
Claude Hardware Testing Infrastructure
Automated Board Identification, UART Discovery, and Test Execution

Andris,an Andreea-Daniela

Analog Devices, Inc.

February 1st, 2026

1 / 25

Outline

1 Hardware Testing Infrastructure Overview

2 Step 1: Identify Flash Project

3 Step 2: Detect UART Connection

4 Step 3: Run Hardware Tests

5 Test Results: SC594-SOM-EZKIT

6 Step 4: Generated Test Rubric

7 Supported Hardware

8 CI/CD Workflow Integration

9 Summary

2 / 25

Hardware Testing Infrastructure

Purpose

Automated end-to-end hardware validation for ADI SC5XX development boards

Testing Pipeline Steps:

1 Identify Flash Project – Check TFTP directory for board configuration

2 Detect UART Connection – Probe serial ports to find connected boards

3 Run Hardware Tests – Execute configuration-driven test suite

4 Generate Test Rubric – Produce detailed markdown results

Key Benefit

Fully automated board discovery and validation with no manual configuration

3 / 25

Testing Pipeline Architecture

Step 1
Check TFTP
/tftpboot/

Step 2
Probe UART
/dev/ttyUSB*

Step 3
Run Tests

run hardware test.py

Step 4
Generate Rubric
test rubric *.md

Inputs

TFTP boot directory

Available serial ports

Board configuration JSON

Outputs

Board identification

UART port mapping

Test results with pass/fail status

Markdown test rubric

4 / 25

Step 1: Identify Flash Project (TFTP Check)

Check /tftpboot/ to determine which board is configured

$ ls -la /tftpboot/

-rwxr -xr-x 68940 stage1 -boot.ldr

-rwxr -xr-x 557044 stage2 -boot.ldr

-rwxr -xr-x 1304076 u-boot -spl -sc594 -som -ezkit.elf

-rwxr -xr-x 4914388 u-boot -proper -sc594 -som -ezkit.elf

-rw-r--r-- 5497752 zImage

-rw-r--r-- 24666 sc594 -som -ezkit.dtb

-rw-r--r-- 7865090 fitImage

-rw-r--r-- 236191744 adsp -sc5xx -full -adsp -sc594 -som -ezkit.rootfs.jffs2

Identified Configuration: SC594-SOM-EZKIT

U-Boot: SPL + proper ELF binaries

Kernel: Linux 6.12 zImage + DTB

Root FS: Full JFFS2 image

5 / 25

TFTP Directory Key Files

File Purpose Board Indicator

u-boot-spl-sc*.elf U-Boot SPL binary Board name in filename
u-boot-proper-sc*.elf U-Boot proper binary Board name in filename
sc*-som-ezkit.dtb Device tree blob Board name in filename
zImage / fitImage Linux kernel image Linked to board-specific version
adsp-sc5xx-*.jffs2 Root filesystem Board name in filename
stage1-boot.ldr Stage 1 bootloader Generic for all boards
stage2-boot.ldr Stage 2 bootloader Generic for all boards

Board Identification Method

Parse filenames containing sc594, sc598, sc589, etc. to determine the target board
configuration

6 / 25

Step 2: Detect UART Connection

Probe serial ports to find and identify connected boards

List available UART devices

$ ls -la /dev/ttyUSB* /dev/ttyACM*

crw -rw ----+ 1 root plugdev 188, 0 /dev/ttyUSB0

crw -rw ----+ 1 root plugdev 188, 1 /dev/ttyUSB1

Direct serial probe

import serial

ser = serial.Serial(’/dev/ttyUSB0 ’, 115200 , timeout =2)

ser.write(b’hostname\n’)

response = ser.read (1000).decode ()

Response: ’adsp -sc594 -som -ezkit’

Detection Result

SC594-SOM-EZKIT detected on /dev/ttyUSB0 – matches TFTP configuration

7 / 25

UART Detection Results

Port Status Hostname Board Type

/dev/ttyUSB0 Connected adsp-sc594-som-ezkit SC594-SOM-EZKIT
/dev/ttyUSB1 No Response – –

Board Identification Patterns:

sc594 → SC594-SOM-EZKIT

sc598 → SC598-SOM-EZKIT

*sc589*mini* → SC589-MINI

*sc589*ezkit* → SC589-EZKIT

Verification

TFTP configuration (SC594-SOM-EZKIT) matches detected board on UART

8 / 25

Step 3: Run Hardware Tests

Execute configuration-driven test suite via UART

$ python3 run_hardware_tests.py \

--config configs/sc594 -som -ezkit.json \

--port /dev/ttyUSB0

Attempting to connect to SC594 -SOM -EZKIT on /dev/ttyUSB0 ...

Connecting to /dev/ttyUSB0 at 115200 baud ...

Already authenticated!

==

STARTING HARDWARE TESTS FOR SC594 -SOM -EZKIT

==

Test Configuration
Serial: /dev/ttyUSB0 @ 115200

I2C Channels: 3

Crypto: Disabled

SRAM: /dev/sram mmap

Audio: sc5xxasoccard / ADAU1962

Network: iperf3 server configured
9 / 25

Test Categories Executed

Core Hardware Tests

Board Detection
Hostname verification
Kernel version check

I2C Communication
Channel count validation
Bus scan per channel

Network Interface
Ethernet/MAC detection
IP address validation
Ping connectivity
iperf3 performance

Peripheral Tests

SRAM Allocation
Device presence
Memory mapping

GP Timer Counters
Counter detection
Increment validation

ALSA Audio
Sound card detection
Codec identification

RPMsg / Clock
Inter-core communication
Clock tree access

10 / 25

Test Results: SC594-SOM-EZKIT

Score: 80%
16 Passed / 4 Failed (20 Total Tests)

Category Tests Passed Failed

Board Detection Hostname, Kernel Info 2 0
I2C Communication Channel Count, Ch0/Ch1/Ch2 Scans 3 1
Network Interface Ethernet, IP, Ping, iperf3 3 1
SRAM Allocation Device Presence, Memory Mapping 1 1
GP Timer Counters Detection, Function 2 0
ALSA Audio Card, Codec Detection 2 0
RPMsg Communication Device, Bind, Echo 2 1
Clock Configuration Debug Access 1 0

Total 16 4

11 / 25

Detailed Test Output

=== Board Detection Tests ===

[PASS] Hostname: adsp -sc594 -som -ezkit

[PASS] Kernel Info: Linux adsp -sc594 -som -ezkit 6.12.0 -yocto -standard -00085 - g27fd ...

=== I2C Communication Tests ===

[FAIL] Channel Count: 1 channels (expected 3)

[PASS] Channel 0 Scan: Scan completed , devices: No

[PASS] Channel 1 Scan: Scan completed , devices: No

[PASS] Channel 2 Scan: Scan completed , devices: Yes

=== Network Interface Tests ===

[PASS] Ethernet Detection: MAC: xx:xx:xx:xx:xx:xx

[PASS] IP Address: IP: xx.xx.xx.xx

[PASS] Ping Test: Ping successful

[FAIL] iperf3 Performance: iperf3 failed or timeout

=== GP Timer Counter Tests ===

[PASS] Counter Detection: 8 counters found

[PASS] Counter Function: Diff: 111720833 (175922355 -> 287643188)

=== ALSA Audio Tests ===

[PASS] Card Detection: Card: sc5xxasoccard

[PASS] Codec Detection: Codec: ADAU1962

12 / 25

Failed Tests Analysis

Test Expected Actual

I2C Channel Count 3 channels 1 channel
iperf3 Performance Throughput data Timeout/connection failed
SRAM Memory Mapping mmap success mmap failed
RPMsg Device Presence Devices found 0 devices found

Possible Causes:

I2C: Device tree configuration or driver loading issue

iperf3: Network server not running or firewall blocking

SRAM: Kernel module not loaded or permission issue

RPMsg: SHARC cores not loaded or remoteproc not started

13 / 25

Step 4: Generated Test Rubric

Output: Markdown test rubric for documentation

Hardware Test Rubric: SC594 -SOM -EZKIT

Date : 2026 -01 -26 16:08:12

** Serial Port :** /dev/ttyUSB0

** Kernel :** Linux 6.12.0 -yocto -standard

Test Results Summary

| Category | Passed | Failed | Total |

|---------------------|--------|--------|-------|

| Board Detection | 2 | 0 | 2 |

| I2C Communication | 3 | 1 | 4 |

| Network Interface | 3 | 1 | 4 |

| ... | ... | ... | ... |

Overall Score: 80% (16/20)

Issues Identified

1. I2C Channel Count: Expected 3, found 1

2. iperf3: Connection timeout

...

Output Location

docs/hardware-testing/test rubric SC594-SOM-EZKIT 2026-01-26 160812.md
14 / 25

Supported ADI SC5XX Boards

Board Processor I2C Ch Crypto Config File

SC598-SOM-EZKIT Cortex-A55 + SHARC+ 3 (skip ch0) Yes sc598-som-ezkit.json

SC594-SOM-EZKIT Cortex-A5 + SHARC+ 3 No sc594-som-ezkit.json

SC589-MINI Cortex-A5 + SHARC+ 2 No sc589-mini.json

SC589-EZKIT Cortex-A5 + SHARC+ 3 No sc589-ezkit.json

SC584-EZKIT Cortex-A5 + SHARC+ 3 No sc584-ezkit.json

SC573-EZKIT Cortex-A5 + SHARC+ 3 No sc573-ezkit.json

Serial Communication Settings:

Baud rate: 115200

Credentials: root / adi

Flow control: None (GPIO-controlled on SOM boards)

15 / 25

GitHub Actions Workflow Overview

Workflow: build-linux-images.yml

Automated CI/CD pipeline for building, flashing, and testing ADI SC5XX boards

Workflow Triggers:

workflow dispatch – Manual trigger with version/manifest inputs

repository dispatch – External API triggers

pull request – PR events (opened, edited, synchronize)

push – Push to claude testing branch

Key Feature: Claude AI Integration

The workflow includes stages that invoke Claude Code CLI for automated hardware
identification and test execution

16 / 25

Workflow Architecture

Set Variables
timestamp, paths

Checkout
repos + context

Reboot Board
clean tftpboot

Download
artifacts

Flash
Bootloader

Boot Linux
via UART

Claude
HW Identify

Claude
Testing

Run Tests
sanity checks

Standard Stages (blue)
Variable setup and checkout

Board reboot and artifact download

Bootloader flash and Linux boot

Claude AI Stages (orange)
Hardware identification

Automated test execution

Rubric generation

17 / 25

Claude Stage 1: Hardware Identification

Step: “Hardware identification and testing via Claude”

- name: Hardware identification and testing via Claude

run: |

source /etc/sc5xx -utils/${{ matrix.platform }}.sh bootmode1

source /variables/claude_vars.sh

cd claude_context_1

claude -p "Identify board type from /tftpboot/ filenames"

claude -p "Find board on /dev/ttyUSB* at 115200 baud , verify hostname"

claude -p "Run hardware tests with matching config , save rubric"

Claude Prompts Executed:
1 TFTP Check – Identify board from /tftpboot/ contents
2 UART Detection – Probe serial ports to find connected board
3 Test Execution – Run hardware test infrastructure

Context Repository

Uses claude context 1 (branch: hardware identification)

18 / 25

Claude Stage 2: Automated Testing

Step: “Claude Testing”

- name: Claude Testing

run: |

source /etc/sc5xx -utils/${{ matrix.platform }}.sh bootmode1

source /variables/claude_vars.sh

cd claude_context_2

claude -p "scan the files from /etc/sc5xx -utils and run the specific

hardware tests for the ${{ matrix.platform }} board connected

to this machine and generate a rubric"

Single Comprehensive Prompt:

Scans /etc/sc5xx-utils/ for board configuration scripts
Identifies the specific platform (sc594-som-ezkit, sc598-som-ezkit)
Executes hardware tests via UART
Generates markdown test rubric

Context Repository

Uses claude context 2 (branch: hardware run)

19 / 25

Claude Context Repositories

claude context 1
Branch: hardware identification

TFTP directory analysis

UART port discovery

Board hostname detection

Key Files:

CLAUDE.md

uart discovery.py

claude context 2
Branch: hardware run

Board configuration parsing

Test suite execution

Rubric generation

Key Files:

CLAUDE.md

run hardware tests.py

Separation of Concerns

Two separate context repositories allow specialized Claude prompts for each phase

20 / 25

Workflow Run Example: SC594-SOM-EZKIT

From workflow run

Job: Flash and Boot (sc594 -som -ezkit , full)

Runner: LNX -RO -1 (analog -Precision -5520)

Branch: claude_testing

Status: Completed (with test failures)

Test Results:

GPTIMER -COUNTERS: PASS (8 timers detected)

SRAM: PASS

I2C: FAIL (1 of 3 channels working)

RPMsg: FAIL (Echo test 1 failed)

Networking: PASS (ping OK , iperf3 ~94 Mbits/sec)

ALSA Devices: PASS (adau1962 -hifi -0 detected)

Clock: PASS

Final Score: 3 failures / 7 test categories

Workflow Outcome

Claude successfully identified the board, executed tests via UART, and the results were
captured in the workflow logs

21 / 25

Hardware Testing Infrastructure Summary

4-Step Testing Pipeline

1 Identify Flash Project – Parse /tftpboot/ for board configuration

2 Detect UART Connection – Probe serial ports, match hostname patterns

3 Run Hardware Tests – Execute JSON-configured test suite via UART

4 Generate Test Rubric – Produce markdown documentation

SC594-SOM-EZKIT Results

Detected on /dev/ttyUSB0

Kernel: Linux 6.12.0

Score: 80% (16/20 tests)

Key issues: I2C, iperf3, SRAM, RPMsg

Framework Capabilities

9 test categories

20+ individual tests

6 supported board types

Automated rubric generation

22 / 25

CI/CD Integration Summary

GitHub Actions Workflow

Fully automated pipeline from build to test with Claude AI integration

Claude-Powered Stages:
1 Hardware Identification (3 prompts)

Check TFTP for flashed configuration
Detect board via UART connections
Execute hardware test infrastructure

2 Automated Testing (1 comprehensive prompt)
Parse /etc/sc5xx-utils/ configurations
Run platform-specific hardware tests

Key Benefits

No manual intervention required – intelligent test execution and automated documentation

23 / 25

Quick Reference Commands

Step 1: Check TFTP configuration

ls -la /tftpboot/

Step 2: Detect UART connections

python3 -c "

import serial

ser = serial.Serial(’/dev/ttyUSB0 ’, 115200 , timeout =2)

ser.write(b’hostname\n’)

print(ser.read (1000).decode ())

"

Step 3: Run hardware tests

python3 run_hardware_tests.py \

--config configs/sc594 -som -ezkit.json \

--port /dev/ttyUSB0

Output: test_rubric_SC594 -SOM -EZKIT_ <timestamp >.md

24 / 25

Thank you!

25 / 25

	Hardware Testing Infrastructure Overview
	Step 1: Identify Flash Project
	Step 2: Detect UART Connection
	Step 3: Run Hardware Tests
	Test Results: SC594-SOM-EZKIT
	Step 4: Generated Test Rubric
	Supported Hardware
	CI/CD Workflow Integration
	Summary

