
Running Mainline Linux on the Jolla C2
FOSS on Mobile - FOSDEM 2026

Affe Null

January 31, 2026

1 / 22



What is the Jolla C2?

▶ Jolla smartphone released in 2024

▶ “Reference device” for Sailfish OS

▶ Partnership with Reeder (Turkish company)

▶ Mostly identical to Reeder S19 Max Pro S

▶ Based on Unisoc Tiger T606 (UMS9230) SoC

2 / 22



How does the phone run Linux?

▶ Shell access available in developer mode

3 / 22



How does the phone run Linux?

▶ typical situation with downstream drivers made for Android

▶ Sailfish OS uses Android vendor HAL via libhybris (as expected)

▶ However, it does not strictly depend on libhybris or Android
▶ roots in Nokia’s Meego project
▶ closer to traditional GNU/Linux userspace

▶ Why not a mainline kernel?
▶ a few drivers from Unisoc are already upstream
▶ try something new

4 / 22



How does the phone run Linux?

▶ typical situation with downstream drivers made for Android

▶ Sailfish OS uses Android vendor HAL via libhybris (as expected)

▶ However, it does not strictly depend on libhybris or Android
▶ roots in Nokia’s Meego project
▶ closer to traditional GNU/Linux userspace

▶ Why not a mainline kernel?
▶ a few drivers from Unisoc are already upstream
▶ try something new

4 / 22



How does the phone run Linux?

▶ typical situation with downstream drivers made for Android

▶ Sailfish OS uses Android vendor HAL via libhybris (as expected)

▶ However, it does not strictly depend on libhybris or Android
▶ roots in Nokia’s Meego project
▶ closer to traditional GNU/Linux userspace

▶ Why not a mainline kernel?
▶ a few drivers from Unisoc are already upstream
▶ try something new

4 / 22



How does the phone run Linux?

▶ typical situation with downstream drivers made for Android

▶ Sailfish OS uses Android vendor HAL via libhybris (as expected)

▶ However, it does not strictly depend on libhybris or Android
▶ roots in Nokia’s Meego project
▶ closer to traditional GNU/Linux userspace

▶ Why not a mainline kernel?
▶ a few drivers from Unisoc are already upstream
▶ try something new

4 / 22



How does the phone run Linux?

▶ typical situation with downstream drivers made for Android

▶ Sailfish OS uses Android vendor HAL via libhybris (as expected)

▶ However, it does not strictly depend on libhybris or Android
▶ roots in Nokia’s Meego project
▶ closer to traditional GNU/Linux userspace

▶ Why not a mainline kernel?
▶ a few drivers from Unisoc are already upstream
▶ try something new

4 / 22



Overview

5 / 22



Overview

5 / 22



Mainlining - first steps

▶ Phone arrived in November 2024

▶ Step 1: flashing
▶ spd dump tool with CVE-2022-38694 exploit

▶ Step 2: get kernel running

▶ Android bootloader does initial setup
▶ starts display output from memory
▶ powers up internal storage
▶ unfortunately requires dtbo and messes with device tree

▶ Chainloading U-Boot to simplify things
▶ ignores Android device tree and provides its own
▶ standard boot process
▶ implement just enough drivers to load kernel

6 / 22



Mainlining - first steps

▶ Phone arrived in November 2024

▶ Step 1: flashing
▶ spd dump tool with CVE-2022-38694 exploit

▶ Step 2: get kernel running

▶ Android bootloader does initial setup
▶ starts display output from memory
▶ powers up internal storage
▶ unfortunately requires dtbo and messes with device tree

▶ Chainloading U-Boot to simplify things
▶ ignores Android device tree and provides its own
▶ standard boot process
▶ implement just enough drivers to load kernel

6 / 22



Mainlining - first steps

▶ Phone arrived in November 2024

▶ Step 1: flashing
▶ spd dump tool with CVE-2022-38694 exploit

▶ Step 2: get kernel running

▶ Android bootloader does initial setup
▶ starts display output from memory
▶ powers up internal storage
▶ unfortunately requires dtbo and messes with device tree

▶ Chainloading U-Boot to simplify things
▶ ignores Android device tree and provides its own
▶ standard boot process
▶ implement just enough drivers to load kernel

6 / 22



Mainlining - first steps

▶ Phone arrived in November 2024

▶ Step 1: flashing
▶ spd dump tool with CVE-2022-38694 exploit

▶ Step 2: get kernel running

▶ Android bootloader does initial setup
▶ starts display output from memory
▶ powers up internal storage
▶ unfortunately requires dtbo and messes with device tree

▶ Chainloading U-Boot to simplify things
▶ ignores Android device tree and provides its own
▶ standard boot process
▶ implement just enough drivers to load kernel

6 / 22



Debugging

▶ using UART would require disassembling phone

▶ easier to set display pixels in memory

▶ simple-framebuffer and simplefb earlycon patch

7 / 22



The UMS9230 chipset

8 / 22



Mainlining - initial bringup

▶ Clock driver
▶ already in mainline for older Unisoc SoCs
▶ very similar to downstream

▶ USB is hard, but simplifies debugging a lot
▶ PHY init sequence, obscure registers
▶ old MUSB controller with additional DMA quirks
▶ messy code both upstream and downstream
▶ transfers sometimes get stuck in host mode

▶ Watchdog
▶ phone reboots, seemingly no effect from driver (more on this later)

▶ Display driver
▶ replaces simple-framebuffer
▶ usually complicated
▶ existing drivers/gpu/drm/sprd from 2021
▶ many fixes and UMS9230 support added

9 / 22



Mainlining - peripherals (1)

▶ SC2730 PMIC regulators
▶ required for powering components including storage
▶ MFD driver in mainline since 2021
▶ merged downstream driver and existing SC2731 driver

▶ External Storage: SD card
▶ existing driver (mainline since 2018) mostly usable
▶ later fixes for high-speed operation

▶ Internal Storage: UFS
▶ existing driver (mainline since 2022) for different SoC is incompatible
▶ bootloader initializes hardware with low clock speed
▶ restarting after clock change requires PHY init sequence

▶ GPIO driver (mainline since 2018) worked with almost no changes
▶ some buttons or LEDs, depending on the device
▶ various control pins for peripherals

▶ PWM backlight

10 / 22



Mainlining - peripherals (2)

▶ SC2730 PMIC
▶ already in mainline: vibrator, fuel gauge, RTC, ADC, ...
▶ some drivers for older SC2731 PMIC adapted
▶ bug fixes for fuel gauge driver
▶ Type-C PD driver adapted from downstream, cleanups needed
▶ separate watchdog in PMIC enabled on startup

▶ UART, I2C, SPI
▶ copy-paste device tree nodes
▶ match clocks with clock driver

▶ Charger (device-specific)
▶ sgm41511 (bq25601 clone, existing driver works)

▶ Touchscreen driver (device-specific, usually I2C)
▶ existing mainline drivers
▶ downstream driver as reference
▶ icnl9916 driver for Jolla C2 was quite easy to write

11 / 22



Minimal example

https://storage.abscue.de/private/zImage/jolla-c2-simple-boot.mp4

12 / 22

https://storage.abscue.de/private/zImage/jolla-c2-simple-boot.mp4


Mainlining - SoC subsystems

▶ Power domains: new driver

▶ GPU supported by panfrost driver

▶ Remoteprocs
▶ using firmware from Android
▶ WCN (BTWF, GNSS) – Cortex-M33
▶ Audio – Ceva TeakLite4 DSP (undocumented architecture)
▶ Modem – Cortex-R5 and two TeakLite4 DSPs
▶ PMSYS aka SP (sensor hub, GNSS, ...) – Cortex-M33

▶ SIPC protocol for communication with remoteprocs
▶ shared memory ring buffer, character and packet-based variants
▶ new rpmsg driver

▶ PMSYS also responsible for managing PMIC watchdog
▶ watchdog on command needed
▶ intercepts AP watchdog to trigger some kind of crash dump

▶ Bluetooth: mostly standard HCI

13 / 22



New WiFi driver

▶ first version took about one month to develop

▶ cfg80211 driver using original firmware

▶ downstream driver as reference

▶ features implemented:
▶ scanning
▶ regulatory domains
▶ connecting to networks
▶ WPA key management
▶ power saving

▶ still not fully working

▶ features missing: AP mode, QoS, IBSS, P2P, ...

▶ only supports integrated WiFi
▶ some phones use external module via SDIO

14 / 22



Mainlining steps - multimedia features

▶ New drivers needed for almost everything

▶ Audio
▶ bootloader starts DSP for some reason
▶ AP ↔ DSP communication
▶ SoC ↔ PMIC link
▶ PMIC analog codec
▶ ALSA machine driver
▶ call audio via codec2codec link

▶ Camera
▶ CSI PHY
▶ DCAM: raw capture with some processing
▶ separate ISP: memory-to-memory, debayering, additional processing
▶ open-source driver with list of registers
▶ device-specific sensor drivers

▶ Hardware video encoding/decoding
▶ not implemented yet
▶ proprietary

15 / 22



Mainlining steps - more features

▶ GNSS: new driver
▶ baseband is part of WCN subsystem
▶ NMEA data generated by PMSYS remoteproc firmware
▶ custom commands for A-GNSS not implemented yet

▶ Sensors: new IIO driver
▶ I2C controlled by PMSYS sensor hub
▶ firmware obviously designed with Android in mind
▶ sends floating-point numbers requiring conversion in kernel

▶ CPU frequency scaling
▶ implemented in proprietary firmware that runs on the AP
▶ new driver for querying and setting frequencies

▶ Other power management features
▶ PSCI suspend worked right away
▶ DVFS implemented in various remoteprocs, not supported yet

16 / 22



Common problems

▶ Clock and power domain management
▶ hard to verify without SoC documentation
▶ determining when they are safe to turn off requires testing
▶ some drivers (e.g., IOMMU) keep clocks on all the time
▶ common clock framework can keep power domains on

▶ Proprietary remoteproc firmware
▶ undocumented protocols
▶ buggy or Android-oriented behavior
▶ reverse-engineering the binaries is sometimes required
▶ open-source alternatives should be developed, but need a lot of work

▶ Upstreaming is slow
▶ should have started earlier

17 / 22



Userspace

▶ Power management (autosleep)
▶ mostly works well in Sailfish OS with mce
▶ not really supported in other mobile Linux environments
▶ important events must keep device awake until processed
▶ processing often split across different services
▶ userspace vs kernel-side autosleep

▶ Modem
▶ uses AT commands with some quirks
▶ basic oFono driver for Sailfish OS
▶ ModemManager not quite working yet

▶ Camera
▶ libcamera fork
▶ will be upstreamed after kernel driver
▶ most camera apps are still very basic
▶ new abstraction library for cameras?

18 / 22



Demo

https://storage.abscue.de/private/zImage/jolla-c2-kernel.mp4

19 / 22

https://storage.abscue.de/private/zImage/jolla-c2-kernel.mp4


Results

▶ Mainlining a new SoC is possible!
▶ not everything needs existing upstream support
▶ more opportunities to create simple drivers where none exist yet
▶ downstream was usable as reference

▶ Somewhat usable as daily driver

▶ Did not take much longer than a year
▶ can be done faster with more time investment

▶ Sailfish OS can work without libhybris

20 / 22



Further opportunities

▶ Mainline more devices!
▶ new Jolla Phone (2026) with MediaTek SoC

▶ upstream more changes

▶ fix issues with WiFi
▶ work on new open-source firmware

▶ for Sailfish OS:
▶ most userspace components already adapted
▶ Jolla is generally open to contributions as long as they don’t break things
▶ reach feature parity

▶ for other distributions (e.g., postmarketOS):
▶ implement ModemManager support
▶ improve userspace power management

21 / 22



Thank you for listening!

Here are some links:

▶ Kernel fork: https://codeberg.org/ums9230-mainline/linux

▶ remoteproc firmware prototype: https://codeberg.org/affenull2345/opencp

▶ Sailfish OS port: https://forum.sailfishos.org/t/
mainline-linux-kernel-for-the-jolla-c2/21382/19

22 / 22

https://codeberg.org/ums9230-mainline/linux
https://codeberg.org/affenull2345/opencp
https://forum.sailfishos.org/t/mainline-linux-kernel-for-the-jolla-c2/21382/19
https://forum.sailfishos.org/t/mainline-linux-kernel-for-the-jolla-c2/21382/19

