®

MYRMIC

WebAssembly on Constrained Devices

Runtimes, tooling, and real-world trade-offs in Rust

Fedor Smirnov, Ph.D.
FOSDEM 26, 01.02.26

Bringing WebAssembly to constrained devices with Rust

Outline

Motivation and context

Module considerations

Wasm runtime trade-offs and integration

Conclusion

® MrRmIC

Motivation

Bringing WebAssembly to constrained devices with Rust

Heterogeneous Distributed Systems

Bringing WebAssembly to constrained devices with Rust

A Common Middleware Layer

Bringing WebAssembly to constrained devices with Rust '

Running Application Code Across Devices

Bringing WebAssembly to constrained devices with Rust
Wasm on OS-Based Devices

On , Wasm is the
natural choice due to:

- Strong sandboxing

- Target-independent deployment

- Mature tooling and ecosystem E
|

nnnnnnnnnnn

Bringing WebAssembly to constrained devices with Rust '

Wasm on Microcontrollers

On , choosing
Wasm is far less obvious.

What we gain:
Dynamic updates of device behavior
without reflashing
Isolation of application logic from

firmware g
Reduced risk of "bricking" E]

What it costs

Additional memory
Performance overhead

nnnnnnnnnn

Bringing WebAssembly to constrained devices with Rust

Alternatives for Deploying Code on MCUs

Native firmware (Rust / C)
Static plugins / configuration
Scripting languages (e.g. Lua)
Custom VM/DSL (e.g. PLCs)

WebAssembly

MYRMIC

Run anywhere

Wasm on MCUs:
Practical Consequences

Bringing WebAssembly to constrained devices with Rust

What Does Using Wasm Mean in Practice?

« Compilation target and runtime assumptions
« Module <> host interaction

 Developer ergonomics

MYRMIC

nnnnnnnnnnn

Bringing WebAssembly to constrained devices with Rust
WASI vs -unknown on Microcontrollers

« Not (fully) supported by all embedded runtimes +« Modules are no_std

« Requires a WASI layer in the runtime, increasing < All functionality must be provided via host
the runtime footprint functions

¢ Assumes OS-like environment (1/0, time, Allocation is explicit
randomness), which is often non-trivial on bare
metal

® MrRmIC

Bringing WebAssembly to constrained devices with Rust
Embedding Wasm into the Firmware Stack

Wasm Runtime Device Peripherals

* Only the Wasm runtime (the

fe host) can interact with device

Networking
Sensors peripherals

Storage « Wasm modules (the guests) run

inside isolated sandboxes and
cannot access hardware (or the
operating system)

MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust
Host/Guest Interaction - Imports/Exports

» Host-guest interaction occurs

Wasm Runtime)
exclusively through the module's

imports (I) and exports (X)
« Exports are functions* that the

guest makes available to the host

« Imports are host-provided
functions* that the guest is
allowed to access

* . Wasm supports additional import/export types

(memories, tables, globals). This presentation focuses
solely on function imports and exports

& MYRMIC

Bringing WebAssembly to constrained devices with Rust

Host/Guest Interaction - Memory

: « The host can freely access and
Wasm Runtime : :
modify the linear memory of the

modules¥*

« The guest cannot access host
memory directly - by design,
I Wasm does not offer instructions

to dereference host memory

Host
Memory

MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust 16

Glimpse at the Wasm SDK - Module Logic

#![no std] // required for wasm32-unknown-unknown
#![feature(alloc error handler)]

pub const HEAP SIZE: usize = 8 000;

define alloc heap! (HEAP SIZE);

define panic handlers!();

use module examples common::Counter;
use wasm sdk::{Result, define alloc heap, define panic handlers, receive, send};
use wasm sdk macros::task run;

#[task run(inputs(wasm input), outputs(wasm data))]
fn run() -> Result<()> {
let mut buffer = [0; 50];
loop {
receive(&mut buffer, Input::WasmInput)?;
let mut counter = Counter::from payload(&buffer)?;
counter.increment();
let n write = counter.serialize into(&mut buffer)?;
send(&buffer[0..n write], Output::WasmData)?;

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust 1

Glimpse at the Wasm SDK - Module Logic

* no_std
« Explicit allocation

= #![no std] // required for wasm32-unknown-unknown
+ #![feature(alloc_error handler)]

= pub const HEAP SIZE: usize = 8 000;

= define_alloc_heap! (HEAP_SIZE);

« define_panic_handlers!();

use module examples common::Counter;
use wasm sdk::{Result, define alloc heap, define panic handlers, receive, send};
use wasm sdk macros::task run;

#[task run(inputs(wasm input), outputs(wasm data))]
= fn run() -> Result<()> { .
let mut buffer = [0; 50]; e NoO "unsafe"
toop { 5 ”
receive (&mut buffer, Input::WasmInput)?; * No Wasm SpElelCS

let mut counter = Counter::from payload(&buffer)?;

counter. increment () ; : ldiomatic error handling

let n_write = counter.serialize into(&mut buffer)?; ° FOCUS on domain |Ogic
send(&buffer[0..n write], Output::WasmData)?;

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust 18

Glimpse at the Wasm SDK - Host Imports

#![no std] // required for wasm32-unknown-unknown
#![feature(alloc error handler)]

pub const HEAP SIZE: usize = 8 000;

define alloc heap! (HEAP SIZE);

define panic handlers!();

use module examples common::Counter;

use wasm sdk::{Result, define alloc heap, define panic handlers, receive, send};
use wasm sdk macros::task run;

#[task run(inputs(wasm input), outputs(wasm data))]
fn run() -> Result<()> {
let mut buffer = [0; 50];
loq.p.{ .. 3
* receive(&mut buffer, Input::WasmInput)?; :
1 L6h - AL - GO UL == = GOMIMG@ s i {40 B yub@achb&bU T FOE) 25 - ot
counter.increment();
let n write = counter.serialize into(&mut buffer)?;
send(&buffer[0..n write], Output::WasmData)?;

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK - Host Im

(o] g

#lallow(clippy::cast sign loss)]
pub fn receive(buffer: &mut [u8], input idx: impl Into<InputIdx>) -> ApiResult<usize> {
let idx: c _int = input idx.into().into();
// All other invariants here have to be upheld by the host; Not much we can do on our side
let status code =
unsafe { c functions::receive input(buffer.as mut ptr(), buffer.len() as c int, idx) };
match status code {
8 n written if n written >= 0 => Ok(n written as usize),
9 error _code => Err(error _code.into()),

#![no std] // required for
#! [feature(alloc error hand
pub const HEAP SIZE: usize
define alloc heap! (HEAP SIA
define panic handlers!();

use module examples common
use wasm sdk::{Result, deg
use wasm sdk macros::tg

fn run()
let mut b

: receive(&mut buffer, Input::WasmInput)?; :
=stet s courrter === Goarrter: from= payloattSbuf fer)dp
counter.increment();
let n write = counter.serialize into(&mut buffer)?;

send(&buffer[0..n write], Output::WasmData)?;

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK - Host Im

(o] g

#lallow(clippy::cast sign loss)]
pub fn receive(buffer: &mut [u8], input idx: impl Into<InputIdx>) -> ApiResult<usize> {
let idx: c _int = input idx.into().into();
wideAllQThen.dhvaniants.bace bave..to. ke upheld. hy..tha . basta . Nt JouGh. wWe. .can .. dQ. QR QUL . 5146 ua. .
t let status code = :
: unsafe { c functions::receive input(buffer.as mut ptr(), buffer.len() as c int, idx) }; :
- - U £ S o e

n written if n written >= 0 => Ok(g

#![no std] // required for
#! [feature(alloc error hand
pub const HEAP SIZE: usize
define alloc heap! (HEAP SIA
define panic handlers!();

use module exam

ples_common ritten as usize),

#[link(wasm import module = "connectors")]
) unsafe extern "C" {

/// Blocking receive: Blocks on the specified input. When an input is available,

/// the host writes it into the provided buffer (given that it does not exceed

/// the provided length)
pub(super) fn receive input(buffer: *mut u8, length: c int, input idx: c int) -> c_int;

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK - Error Handling

#![no std] // required for wasm32-unknown-unknown
#![feature(alloc error handler)]

pub const HEAP SIZE: usize = 8 000;

define alloc heap! (HEAP SIZE);

define panic handlers!();

use module examples common::Counter;

use wasm sdk::{Result, define alloc heap, define panic handlers, receive, send};
use wasm sdk macros::task run;

E#[taskirun(inputs(wasmiinput), outputs(wasm data))]

ifn run() -> Result<()> {

loop {
receive(&mut buffer, Input::WasmInput)?;
let mut counter = Counter::from payload(&buffer)?;
counter.increment();
let n write = counter.serialize into(&mut buffer)?;
send(&buffer[0..n write], Output::WasmData)?;

21

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust 22

Glimpse at the Wasm SDK - Error Handling

. . . #[unsafe(no mangle)]
pub extern "C" fn run_task() -> 132 {

#![no std] // required for wasm32-un let module result = run();
#![feature(alloc_error_handler)] match module_result {
pub const HEAP SIZE: usize = 8 000; Ok(()) == 0,

] Err(err) => {
I .
dEiie BLies heanl (IRl SI7E)) let err_msg = alloc:: export::must use({

dEflne—fhanlc—handlerS!(); alloc::fmt::format(alloc:: export::format args!("Task run error: {err}"))
1);
::wasm_sdk::report error(&err_msqg).unwrap();
wasm_sdk: : log(
&alloc:: export::must use({
alloc::fmt::format(alloc:: export::format args!("{err msg}"))

1,

wasm sdk::LoglLevel: :Error,
)
.unwrap();
loop { -1
receive(&mut buffer, Input::
let mut counter = Counter::f }
counter.increment(); }

. B . fn run() -> Result<()> {
let n write = counter.serial let mut buffer = [0: 50];

send(&buffer[0..n write], Ou loop {
receive(&mut buffer, Input::WasmInput)?;
let mut counter = Counter::from payload(&buffer)?;
counter.increment();
let n write = counter.serialize into(&mut buffer)?;
send(&buffer[0..n write], Output::WasmData)?;

MYRMIC

Run anywhere

Bringing WebAssembly to constrained devices with Rust

Developer Ergonomics: What Changes with Wasm?

no_std environment:

 Safe wrappers

* Modules require an allocator « Zero-cost abstractions
 Explicit host functions required for system « Macros / codegen
services

ABI boundary:

« Imports/Exports use the C ABI

No rich types at the boundary

« Complex data passed via linear memory

® MrRmIC

What we need from a
Wasm Runtime

Bringing WebAssembly to constrained devices with Rust

Runtime Requirements on Microcontrollers

In the specific context of our use case, several factors introduce specific requirements:
« Targeting ESP/Nordic microcontrollers
o Severe limitations in RAM and Flash — Memory footprint one of the main concerns
o Runtime must operate on bare metal (without an OS)
o Runtime must integrate well with peripheral drivers
* Flexible deployment and lifecycle control for modules
o Module execution must be controllable/preemptable
« We work with a Rust-based stack

o Runtimes written in Rust preferable due to easier integration and debugging

MYRMIC

nnnnn ywhere

Bringing WebAssembly to constrained devices with Rust

Runtime Evaluation - Memory Benchmark O

Benchmark Code:
Goal:

« Measure memory footprint of different runtimes on a bare metal embedded target

Setup:
« Minimal Wasm module, using a single synchronous host function for basic logging

« Module statically loaded into memory (adds 704 Bytes to the footprint which we could avoid)
« Allimplementations based on a Rust firmware embedding the runtime under investigation
Metric:

« Overall size of the memory flashed onto the target (a Nordic nrf53 dev board)

MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust

Runtime Evaluation - Evaluated Runtimes

Has plans to provide a
serialization mode which will
likely bring the footprint to
wasmtime levels

Wasmtime Will likely have an AoT mode in
the future

Tinywasm We are already using serialized
modules here

Wamr (interpreter)

Wamr (AoT)

® MrRmIC

Bringing WebAssembly to constrained devices with Rust

Runtime Evaluation - Benchmark Results

592 KiB Has plans to provide a
serialization mode which will
likely bring the footprint to
wasmtime levels

Wasmtime 308 KiB Will likely have an AoT mode in
the future

Tinywasm 188 KiB We are already using serialized
modules here

Wamr (interpreter) 80 KiB

Wamr (AoT)

® MrRmIC

Bringing WebAssembly to constrained devices with Rust

Runtime Evaluation - Integration w. Peripherals

Context:
- Embedded applications typically showcase an intensive interaction with hardware peripherals
« Most operations are therefore 10-bound and must frequently await hardware events

« Implementing non-trivial logic requires the ability to await multiple independent events
concurrently (timers, sensors, interrupts, communication peripherals, ...).

(Embassy also offers a large amount of other functionality like synchronization- and hardware

primitives, all requiring the async API)
MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust

Wasm Module WAMR Async Host Services

blocking wait blocking wait

& MYRMIC

Bringing WebAssembly to constrained devices with Rust

On , this would Async Host Services | 2
be commonly implemented as a

SYNC-ASYNC BRIDGE:

1 WAMR runs in an own thread 9

2 Async Services spawned as an
async task

Communication realized via
channels

When waiting, WAMR blocks
its thread to be woken up by
the OS when the service
response is available

MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust

On , this is far Async Host Services

less trivial:

We have no threads

When blocking to wait for the
service response, WAMR would

MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust

Clever workaround Async Host Services | 2
on 5

WAMR runs in a low- e
priority task

Async Services run as a high-
priority async task

Communication realized via
signals

WAMR task blocks using WFI

¥ No busy waiting

¥ Not blocking the async
host services

¥ Woken up on response

MYRMIC

Run anyw! here

Bringing WebAssembly to constrained devices with Rust

Where to Go Next

« Runtime footprint benchmark (nrf53) O WARM async integration -- Alessandro Gasbarroni
o runs out-of-the box

o wasmtime, wasmi, tinywasm, WAMR « GitHub: 1lakieri1s

» Myrmic distributed middleware « Author of the c-compat crate

o Open-sourcing later this year ; E
o Infos at https://myrmic.org/

& MYRMIC

	Master
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

