
Demystifying Post-Quantum
Cryptography: The Hybrid Approach

Rutvik Kshirsagar
Red Hat

Clemens Lang
 Red Hat

Quantum Computers & PKI

● PKI underpins trust everywhere: TLS, SSH, code signing, identity.

● Security today relies on factorization and discrete log hardness.

● Quantum computers leveraging Shor’s algorithm can compromise
RSA, Diffie-Hellman, and elliptic-curve cryptosystems.

● Practical attacks require large, fault-tolerant quantum systems

Why is this seen as Y2Q /
Q-Day problem?

Is transition to PQC is
even necessary at the

moment?

Time to Transition

Long (standards → vendor support →

product upgrades → system replacement

→ decommissioning legacy)

Time You Need Data to Remain Secure
Short-lived → Long-lived → Archive /High-value

Timelines

Time to Build a Quantum Computer

When will attackers have a quantum

computer available?

Hybrid Crypto = Defense in Depth

OpenSSL 3.5+(with TLS 1.3) natively implements and supports the first
set of NIST-standardized PQC algorithms:

● Module-lattice key encapsulation

ML-KEM (FIPS 203)

Swiss Cheese Security

● Hybrid Key Exchange

 X25519MLKEM768 (classical X25519+ML-KEM-768)

● Post Quantum Signatures

 ML-DSA (FIPS 204) or SLH-DSA(FIPS 205)

ML-KEM (512, 768, 1024)

● Lower variants: smaller keys and faster handshakes; suitable for short-lived
sessions.

● Higher variants: larger keys; provide higher security margins for long-term
confidentiality.

Variant Significance - Security Level 1/3/5

ML-DSA (44, 65, 87)

● Lower variants: smaller signatures and faster verification; useful for high-volume
signing (e.g. TLS, logs).

● Higher variants: larger signatures; better suited for long-lived trust artifacts (e.g.
firmware, root certs).

HYBRID PQC TLS DEMO

https://docs.google.com/file/d/1w62V8zG87CUhIscPs2XskaAZEiNKfF99/preview

TLS 1.3 was explicitly redesigned so that:

● Key exchange can evolve independently of cipher suites

● Crypto agility is preserved

X25519MLKEM768
determines how secrets
are created.

Hybrid PQC operates only in the key exchange, enabling safe
incremental deployment in TLS 1.3.

MLDSA-65 / SLH-DSA
determines who is
trusted to create them.

Cipher suites are
about how data is
protected afterward.

● ~60% of Cloudflare’s human TLS traffic uses hybrid ML-KEM

key exchange

● IETF working groups are adding PQC (e.g. TLS, IPsec, SSH, …)

● Chrome 116+ negotiates PQ handshakes by default.

● Fedora 43 supports PQC signatures and key exchange

● IBM z16 ships with lattice-based signatures and KEMs baked

into firmware & boot.

Where are we and why is this important?

https://github.com/ietf-
wg-pquip/state-of-prot
ocols-and-pqc

https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc
https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc
https://github.com/ietf-wg-pquip/state-of-protocols-and-pqc

PQC in Software Supply Chain

Problem: Long-lived systems (IoT, embedded, enterprise) require
signatures that remain secure decades after release.

Solution: PQC signatures over RPMs

● OpenPGP draft openpgp-pqc with EdDSA/ML-DSA hybrid
● No support in GnuPG/LibrePGP
● Sequoia, rpgpie, GopenPGP, rnp are working on it

Demo: Sequoia-PGP with PKCS#11 backend using the Kryoptic
software token signing an RPM

github.com/neverpanic/fosdem-rpm-pqc-signing-demo/

https://datatracker.ietf.org/doc/draft-ietf-openpgp-pqc/
https://github.com/neverpanic/fosdem-rpm-pqc-signing-demo/

https://docs.google.com/file/d/1aiNoUmbUdcWDiMdkd9SzAr0YCOVK_ALb/preview

Summary

● Defense in Depth: Hybrid crypto (classical/PQC) combines X25519 and

ML-KEM to protect against "Harvest-now-decrypt-later."

● Protocol Readiness: TLS 1.3 easily integrates PQC into the key exchange layer.

SSH also has hybrid PQC support in recent versions.

● Global Momentum: ~60% of human TLS traffic, driven by Chrome and

Cloudflare, uses hybrid KEM.

● Supply Chain: Hybrid signing ensures software remains verifiable

post-classical crypto deprecation.

Thank you for the attention.

Questions?

Resources

● Post Quantum Cryptography in Sequoia PGP

○ draft-ietf-openpgp-pqc-16 - Post-Quantum Cryptography in OpenPGP

○ github.com/neverpanic/fosdem-rpm-pqc-signing-demo/

● NIST IR 8547 initial public draft, Transition to Post-Quantum Cryptography Standards

● Signing RPM packages using quantum-resistant cryptography | Red Hat Developer

● The Features of 3.5: Hybrid ML-KEM | OpenSSL Foundation

● Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH

● Post-quantum cryptography in Red Hat Enterprise Linux 10

https://sequoia-pgp.org/blog/2025/11/15/202511-post-quantum-cryptography/
https://datatracker.ietf.org/doc/draft-ietf-openpgp-pqc/
https://github.com/neverpanic/fosdem-rpm-pqc-signing-demo/
https://nvlpubs.nist.gov/nistpubs/ir/2024/NIST.IR.8547.ipd.pdf
https://developers.redhat.com/articles/2025/10/07/signing-rpm-packages-using-quantum-resistant-cryptography#creating_signatures
https://openssl-foundation.org/post/2025-04-29-ml-kem/index.html
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/stebila-prototyping-post-quantum.pdf
https://www.redhat.com/en/blog/post-quantum-cryptography-red-hat-enterprise-linux-10

