
Erik Schamper

My summer vacation 2025
I spent it with IDA looking at VMFS

FOSDEM26

• Erik Schamper

• Security Researcher

• 10 years at Fox-IT

• Author of Dissect

Some introduction

Glossary
Quick recap

• Dissect - System investigation framework

• Acquire - Artefact collection tool for any source data

• VMware ESXi - Hypervisor

• VMware VMFS - Proprietary file system on VMware ESXi

• VMFS3 first introduced directories (thrilling!)

• VMFS5 and VMFS6 are largely incremental improvements

How it started
Early days of hypervisor acquisition

• Specific configurations only (SAN)

• Attach physical hardware (or VM) to the same SAN

• Mount datastore with vmfs(6)-tools

• Run acquire

Not quite

• Unfortunately vmfs-tools is riddled with bugs

• Lots of data corruption, missing data and unacquirable VMs

• Unmaintained

… profit?

from dissect import cstruct

• The year is 2020, VMFS data recovery job, trashed RAID

• Need to vaguely understand VMFS to aid in manual RAID rebuilding

• Armed with IDA and vmfs-tools, build some inspection tools

How hard could it be?

Based on existing research
High level understanding so far

Disk

GPT LVM VMFS

.vh.sf

.fdc.sf

.fbb.sf

.sbc.sf

.pbc.sf

.pb2.sf

.
├── My VM
│ └── My VM.vmx
└── Other VM
 └── ...

• … might as well write a whole implementation

• Take a little bit of vmfs-tools, and a little bit of IDA

• Fix some of the more obvious vmfs-tools bugs

• Leave some #TODO for the future

dissect.vmfs was born

Level up!

• Datastore block devices are readable from ESXi shell

• Integrate dissect.vmfs into dissect.target

• Can run acquire on ESXi hosts now

• Hypervisor data acquisition now as easy as “run this executable”

New capability unlocked

Until it wasn’t
And all was good in the world

Start investigating

• Symptom: for file systems >16TB, listing 2nd level directories breaks

• Why: reading the “small block” (sbc) system resource file returns wrong data

• Cause: ???

What goes wrong

No “works on my machine” this time

• First spend some time manually inspecting existing code

• Find a discrepancy, but can’t explain it

• Spend a little while reverse engineering VMFS again

• Still can’t explain it

• Start reverse engineering and re-implementing VMFS entirely from scratch again

• Still can’t explain it

At least you can reproduce

Spot the differences

*
67000000: 536f 6d65 2064 6174 6120 6865 7265 0000 Some data here..
67000010: 0000 0000 0000 0000 0000 0000 0000 0000
*
68000000: 2e2e 2e20 616e 6420 736f 6d65 206d 6f72 ... and some mor
68000010: 6520 6461 7461 2068 6572 6500 0000 0000 e data here.....
*

Expected output

Spot the differences

*
67000000: 536f 6d65 2064 6174 6120 6865 7265 0000 Some data here..
67000010: 0000 0000 0000 0000 0000 0000 0000 0000
*
69000000: 2e2e 2e20 616e 6420 736f 6d65 206d 6f72 ... and some mor
69000010: 6520 6461 7461 2068 6572 6500 0000 0000 e data here.....
*

My output

*
67000000: 536f 6d65 2064 6174 6120 6865 7265 0000 Some data here..
67000010: 0000 0000 0000 0000 0000 0000 0000 0000
*
69000000: 2e2e 2e20 616e 6420 736f 6d65 206d 6f72 ... and some mor
69000010: 6520 6461 7461 2068 6572 6500 0000 0000 e data here.....
*

*
67000000: 536f 6d65 2064 6174 6120 6865 7265 0000 Some data here..
67000010: 0000 0000 0000 0000 0000 0000 0000 0000
*
68000000: 2e2e 2e20 616e 6420 736f 6d65 206d 6f72 ... and some mor
68000010: 6520 6461 7461 2068 6572 6500 0000 0000 e data here.....
*

Status report

Who knows what you might find?

• When reverse engineering anything, having symbols or debug info is worth gold

• My favorite: VirusTotal Retrohunt

Side gig

!!!

😴

😴

🫨

What’s this?
What’s that?

• ELF32, GCC 2.x

• Old

• Strings that look like symbols and types

• Sections named .stab, .stabstr

• IDA and Ghidra don’t recognize it

The TL;DR
Because I’m probably starting to run out of time

• Random ESX3 binary

• Turns out old (RPM based) versions of ESX shipped with debug builds

• STABS debug format

• Dump with objdump -g to a .h file

• Time to start hoarding ESX(i) installation media

🫨

🫨

🫨

The TL;TL;DR
I’m bad at keeping things short, did you notice?

• Debug symbols of all binaries until ESX 3.0

• VMFS3 introduced here, close enough

• Debug versions of all binaries until ESX 3.5

• VMware Workbench hosted debug symbols until the Broadcom takeover

• Only kernel, no modules or other binaries

• Kernel only has a handful of useful VMFS constants

• Shoutout to Reno Robert for a copy of 6.7 symbols!

🤤

💪🧸

• LVM

• High symbol coverage, easy to reverse

• VMFS5

• Medium symbol coverage, reverse a lot from scratch

• VMFS6

• Some reusable parts with VMFS5, reverse most from scratch

• /usr/lib/vmware/esxupdate/systemStorage.zip helps a tiny bit

Armed with new knowledge

How long did this little maneuver cost me?
I thought you were fixing a bug

I found it
The bug

Disk

GPT LVM VMFS

.vh.sf

.fdc.sf

.fbb.sf

.sbc.sf

.pbc.sf

.pb2.sf

.
├── My VM
│ └── My VM.vmx
└── Other VM
 └── ...

I found it
The bug

Disk

GPT LVM Extent Extent

0x1000000

I found it
The bug

Disk

GPT LVM Extent ExtentVMFS

.vh.sf

.fdc.sf

.fbb.sf

.sbc.sf

.pbc.sf

.pb2.sf

.
├── My VM
│ └── My VM.vmx
└── Other VM
 └── ...

Finishing the fight

• ⚽-deep in VMFS at this point, might as well see this through

• Rewrite dissect.vmfs from scratch based on 100% my own reverse engineering

What are you still doing in IDA?

And of my summer

• https://github.com/fox-it/dissect.vmfs/pull/38

The fruits of my labor

https://github.com/fox-it/dissect.vmfs/pull/38
https://github.com/fox-it/dissect.vmfs/pull/38
https://github.com/fox-it/dissect.vmfs/pull/38
https://github.com/fox-it/dissect.vmfs/pull/38

Are you finally done?

• Working on a blog/report on VMFS

• Would be a waste to keep this research locked in .py and .idb files

• SoonTM

What’s next?

There’s no next slide
This is the end, you made it 🥳

