
WebAssembly on Constrained Devices
Runtimes, tooling, and real-world trade-offs in Rust.

Fedor Smirnov, Ph.D.

FOSDEM 26, 01.02.26

2Bringing WebAssembly to constrained devices with Rust

• Motivation and context

• Module considerations

• Wasm runtime trade-offs and integration

• Conclusion

Outline

Motivation

4Bringing WebAssembly to constrained devices with Rust

Heterogeneous Distributed Systems

5Bringing WebAssembly to constrained devices with Rust

A Common Middleware Layer

6Bringing WebAssembly to constrained devices with Rust

Running Application Code Across Devices

I II

III

IV

IV

I

III II

7Bringing WebAssembly to constrained devices with Rust

Wasm on OS-Based Devices

IV

I

III II

On OS-grade devices, Wasm is the
natural choice due to:

• Strong sandboxing
• Target-independent deployment
• Mature tooling and ecosystem

8Bringing WebAssembly to constrained devices with Rust

Wasm on Microcontrollers

IV

I

III II

On Microcontrollers, choosing
Wasm is far less obvious.

What we gain:
• Dynamic updates of device behavior

without reflashing
• Isolation of application logic from

firmware
• Reduced risk of "bricking"

What it costs
• Additional memory
• Performance overhead

9Bringing WebAssembly to constrained devices with Rust

Approach Dynamic
Updates

Safety/Is
olation

Footprint Performance Tooling/
Ecosystem

Native firmware (Rust / C)

Static plugins / configuration

Scripting languages (e.g. Lua)

Custom VM/DSL (e.g. PLCs)

WebAssembly

Alternatives for Deploying Code on MCUs

Wasm on MCUs:

Practical Consequences

11Bringing WebAssembly to constrained devices with Rust

• Compilation target and runtime assumptions

• Module <> host interaction

• Developer ergonomics

What Does Using Wasm Mean in Practice?

Assume that you decide to use WebAssembly on an MCU.
What does this mean for how you write and compile code?

12

WASI vs `-unknown` on Microcontrollers

Bringing WebAssembly to constrained devices with Rust

• Not (fully) supported by all embedded runtimes

• Requires a WASI layer in the runtime, increasing

the runtime footprint

• Assumes OS-like environment (I/O, time,

randomness), which is often non-trivial on bare

metal

• Modules are no_std

• All functionality must be provided via host

functions

• Allocation is explicit

Why not wasm32-wasip1? What wasm32-unknown-unknown implies

13Bringing WebAssembly to constrained devices with Rust

Embedding Wasm into the Firmware Stack

Device Firmware

Wasm Runtime Device Peripherals

• Io
• Networking
• Sensors
• Storage

Wasm Module
(sandboxed)

Wasm Module
(sandboxed)

• Only the Wasm runtime (the

host) can interact with device

peripherals

• Wasm modules (the guests) run

inside isolated sandboxes and

cannot access hardware (or the

operating system)

14Bringing WebAssembly to constrained devices with Rust

Host/Guest Interaction – Imports/Exports

Wasm Runtime Device Peripherals

Wasm Module
(sandboxed)

X

I

I

• Host-guest interaction occurs

exclusively through the module's

imports (I) and exports (X)

• Exports are functions* that the

guest makes available to the host

• Imports are host-provided

functions* that the guest is

allowed to access

* : Wasm supports additional import/export types

(memories, tables, globals). This presentation focuses

solely on function imports and exports

Func.
Impl.

Func.
Impl.

Func.
Impl.

15Bringing WebAssembly to constrained devices with Rust

Host/Guest Interaction – Memory

Wasm Runtime Device Peripherals

Wasm Module
(sandboxed)

• The host can freely access and

modify the linear memory of the

modules*

• The guest cannot access host

memory directly – by design,

Wasm does not offer instructions

to dereference host memory

Linear Memory

Host
Memory

16Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Module Logic

17Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Module Logic

• no_std
• Explicit allocation

• No "unsafe"
• No Wasm specifics
• Idiomatic error handling
• Focus on domain logic

18Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Host Imports

19Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Host Imports

20Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Host Imports

21Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Error Handling

22Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Error Handling

23

Developer Ergonomics: What Changes with Wasm?

Bringing WebAssembly to constrained devices with Rust

no_std environment:

• Modules require an allocator

• Explicit host functions required for system

services

ABI boundary:

• Imports/Exports use the C ABI

No rich types at the boundary

• Complex data passed via linear memory

• Safe wrappers

• Zero-cost abstractions

• Macros / codegen

Constraints Rust to the Rescue

What we need from a
Wasm Runtime

25Bringing WebAssembly to constrained devices with Rust

In the specific context of our use case, several factors introduce specific requirements:

• Targeting ESP/Nordic microcontrollers

o Severe limitations in RAM and Flash → Memory footprint one of the main concerns

o Runtime must operate on bare metal (without an OS)

o Runtime must integrate well with peripheral drivers

• Flexible deployment and lifecycle control for modules

o Module execution must be controllable/preemptable

• We work with a Rust-based stack

o Runtimes written in Rust preferable due to easier integration and debugging

Runtime Requirements on Microcontrollers

26Bringing WebAssembly to constrained devices with Rust

Goal:

• Measure memory footprint of different runtimes on a bare metal embedded target

Setup:

• Minimal Wasm module, using a single synchronous host function for basic logging

• Module statically loaded into memory (adds 704 Bytes to the footprint which we could avoid)

• All implementations based on a Rust firmware embedding the runtime under investigation

Metric:

• Overall size of the memory flashed onto the target (a Nordic nrf53 dev board)

Runtime Evaluation – Memory Benchmark

Objective baseline for selecting a runtime suitable for constrained embedded devices.

Benchmark Code:

27Bringing WebAssembly to constrained devices with Rust

Runtime Evaluation – Evaluated Runtimes

Runtime Memory Footprint Notes

Wasmi Has plans to provide a
serialization mode which will
likely bring the footprint to
wasmtime levels

Wasmtime Will likely have an AoT mode in
the future

Tinywasm We are already using serialized
modules here

Wamr (interpreter)

Wamr (AoT)

28Bringing WebAssembly to constrained devices with Rust

Runtime Evaluation – Benchmark Results

Runtime Memory Footprint Notes

Wasmi 592 KiB Has plans to provide a
serialization mode which will
likely bring the footprint to
wasmtime levels

Wasmtime 308 KiB Will likely have an AoT mode in
the future

Tinywasm 188 KiB We are already using serialized
modules here

Wamr (interpreter) 80 KiB

Wamr (AoT) 68 KiB

29Bringing WebAssembly to constrained devices with Rust

Context:

• Embedded applications typically showcase an intensive interaction with hardware peripherals

• Most operations are therefore IO-bound and must frequently await hardware events

• Implementing non-trivial logic requires the ability to await multiple independent events

concurrently (timers, sensors, interrupts, communication peripherals, …).

Runtime Evaluation – Integration w. Peripherals

In the Rust embedded ecosystem, this is addressed by the async machinery provided by the
embassy framework.

(Embassy also offers a large amount of other functionality like synchronization- and hardware

primitives, all requiring the async API)

30Bringing WebAssembly to constrained devices with Rust

Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

31Bringing WebAssembly to constrained devices with Rust

Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

On OS-grade devices, this would
be commonly implemented as a
SYNC-ASYNC BRIDGE:

• WAMR runs in an own thread

• Async Services spawned as an
async task

• Communication realized via
channels

• When waiting, WAMR blocks
its thread to be woken up by
the OS when the service
response is available

4

3

3

1 2

1

2

3

4

32Bringing WebAssembly to constrained devices with Rust

Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

On Microcontrollers, this is far
less trivial:

We have no threads

When blocking to wait for the
service response, WAMR would
block the async host services

33Bringing WebAssembly to constrained devices with Rust

Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

Clever workaround
on Microcontrollers:

• WAMR runs in a low-
priority task

• Async Services run as a high-
priority async task

• Communication realized via
signals

• WAMR task blocks using WFI
o No busy waiting
o Not blocking the async

host services
o Woken up on response

4

3

3

1 2

1

2

3

4

34

Where to Go Next

Bringing WebAssembly to constrained devices with Rust

• Runtime footprint benchmark (nrf53)

o runs out-of-the box

o wasmtime, wasmi, tinywasm, WAMR

• Myrmic distributed middleware

o Open-sourcing later this year

o Infos at https://myrmic.org/

WARM async integration -- Alessandro Gasbarroni

• GitHub: lakier15

• Author of the c-compat crate

Code & Projects Credits

lakier15

c-compat

	Master
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

