
Building ISOs from
OCI containers

Ondřej Budai, Image Builder @ Red Hat, ondrej@budai.cz

mailto:ondrej@budai.cz

Background
People like using container images as the source of truth for their machines:

Universal Blue (🕹️ Bazzite, Bluefin, Aurora)

HeliumOS
RHEL Image Mode

Kairos

Elemental (by Rancher)

The problem is:

No good tooling for ISOs

Existing solutions
(bootc-)image-builder ISOs

Very opinionated

Only generates anaconda-based installers
Tied to Fedora and friends

Creates the root tree from scratch

Almost no customizations 🤯
Fragile

I kinda hate it*

(*) It was my idea to implement the ISOs this way.

🐍 Titanoboa

Made by ublue folks

Tied to Fedora and friends
Separation of concerns is strange

Modifies the container image and uses it as the tree

There’s no container as a source of truth

What do we really want?
Let’s consider bootc and building a disk image as a case study.

The process consists of:

Building a container image, i.e. defining all content

Converting it to a disk image, i.e. exploding a tarball into a partitioned disk in the right way™

➡️ The container image is always the source of truth.

Even the partitioning and bootloader setup can be specified by the container!

What do we really want?
The ISO building process consists of:

Building a container image

Converting it to an ISO in the right way™

The right way:

squashfs the container image

copy kernel

copy bootlader
copy initramfs

configure the bootloader

set the ISO label

We need a contract between these 2 steps!

Introducing Container-native ISO Contract
a tiny specification that allows a container image to be the source of truth for ISO peculiarities

based on how bootc containers are laid out
opinionated only when there are pragmatic reasons

El Torito hybrid ISO setup + GRUB2 is good for majority of use cases

the most important bits come from the container image
shim + GRUB2

kernel + args

initramfs

subset of GRUB2 settings
label

squashfs (of the whole container image)

Introducing Container-native Contract v0.1.0
Only x86_64 is currently supported.

The kernel is expected to be in /usr/lib/module/*/vmlinuz . If there are multiple kernels, the behavior is unspecified. This is to be specified in a future version

of this contract. The kernel is put in /images/pxeboot/vmlinuz in the ISO.

The initramfs is expected to be next to the kernel with the filename initramfs.img . The initramfs is put in /images/pxeboot/initrd.img .

The UEFI vendor is specified by a directory name in /usr/lib/efi/shim/*/EFI/$VENDOR . If there are multiple directories, the behavior is unspecified. The

BOOT directory is always ignored.

Shim and grub2 EFI binaries (shimx64.efi , mmx64.efi , gcdx64.efi) are expected to be in /boot/efi/EFI/$VENDOR .

GRUB2 modules are expected to be in /usr/lib/grub/i386-pc .

Required executables are podman , mksquashfs , xorriso , implantisomd5 , grub2-mkimage , and python .

The container image is converted to a squashfs archive and put into /LiveOS/squashfs.img in the ISO.

Additional configuration can be written into /usr/lib/bootc-image-builder/iso.yaml in YAML format. The file currently supports 2 top-level keys:
label (string): Label of the ISO

grub2 (object): GRUB2 configuration, supports the following keys:
default (string): Default menu item

timeout (string): Default timeout (in seconds)

entries (array of objects): GRUB2 menu entries with the following keys (all are required):
name (string): Name of the entry

linux (string): Path to the kernel + kernel arguments (the path is always /images/pxeboot/vmlinuz in this version of this spec)
initrd (string): Path to the initramfs (the path is always /images/pxeboot/initrd.img in this version of this spec)

Introducing Container-native Contract v0.1.0
image-builder and its bootc-generic-iso (*) image type implement the conversion step for the contract

Project placement time!
image-builder is an open source project for building disk images, ISOs and more of Fedora, and CentOS Stream and its derivatives. We
support both mutable and bootc-based systems.
Find the project at https://github.com/osbuild/image-builder-cli

(*) The name needs a discussion.

https://github.com/osbuild/image-builder-cli

Let’s build a container fulfilling the contract
FROM ghcr.io/ublue-os/bazzite:latest
RUN dnf install -y dracut-live livesys-scripts grub2-efi-x64-cdboot xorriso isomd5sum && dnf clean all

RUN sh -c 'kernel=$(kernel-install list --json pretty | jq -r ".[] | select(.has_kernel == true) | .version"); \
 DRACUT_NO_XATTR=1 dracut -v --force --zstd --reproducible --no-hostonly \
 --add "dmsquash-live dmsquash-live-autooverlay" \
 "/usr/lib/modules/${kernel}/initramfs.img" "${kernel}"' && \
 mkdir -p /boot/efi && cp -av /usr/lib/efi/*/*/EFI /boot/efi/

RUN sed -i "s/^livesys_session=.*/livesys_session=kde/" /etc/sysconfig/livesys && \
 systemctl enable livesys.service livesys-late.service

RUN <<EOF
mkdir -p /usr/lib/bootc-image-builder
cat > /usr/lib/bootc-image-builder/iso.yaml << 'YAML'
label: "Bazzite-Live"
grub2:
 timeout: 10
 entries:
 - name: "Bazzite Live ISO"
 linux: "/images/pxeboot/vmlinuz quiet rhgb root=live:CDLABEL=Bazzite-Live enforcing=0 rd.live.image"
 initrd: "/images/pxeboot/initrd.img"

YAML
EOF

Let’s build a container fulfilling the contract

Quite simple, right?

image-builder is also available as a container image, so you just need podman.

podman build -t bazzite-live
image-builder build --bootc-ref localhost/bazzite-live bootc-generic-iso

Current state
Upstream: https://github.com/ondrejbudai/bootc-isos
Feedback welcome!

Matrix: #image-builder:fedoraproject.org

Future plans
alignment with the latest bootupd changes

custom buildroots (imagine minimal live ISOs)
multiple kernels support

squashfs options

erofs
different bootloaders

https://github.com/ondrejbudai/bootc-isos

Current state
Upstream: https://github.com/ondrejbudai/bootc-isos
Feedback welcome!

Matrix: #image-builder:fedoraproject.org

❤️ Big thanks to:
Simon de Vlieger

Michael Vogt
The Image Builder team

The Universal Blue community

https://github.com/ondrejbudai/bootc-isos

