #44]
./ ...

© 2024 Isovalent. All Rights Reserved. 37

Gotcha #4: kprobe/uprobe selective inlining
Disassembled binary
No optimisation
objdump -d -S .-disassemble=main ./target_O0

00000000000007f8 <main.:
./ ...
int main(int argc, char *argv[]) {
 7f8: a9bd7bfd stp x29, x30, [sp, #-48]!
 7fc: 910003fd mov x29, sp
 800: b9001fe0 str w0, [sp, #28]
 804: f9000be1 str x1, [sp, #16]
 int x = atoi(argv[1]);
 808: f9400be0 ldr x0, [sp, #16]
 80c: 91002000 add x0, x0, #0x8
 810: f9400000 ldr x0, [x0]
 814: 97ffff8f bl 650 <atoi@plt>
 818: b9002be0 str w0, [sp, #40]

 if (x < 5) {
 81c: b9402be0 ldr w0, [sp, #40]
./ ...
 }

 int result = addf(x, 10);
 840: 52800141 mov w1, #0xa
 844: b9402be0 ldr w0, [sp, #40]
 848: 97ffffe4 bl 7d8 <add>
 84c: b9002fe0 str w0, [sp, #44]
./ ...

Optimised
objdump -d -S .-disassemble=main ./target_O2

00000000000006c0 <main.:
./ ...
int main(int argc, char *argv[]) {
 6c0: aa0103e0 mov x0, x1
 6c4: a9bf7bfd stp x29, x30, [sp, #-16]!
./ ...
 int x = atoi(argv[1]);

 if (x < 5) {
 6e0: 7100101f cmp w0, #0x4
 6e4: 5400012d b.le 708 <main+0x48>
}

./ ...

 6e8: 11002803 add w3, w0, #0xa
 6ec: 90000001 adrp x1, 0 <._abi_tag-0x278>
 6f0: 52800040 mov w0, #0x2 ./ #2
 6f4: 91228021 add x1, x1, #0x8a0
 6f8: 97ffffd6 bl 650 <._printf_chk@plt>

 int result = addf(x, 10);
 printf("addf(%d, 10) = %d\n", x, result);
./ ...

© 2024 Isovalent. All Rights Reserved. 38

Gotcha #4: kprobe/uprobe selective inlining
Conclusion

The Problem
• Symbol exists in binary (visible with nm)
• But compiler inlined the function into the caller
• uprobe is attached on symbol but it never fires,

→ executed instructions inlined in the caller

How to Detect Selective Inlining?
1. Show disassembly code

objdump -d s
llvm-dwarfdump <your_binary>

2. Check if function is inlined
not inlined: bl <function> → real call
inlined: <instruction> → No bl, just the instructions directly

© 2024 Isovalent. All Rights Reserved. 39

Gotcha #4: kprobe/uprobe selective inlining
Conclusion

The Problem
• Symbol exists in binary (visible with nm)
• But compiler inlined the function into the caller
• uprobe is attached on symbol but it never fires,

→ executed instructions inlined in the caller

How to Detect Selective Inlining?
1. Show disassembly code

objdump -d s
llvm-dwarfdump <your_binary>

2. Check if function is inlined
not inlined: bl <function> → real call
inlined: <instruction> → No bl, just the instructions directly

Solution: Use uprobe or kprobe + offset
1. Look inside the caller function's disassembly
2. Find the instruction that does the work (e.g., add for addition)
3. Calculate offset: instr_address - fnc_start_address
4. Probe to the offset:

uprobe:binary><caller_function>+<offset>
→ Fires when execution reaches that exact instruction

Caveats
● ‼ Multiple probes for all callsites of your function
● Offsets change with every recompilation
● Different compiler versions = different offsets
● Not practical for production, useful for debugging

© 2024 Isovalent. All Rights Reserved. 40

Gotcha #5
kprobe/uprob e
inlining

© 2024 Isovalent. All Rights Reserved. 41

Gotcha #5: kprobe/uprobe inlining

// target.c
int allocate_resource(int size) {
 if (size <= 0 || size >= 1024) return -1;

 int resource_id = 0;
 for (int i = 0; i < size; i++) { ... } // Loop
 snprintf(log_buffer, ...); // String formatting
 printf("%s\n", log_buffer); // I/O
 return resource_id;
}

© 2024 Isovalent. All Rights Reserved. 42

// target.c
int allocate_resource(int size) {
 if (size <= 0 || size >= 1024) return -1;

 int resource_id = 0;
 for (int i = 0; i < size; i++) { ... } // Loop
 snprintf(log_buffer, ...); // String formatting
 printf("%s\n", log_buffer); // I/O
 return resource_id;
}

Q How many symbols does this generate when compiling with the following command: gcc O2 -o target_gcc target.c ?

A. 1
B. 2
C. 10
D. wth are symbols?

Gotcha #5: kprobe/uprobe inlining

© 2024 Isovalent. All Rights Reserved. 43

Gotcha #5: kprobe/uprobe inlining
A typical scenario...

// target.c
int allocate_resource(int size) {
 if (size <= 0 || size >= 1024) return -1;

 int resource_id = 0;
 for (int i = 0; i < size; i++) { ... } // Loop
 snprintf(log_buffer, ...); // String formatting
 printf("%s\n", log_buffer); // I/O
 return resource_id;
}

Q: How many symbols does this generate when compiling with the following command: gcc -O2 -o target_gcc target.c ?

A. 1
B. 2
C. 10
D. wth are symbols?

$ nm target | grep -E "allocate_resource"
0000000000000c40 T allocate_resource
0000000000000ae0 t allocate_resource.part.0

© 2024 Isovalent. All Rights Reserved. 44

Gotcha #5: kprobe/uprobe partial inlining
GCC Optimisation

Before: After:
┌───────────────────────────┐ ┌───────────────────────────┐
│ allocate_resource() │ │ allocate_resource() │ 0xc20
│ │ │ │
│ if (size>=0>|size>=1024) │ │ if (size>=0>|size>=1024) │
│ return -1 │ gcc │ return -1 │
│ │ → │ jump to .part.0 ─────┼──┐
│ for (i=0; i<size; i>+) │ └───────────────────────────┘ │
│ resource_id += >>. │ ┌───────────────────────────┐ │
│ snprintf(log_buffer,>>.) │ │ allocate_resource.part.0 │←─┘
│ printf("%s", log_buffer) │ │ │ 0xb90
│ return resource_id │ │ for (i=0; i<size; i>+) │
└───────────────────────────┘ │ resource_id += >>. │
 │ snprintf(log_buffer,>>.) │
 │ printf("%s", log_buffer) │
 │ return resource_id │
 └───────────────────────────┘

gcc's -fpartial-inlining (enabled by -O2) splits functions based on execution patterns:

Fast path example:
- quick validation
- error path

Slow path example, extracted to .part:
- complex error handling
- complex processes

© 2024 Isovalent. All Rights Reserved. 45

Gotcha #5: kprobe/uprobe partial
inlining
GCC OptimisationWhy does GCC do this?

● Smaller hot/fast code → fits better in instruction cache
● Better branch prediction → CPU expects the fast path
● Reduced register pressure → cold/slow path variables don't pollute hot path

© 2024 Isovalent. All Rights Reserved. 46

Gotcha #5: kprobe/uprobe partial
inlining
Demo Summary# 1. Build with partial inlining
make target_partial

2. Check symbol table - see the split!
nm target_partial | grep allocate_resource
0xc20 T allocate_resource
0xb90 t allocate_resource.part.0

3. Compare sizes
readelf -s target_partial | grep allocate_resource

4. Probe the wrapper (catches valid calls)
sudo bpftrace -e 'uprobe:./target_partial:allocate_resource {
 printf("allocate_resource called\n");
}'

5. Probe the error path
sudo bpftrace -e 'uprobe:./target_partial:allocate_resource.part.0 {
 printf("error path called!\n");
}'

6. Run the target and observe
./target_partial

© 2024 Isovalent. All Rights Reserved. 47

Demo partial
inlining

So what about
kprobe/uprobe
attachments and symbols?

© 2024 Isovalent. All Rights Reserved. 48

Gotcha #5: kprobe/uprobe partial inlining
Why probe misses events?

┌───┐
│ PROBE: allocate_resource │
├───┤
│ $ sudo bpftrace -e 'uprobe:>>.:allocate_resource {>>.}' │
│ │
│ Attaching 1 probe>>. │
│ (nothing) ← SILENT! No events! │
└───┘

┌───┐
│ PROBE: allocate_resource.part.0 │
├───┤
│ $ sudo bpftrace -e 'uprobe:>>.:allocate_resource.part.0 {>>.}' │
│ │
│ Attaching 1 probe>>. │
│ allocate_resource called with size=100 │
│ allocate_resource called with size=256 │
│ ↑ ACTUAL ALLOCATIONS! │
└───┘

Program output:

./target

./ Hot path
allocate_resource(-5) = -1

allocate_resource(9999) = -1
Allocated resource #2424 (size=100 bytes)
Total allocated so far: 100 bytes

./ Cold path
allocate_resource(100) = 2424
Allocated resource #3024 (size=256 bytes)
Total allocated so far: 356 bytes

allocate_resource(256) = 3024

© 2024 Isovalent. All Rights Reserved. 49

Gotcha #5: kprobe/uprobe partial inlining
Alternatives

• generally: look for alternative functions that has defined tracepoints (not 11 translation)
• uprobe: gcc O2 -fnopartial-inlining -o <output> <your_program>
• kprobe:

• kernel recompilation in production is not common → identify symbols using tools

1. Check for suffixed symbols
nm <your_binary> | grep -E "\.(part|cold|isra|constprop)"

2. Verify with DWARF
llvm-dwarfdump <your binary>| grep -A5 "<your_function>"

3. See source mapping
objdump -S <your_binary> | grep -A30 "<your_function>:"

© 2024 Isovalent. All Rights Reserved. 50

Gotcha #6
missed
executions

© 2024 Isovalent. All Rights Reserved. 51

Gotcha #6: missed executions

bpftool p | grep misses

5845: tracing name fentry_do_sys_openat2 tag xxx gpl recursion_misses 9482
5847: kprobe name kprobe_do_sys_openat2 tag xxx gpl recursion_misses 245
11066: tracepoint name tracepoint_lock_contention_begin_1 tag xxx gpl recursion_misses 25

© 2024 Isovalent. All Rights Reserved. 52

Gotcha #6: missed executions

Question: What does a "recursion_miss" counter represent?

A The number of times the BPF program failed to execute due to missing kernel functions
B How many times recursion protection prevented a program from running again while already executing
C A count of recursive function calls that the BPF verifier rejected
D The number of missed hardware events due to recursion in the perf subsystem

bpftool p | grep misses

5845: tracing name fentry_do_sys_openat2 tag xxx gpl recursion_misses 9482
5847: kprobe name kprobe_do_sys_openat2 tag xxx gpl recursion_misses 245
11066: tracepoint name tracepoint_lock_contention_begin_1 tag xxx gpl recursion_misses 25

© 2024 Isovalent. All Rights Reserved. 53

Question: What does a "recursion_miss" counter represent?

A The number of times the BPF program failed to execute due to missing kernel functions
B How many times recursion prevented the BPF program from running again while already executing
C A count of recursive function calls that the BPF verifier rejected
D The number of missed hardware events due to recursion in the perf subsystem

bpftool p | grep misses

5845: tracing name fentry_do_sys_openat2 tag xxx gpl recursion_misses 9482
5847: kprobe name kprobe_do_sys_openat2 tag xxx gpl recursion_misses 245
11066: tracepoint name tracepoint_lock_contention_begin_1 tag xxx gpl recursion_misses 25

Gotcha #6: missed executions

© 2024 Isovalent. All Rights Reserved. 54

Gotcha #6: missed executions

● be aware! your tracing programs may not always execute
● must assume that you will not always see all events in the kernel when using tracing programs (kprobes, fprobes, tracepoints)
● why you should care?

○ security monitoring
○ debugging
○ etc

● we will discuss
○ kprobes
○ fprobes
○ tracepoints

© 2024 Isovalent. All Rights Reserved. 55

Gotcha #6: missed executions

Example 1
do_sys_openat2() [kprobe attached, in progress]

└─ bpf_trace_printk()

 └─ spin_lock(trace_printk_lock) [contention occurs]

 └─ contention_begin [tracepoint BPF prog fires]

 └─ bpf_trace_printk()

 └─ spin_lock(trace_printk_lock)

 └─ contention_begin [tracepoint executes again]

 └─ SKIPPED (nmissed=+)

Example 2
do_sys_openat2() [probed, in progress]

 └─ IRQ/NMI fires

 └─ IRQ handler calls do_sys_openat2()

 └─ SKIPPED (nmissed=+)

● probes can miss executions in two different ways (only if
on the same CPU)
a. recursion of the program
b. nested executions of any other eBPF programs

● how does a probe recurse?
a. a probe on a function which calls another function

with another probe attached – donʼt do this!
b. within a probe, interrupt fires in which the interrupt

handler calls the function that has a probe attached –
random misses!

© 2024 Isovalent. All Rights Reserved. 56

kprobes execution misses

● kprobe misses are handled at two different layers
○ handler / attach layer

■ kprobe-specific recursion check
○ BPF program execution JIT

■ per CPU recursion check

© 2024 Isovalent. All Rights Reserved. 57

kprobe: handler / attach layer

● 3 handlers
• int3 (breakpoint), fallback default behavior with:

■ CONFIG_KPROBES_ON_FTRACE=n
and no optimization

© 2024 Isovalent. All Rights Reserved. 58

kprobe: handler / attach layer

● 3 handlers
• int3 (breakpoint), fallback default behavior with:

■ CONFIG_KPROBES_ON_FTRACE=n
and no optimization

• kprobe ftrace handler relies on:
■ CONFIG_KPROBES_ON_FTRACE=y

© 2024 Isovalent. All Rights Reserved. 59

kprobe: handler / attach layer

● 3 handlers
• int3 (breakpoint), fallback default behavior with:

■ CONFIG_KPROBES_ON_FTRACE=n
and no optimization

• kprobe ftrace handler relies on:
■ CONFIG_KPROBES_ON_FTRACE=y

• “optˮ
■ CONFIG_KPROBES_ON_FTRACE=n
■ CONFIG_OPTPROBES=y (automatically enabled

x86/x8664 & non-preemptive kernel)
■ "debug.kprobes_optimization" sysctl == 1

Handler Optimized

int3 (breakpoint) No

kprobe ftrace, opt Yes

© 2024 Isovalent. All Rights Reserved. 60

kprobe: handler / attach layer

● 3 handlers
• int3 (breakpoint), fallback default behavior with:

■ CONFIG_KPROBES_ON_FTRACE=n
and no optimization

• kprobe ftrace handler relies on:
■ CONFIG_KPROBES_ON_FTRACE=y

• “optˮ
■ CONFIG_KPROBES_ON_FTRACE=n
■ CONFIG_OPTPROBES=y (automatically enabled

x86/x8664 & non-preemptive kernel)
■ "debug.kprobes_optimization" sysctl == 1

int handler(...) {
…
if (kprobe_running()) {

kprobes_inc_nmissed_count(...);
}
…

}

static inline struct kprobe *kprobe_running(void)
{

return ._this_cpu_read(current_kprobe);
}

DECLARE_PER_CPU(struct kprobe *, current_kprobe);Handler Optimized

int3 (breakpoint) No

kprobe ftrace, opt Yes

© 2024 Isovalent. All Rights Reserved. 61

kprobe: BPF program execution layer

● once the handlers proceed to invoke the BPF program, additional checks are made
● trace_call_bpf()

○ called for kprobes programs
○ checks if there is any BPF program running on the same CPU as the kprobe program

if (unlikely(._this_cpu_inc_return(bpf_prog_active) .= 1)) {
**
 * since some bpf program is already running on this cpu,
 * don't call into another bpf program (same or different)
 * and don't send kprobe event into ring-buffer,
 * so return zero here
 */
…
bpf_prog_inc_misses_counters(...);
…

}

© 2024 Isovalent. All Rights Reserved. 62

fprobe: handler layer

● handler uses ftrace_test_recursion_trylock()
○ allows 1 level of nesting per CPU, per execution

context

int handler(...) {
…
if (ftrace_test_recursion_trylock(...) < 0) {

return;
}
…

}

© 2024 Isovalent. All Rights Reserved. 63

fprobe: handler layer

● handler uses ftrace_test_recursion_trylock()
○ allows 1 level of nesting per CPU, per execution

context

int handler(...) {
…
if (ftrace_test_recursion_trylock(...) < 0) {

return;
}
…

}

CPU

exec ctx 1 IRQ
fprobe A

exec ctx 2 NMI
fprobe Aʼ

❌

© 2024 Isovalent. All Rights Reserved. 64

fprobe: handler layer

● handler uses ftrace_test_recursion_trylock()
○ allows 1 level of nesting per CPU, per execution

context

int handler(...) {
…
if (ftrace_test_recursion_trylock(...) < 0) {

return;
}
…

}

CPU

exec ctx 1 IRQ
fprobe A

exec ctx 2 NMI
fprobe Aʼ

❌ ✅

CPU

exec ctx 1 IRQ
fprobe A

exec ctx 1 IRQ
fprobe Aʼ

© 2024 Isovalent. All Rights Reserved. 65

fprobe: BPF program execution layer

● BPF trampoline-based
● two entrypoints for trampoline

○ __bpf_prog_enter_recur()
○ __bpf_prog_enter_sleepable_recur()

● per program check results in execution misses only for
self-recursion

/* At BPF program execution layer */
if (unlikely(this_cpu_inc_return(*(prog->active)) != 1))
{

bpf_prog_inc_misses_counter(prog);
}

fprobe BPF trampoline
1:1

© 2024 Isovalent. All Rights Reserved. 66

kprobe & fprobe comparison

● notice the difference between the checks:
○ prog->active and bpf_prog_active (from previous slide)

Feature Kprobes Fprobes

Hook type basis Primarily interrupt-based (int3) or optimized (jump
ins.)

BPF trampoline-based

Handler layer check Misses if any other kprobe is running Allows 1 level of execution
nesting/recursion, misses on further
levels

BPF execution layer check Misses if any other BPF program is running on the
same CPU

Misses only on self-recursion (exact
same fprobe program)

Nesting/recursion tolerance No nesting or recursion of any BPF program on the
same CPU

Allows nesting of different BPF programs
on the same CPU. Only prevents
self-recursion

● tracepoints: similar to kprobes (per CPU check) except without the kprobe-specific restrictions
● raw tracepoints: similar to fprobes (per program check) since they are both trampoline-based except without the

fprobe-specific restrictions

© 2024 Isovalent. All Rights Reserved. 67

BPF LSM hooks

SEC("kprobe/do_sys_openat2")
int BPF_KPROBE(kprobe_do_sys_openat2, …) {

…
}

SEC("fentry/do_sys_openat2")
int BPF_PROG(fentry_do_sys_openat2, …) {

…
}

SEC("lsm/file_open")
int BPF_PROG(lsm_file_open, struct file *file, …)
{

…
}

© 2024 Isovalent. All Rights Reserved. 68

BPF LSM hooks

SEC("kprobe/do_sys_openat2")
int BPF_KPROBE(kprobe_do_sys_openat2, …) {

…
}

SEC("fentry/do_sys_openat2")
int BPF_PROG(fentry_do_sys_openat2, …) {

…
}

SEC("lsm/file_open")
int BPF_PROG(lsm_file_open, struct file *file, …)
{

…
}

-> otherwise, use tracepoints as they are the highest performance tracing hook type

© 2024 Isovalent. All Rights Reserved. 69

hookpoint missed execution summary

Hookpoint kprobe fprobe / trampoline tracepoint / perf event raw tracepoint

When misses occur Per CPU
● Any nested

kprobes
● Nested BPF

programs

Per program:
● Self nested

fprobe

Per CPU
● Nested BPF

programs

Per program:
● Nested BPF

programs

© 2024 Isovalent. All Rights Reserved. 70

Key Takeways

Generic

Performance
● Use tracepoints where

possible
Kernel versions

● Use BTF and CORE
System Architecture

● use fprobe or tracepoint (no
raw) instead of kprobe

● libbpf helpers
→ same code, ≠ architectures

kprobe/uprobe

Dynamic Links
● Library updated → offsets change

→ probe breaks silently
● Re-attach probes after library

updates or use tracepoints
Selective Inlining

● Symbol exists but some call sites
are inlined

● Solution: Trace the caller function or
use offset

Partial Inlining
● Compiler splits function into

fast/slow paths, missing probes
● Solution: kprobe: probe the .part

suffix function, uprobe: compile
with no partial inlining

Missed Executions

kprobes
● Cannot recurse
● Use optimized kprobes if

necessary, otherwise prefer
fprobes or tracepoints

fprobes, tracepoints
● Limited recursion

kprobes, fprobes, tracepoints
● If cannot tolerate any missed

executions, consider BPF
LSM.

© 2024 Isovalent. All Rights Reserved. 71

Thanks, Credits & Resources

🙏 Thanks (in order of responses in the Slack thread) Martynas Pumputis, Mahé Tardy, Paul Chaignon, Daniel Borkman, Dylan Reimerink,
Jiri Olsa, Kornilios Kourtis, Kev Sheldrake.
🙏 Thanks as well to Masami Hiramatsu.

LPC Talks:
● Kernel func tracing in the face of compiler optimization (https://www.youtube.com/watch?v=kOYEsChbw-0)
● Where have all the kprobes gone (https://www.youtube.com/watch?v=Erqy3rxDp4g)

Articles:
● Bouncing on trampolines to run eBPF programs (https://bootlin.com/blog/bouncing-on-trampolines-to-run-ebpf-programs/)
● eBPF Tracepoints, Kprobes, or Fprobes: Which One Should You Choose? (https://labs.iximiuz.com/tutorials/ebpf-tracing-46a570d1)
● An introduction to KProbes (https://lwn.net/Articles/132196/)
● Linux Tracing Technologies Guide (https://docs.kernel.org/trace/)

LKML
● kprobe: Support nested kprobes (https://lwn.net/ml/linux-kernel/158894789510.14896.13461271606820304664.stgit@devnote2/)

https://www.youtube.com/watch?v=kOYEsChbw-0
https://www.youtube.com/watch?v=Erqy3rxDp4g
https://bootlin.com/blog/bouncing-on-trampolines-to-run-ebpf-programs/
https://labs.iximiuz.com/tutorials/ebpf-tracing-46a570d1
https://lwn.net/Articles/132196/
https://docs.kernel.org/trace/
https://lwn.net/ml/linux-kernel/158894789510.14896.13461271606820304664.stgit@devnote2/

