

mailto:ondrej@budai.cz

Background

People like using container images as the source of truth for their machines:

o Universal Blue (é&a Bazzite, Bluefin, Aurora)
¢ HeliumOS

e RHEL Image Mode

o Kairos

e Elemental (by Rancher)

The problem is:

No good tooling for ISOs

Existing solutions

(bootc-)image-builder ISOs

(*) It was my idea to implement the ISOs this way.

Very opinionated

Only generates anaconda-based installers
Tied to Fedora and friends

Creates the root tree from scratch

Almost no customizations &

Fragile

| kinda hate it*

< Titanoboa

Made by ublue folks

Tied to Fedora and friends

Separation of concerns is strange

Modifies the container image and uses it as the tree

There’s no container as a source of truth

What do we really want?

Let’s consider bootc and building a disk image as a case study.

The process consists of:

Building a container image, i.e. defining all content

Converting it to a disk image, i.e. exploding a tarball into a partitioned disk in the right way™
&J The container image is always the source of truth.

Even the partitioning and bootloader setup can be specified by the container!

What do we really want?

The ISO building process consists of:

Building a container image

Converting it to an ISO in the right way™
The right way:

e squashfs the container image
e copy kernel

e copy bootlader

e copy initramfs

e configure the bootloader

¢ set the ISO label

We need a contract between these 2 steps!

Introducing Container-native ISO Contract

a tiny specification that allows a container image to be the source of truth for ISO peculiarities
e based on how bootc containers are laid out
e opinionated only when there are pragmatic reasons

e El Torito hybrid ISO setup + GRUB2 is good for majority of use cases

e the most important bits come from the container image
e shim + GRUB2

e Kkernel + args

e initramfs
e subset of GRUB2 settings
e label

e squashfs (of the whole container image)

Introducing Container-native Contract v0.1.0

e Only x86_64 is currently supported.
e The kernel is expected to bein /usr/lib/module/*x/vmlinuz . If there are multiple kernels, the behavior is unspecified. This is to be specified in a future version
of this contract. The kernel is putin /images/pxeboot/vmlinuz in the ISO.

e The initramfs is expected to be next to the kernel with the filename initramfs.img . The initramfs is putin /images/pxeboot/initrd.img .

e The UEFI vendor is specified by a directory name in /usr/lib/efi/shim/x/EFI/$VENDOR . If there are multiple directories, the behavior is unspecified. The
BOOT directory is always ignored.

e Shim and grub2 EFI binaries (shimx64.efi , mmx64.efi , gcdx64.efi)are expectedto bein /boot/efi/EFI/$VENDOR .

e GRUB2 modules are expected to be in /usr/1lib/grub/i386-pc .

¢ Required executables are podman , mksquashfs , xorriso , implantisomd5 , grub2-mkimage ,and python .

e The container image is converted to a squashfs archive and put into /Live0S/squashfs.img in the ISO.

e Additional configuration can be written into /usr/lib/bootc-image-builder/iso.yaml in YAML format. The file currently supports 2 top-level keys:

. label (string): Label of the ISO
e grub2 (object): GRUB2 configuration, supports the following keys:

default (string): Default menu item

timeout (string): Default timeout (in seconds)

entries (array of objects): GRUB2 menu entries with the following keys (all are required):
name (string): Name of the entry

linux (string): Path to the kernel + kernel arguments (the path is always /images/pxeboot/vmlinuz in this version of this spec)
initrd (string): Path to the initramfs (the path is always /images/pxeboot/initrd.img in this version of this spec)

Introducing Container-native Contract v0.1.0
image-builder andits bootc—generic-iso (*) image type implement the conversion step for the contract

Project placement time!

image-builder is an open source project for building disk images, ISOs and more of Fedora, and CentOS Stream and its derivatives. We
support both mutable and bootc-based systems.

(*) The name needs a discussion.

https://github.com/osbuild/image-builder-cli

Let’s build a container fulfilling the contract

FROM ghcr.io/ublue-os/bazzite: latest
RUN dnf install -y dracut-live livesys-scripts grub2-efi-x64-cdboot xorriso isomd5sum && dnf clean all

RUN sh -c 'kernel=$(kernel-install list —-json pretty | jg -r ".[] | select(.has_kernel == true) | .version"); \
DRACUT_NO_XATTR=1 dracut -v ——force —-zstd —-reproducible —--no-hostonly \
——add "dmsquash-live dmsquash-live-autooverlay" \
"/usr/lib/modules/${kernel}/initramfs.img" "${kernel}"' && \
mkdir -p /boot/efi && cp —-av /usr/lib/efi/*/*/EFI /boot/efi/

RUN sed -i "s/"~livesys_session=.x*/livesys_session=kde/" /etc/sysconfig/livesys && \
systemctl enable livesys.service livesys-late.service

RUN <<EOF
mkdir —-p /usr/lib/bootc-image-builder
cat > /usr/lib/bootc-image-builder/iso.yaml << 'YAML'
label: "Bazzite-Live"
grub2:
timeout: 10
entries:
- name: "Bazzite Live ISO"
linux: "/images/pxeboot/vmlinuz quiet rhgb root=1live:CDLABEL=Bazzite-Live enforcing=0 rd.live.image"
initrd: "/images/pxeboot/initrd.img"

Let’s build a container fulfilling the contract

podman build -t bazzite-live
image-builder build —--bootc-ref localhost/bazzite-live bootc-generic-iso

Quite simple, right?

image-builder is also available as a container image, so you just need podman.

Current state
Upstream: https://github.com/ondrejbudai/bootc-isos

Feedback welcome!

Matrix: #image-builder:fedoraproject.org

Future plans

e alignment with the latest bootupd changes

e custom buildroots (imagine minimal live ISOs)
e multiple kernels support

e squashfs options

e erofs

¢ different bootloaders

https://github.com/ondrejbudai/bootc-isos

Current state
Upstream: https://github.com/ondrejbudai/bootc-isos

Feedback welcome!

Matrix: #image-builder:fedoraproject.org

¥ Big thanks to:

e Simon de Vlieger
e Michael Vogt
e The Image Builder team

e The Universal Blue community

https://github.com/ondrejbudai/bootc-isos

