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Heterogeneous Distributed Systems
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A Common Middleware Layer
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Running Application Code Across Devices
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Wasm on OS-Based Devices
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On OS-grade devices, Wasm is the 
natural choice due to:

• Strong sandboxing
• Target-independent deployment
• Mature tooling and ecosystem
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Wasm on Microcontrollers
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I
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On Microcontrollers, choosing 
Wasm is far less obvious.

What we gain:
• Dynamic updates of device behavior 

without reflashing
• Isolation of application logic from 

firmware
• Reduced risk of "bricking"

What it costs
• Additional memory
• Performance overhead
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Approach Dynamic 
Updates

Safety/Is
olation

Footprint Performance Tooling/ 
Ecosystem

Native firmware (Rust / C)

Static plugins / configuration         

Scripting languages (e.g. Lua)

Custom VM/DSL (e.g. PLCs)

WebAssembly

Alternatives for Deploying Code on MCUs



Wasm on MCUs:

Practical Consequences
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• Compilation target and runtime assumptions

• Module <> host interaction

• Developer ergonomics

What Does Using Wasm Mean in Practice?

Assume that you decide to use WebAssembly on an MCU. 
What does this mean for how you write and compile code?
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WASI vs `-unknown` on Microcontrollers

Bringing WebAssembly to constrained devices with Rust

• Not (fully) supported by all embedded runtimes

• Requires a WASI layer in the runtime, increasing 

the runtime footprint

• Assumes OS-like environment (I/O, time, 

randomness), which is often non-trivial on bare 

metal

• Modules are no_std

• All functionality must be provided via host 

functions

• Allocation is explicit

Why not wasm32-wasip1? What wasm32-unknown-unknown implies
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Embedding Wasm into the Firmware Stack

Device Firmware

Wasm Runtime Device Peripherals

• Io
• Networking
• Sensors
• Storage

Wasm Module
(sandboxed)

Wasm Module
(sandboxed)

• Only the Wasm runtime (the 

host) can interact with device 

peripherals

• Wasm modules (the guests) run 

inside isolated sandboxes and 

cannot access hardware (or the 

operating system)
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Host/Guest Interaction – Imports/Exports

Wasm Runtime Device Peripherals

Wasm Module
(sandboxed)

X

I

I

• Host-guest interaction occurs 

exclusively through the module's 

imports (I) and exports (X)

• Exports are functions* that the 

guest makes available to the host

• Imports are host-provided 

functions* that the guest is 

allowed to access

* : Wasm supports additional import/export types 

(memories, tables, globals). This presentation focuses 

solely on function imports and exports

Func.
Impl.

Func.
Impl.

Func.
Impl.
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Host/Guest Interaction – Memory

Wasm Runtime Device Peripherals

Wasm Module
(sandboxed)

• The host can freely access and 

modify the linear memory of the 

modules*

• The guest cannot access host 

memory directly – by design, 

Wasm does not offer instructions 

to dereference host memory

Linear Memory

Host 
Memory



16Bringing WebAssembly to constrained devices with Rust

Glimpse at the Wasm SDK – Module Logic
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Glimpse at the Wasm SDK – Module Logic

• no_std
• Explicit allocation

• No "unsafe"
• No Wasm specifics
• Idiomatic error handling
• Focus on domain logic
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Glimpse at the Wasm SDK – Host Imports
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Glimpse at the Wasm SDK – Host Imports
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Glimpse at the Wasm SDK – Host Imports
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Glimpse at the Wasm SDK – Error Handling
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Glimpse at the Wasm SDK – Error Handling
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Developer Ergonomics: What Changes with Wasm?

Bringing WebAssembly to constrained devices with Rust

no_std environment:

• Modules require an allocator

• Explicit host functions required for system 

services

ABI boundary:

• Imports/Exports use the C ABI

No rich types at the boundary

• Complex data passed via linear memory

• Safe wrappers

• Zero-cost abstractions

• Macros / codegen

Constraints Rust to the Rescue



What we need from a 
Wasm Runtime
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In the specific context of our use case, several factors introduce specific requirements:

• Targeting ESP/Nordic microcontrollers

o Severe limitations in RAM and Flash → Memory footprint one of the main concerns

o Runtime must operate on bare metal (without an OS)

o Runtime must integrate well with peripheral drivers

• Flexible deployment and lifecycle control for modules

o Module execution must be controllable/preemptable

• We work with a Rust-based stack

o Runtimes written in Rust preferable due to easier integration and debugging

Runtime Requirements on Microcontrollers
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Goal:

• Measure memory footprint of different runtimes on a bare metal embedded target

Setup:

• Minimal Wasm module, using a single synchronous host function for basic logging 

• Module statically loaded into memory (adds 704 Bytes to the footprint which we could avoid)

• All implementations based on a Rust firmware embedding the runtime under investigation

Metric:

• Overall size of the memory flashed onto the target (a Nordic nrf53 dev board)

Runtime Evaluation – Memory Benchmark

Objective baseline for selecting a runtime suitable for constrained embedded devices.

Benchmark Code:
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Runtime Evaluation – Evaluated Runtimes

Runtime Memory Footprint Notes

Wasmi Has plans to provide a 
serialization mode which will 
likely bring the footprint to 
wasmtime levels

Wasmtime Will likely have an AoT mode in 
the future

Tinywasm We are already using serialized 
modules here

Wamr (interpreter)

Wamr (AoT)
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Runtime Evaluation – Benchmark Results

Runtime Memory Footprint Notes

Wasmi 592 KiB Has plans to provide a 
serialization mode which will 
likely bring the footprint to 
wasmtime levels

Wasmtime 308 KiB Will likely have an AoT mode in 
the future

Tinywasm 188 KiB We are already using serialized 
modules here

Wamr (interpreter) 80 KiB

Wamr (AoT) 68 KiB
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Context:

• Embedded applications typically showcase an intensive interaction with hardware peripherals

• Most operations are therefore IO-bound and must frequently await hardware events

• Implementing non-trivial logic requires the ability to await multiple independent events 

concurrently (timers, sensors, interrupts, communication peripherals, …).

Runtime Evaluation – Integration w. Peripherals

In the Rust embedded ecosystem, this is addressed by the async machinery provided by the 
embassy framework.

(Embassy also offers a large amount of other functionality like synchronization- and hardware 

primitives, all requiring the async API)



30Bringing WebAssembly to constrained devices with Rust

Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...
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Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

On OS-grade devices, this would 
be commonly implemented as a 
SYNC-ASYNC BRIDGE:

• WAMR runs in an own thread

• Async Services spawned as an 
async task

• Communication realized via 
channels

• When waiting, WAMR blocks 
its thread to be woken up by 
the OS when the service 
response is available
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Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

On Microcontrollers, this is far 
less trivial:

We have no threads

When blocking to wait for the 
service response, WAMR would 
block the async host services
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Wasm Module WAMR Async Host Services

instantiates module

module logic

export call

import call

host function logic service request

host function logic

module logic
module result

blocking wait blocking wait

register event interest

await

service response

host function result

service logic

process module result...

Clever workaround 
on Microcontrollers:

• WAMR runs in a low-
priority task

• Async Services run as a high-
priority async task

• Communication realized via 
signals

• WAMR task blocks using WFI
o No busy waiting
o Not blocking the async 

host services
o Woken up on response
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Where to Go Next

Bringing WebAssembly to constrained devices with Rust

• Runtime footprint benchmark (nrf53)

o runs out-of-the box

o wasmtime, wasmi, tinywasm, WAMR

• Myrmic distributed middleware

o Open-sourcing later this year

o Infos at https://myrmic.org/

WARM async integration -- Alessandro Gasbarroni

• GitHub: lakier15

• Author of the c-compat    crate

Code & Projects Credits

lakier15

c-compat
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