Claude Hardware Testing Infrastructure

Automated Board Identification, UART Discovery, and Test Execution

Andrisan Andreea-Daniela

Analog Devices, Inc.

February 1st, 2026

1/25

© Hardware Testing Infrastructure Overview
© Step 1: Identify Flash Project

© Step 2: Detect UART Connection

@ Step 3: Run Hardware Tests

© Test Results: SC594-SOM-EZKIT

© Step 4: Generated Test Rubric

@ Supported Hardware

© CI/CD Workflow Integration

© Summary

2/25

Hardware Testing Infrastructure

Purpose
Automated end-to-end hardware validation for ADI SC5XX development boards

—

Testing Pipeline Steps:
O Identify Flash Project — Check TFTP directory for board configuration
@ Detect UART Connection — Probe serial ports to find connected boards
© Run Hardware Tests — Execute configuration-driven test suite

@ Generate Test Rubric — Produce detailed markdown results

Key Benefit
Fully automated board discovery and validation with no manual configuration

3/25

Testing Pipeline Architecture

Step 1 Step 2 Step 3 Step 4
Check TFTP Probe UART Run Tests Generate Rubric
/tftpboot/ /dev/ttyUSBx* run_hardware_test.py test_rubric_*.md
Inputs Outputs
@ TFTP boot directory @ Board identification
@ Available serial ports e UART port mapping
@ Board configuration JSON @ Test results with pass/fail status

@ Markdown test rubric

4/25

Step 1: Identify Flash Project (TFTP Check)

Check /tftpboot/ to determine which board is configured

$ 1s -la /tftpboot/

-rwxr-xr-x 68940 stagel-boot.ldr

-rwxr-xr-x 557044 stage2-boot.ldr

-rwxr-xr-x 1304076 u-boot-spl-scb594-som-ezkit.elf

-rwxr-xr-x 4914388 u-boot-proper-scb94-som-ezkit.elf

-rw-r--r-- 5497752 zImage

-rw-r--r-- 24666 scb94-som-ezkit.dtb

-rw-r--r-- 7865090 fitImage

-rw-r--r-- 236191744 adsp-scbxx-full-adsp-scb94-som-ezkit.rootfs.jffs2

Identified Configuration: SC594-SOM-EZKIT

@ U-Boot: SPL + proper ELF binaries
o Kernel: Linux 6.12 zImage + DTB
@ Root FS: Full JFFS2 image

5/25

TFTP Directory Key Files

File Purpose Board Indicator
u-boot-spl-sc*.elf U-Boot SPL binary Board name in filename
u-boot-proper-sc*.elf U-Boot proper binary = Board name in filename
scx-som-ezkit.dtb Device tree blob Board name in filename
zImage / fitImage Linux kernel image Linked to board-specific version
adsp-scbxx—*.jffs2 Root filesystem Board name in filename
stagel-boot.ldr Stage 1 bootloader Generic for all boards
stage2-boot.ldr Stage 2 bootloader Generic for all boards

Board Identification Method

Parse filenames containing sc594, sc598, sc589, etc. to determine the target board
configuration

6/25

Step 2: Detect UART Connection

Probe serial ports to find and identify connected boards

List available UART devices

$ 1s -la /dev/ttyUSBx* /dev/ttyACMx

cru-rw----+ 1 root plugdev 188, 0 /dev/ttyUSBO
crw-rw----+ 1 root plugdev 188, 1 /dev/ttyUSB1

Direct serial probe

import serial

ser = serial.Serial(’/dev/ttyUSBO’, 115200, timeout=2)
ser.write(b’hostnamel\n’)

response = ser.read (1000).decode ()

Response: ’adsp-scb94-som-ezkit’

Detection Result

SC594-SOM-EZKIT detected on /dev/ttyUSBO — matches TFTP configuration

7/25

UART Detection Results

Port Status Hostname Board Type

/dev/ttyUSBO Connected adsp-scb94-som-ezkit SC594-SOM-EZKIT
/dev/ttyUSB1 No Response - -

Board Identification Patterns:
@ *scb94*x — SC594-SOM-EZKIT
@ *scb98* — SCH98-SOM-EZKIT
@ *scb89*mini*x — SC589-MINI
@ *scb89*ezkit* — SCH89-EZKIT

Verification
TFTP configuration (SC594-SOM-EZKIT) matches detected board on UART

8/25

Step 3: Run Hardware Tests

Execute configuration-driven test suite via UART

$ python3 run_hardware_tests.py \
--config configs/scb94-som-ezkit.json \
--port /dev/ttyUSBO

Attempting to connect to SC594-SOM-EZKIT on /dev/ttyUSBO...
Connecting to /dev/ttyUSBO at 115200 baud...
Already authenticated!

Test Configuration
@ Serial: /dev/ttyUSBO @ 115200 o SRAM: /dev/sram mmap

o [2C Channels: 3 @ Audio: scbxxasoccard / ADAU1962

@ Crypto: Disabled @ Network: iperf3 server configured

Test Categories Exec

Core Hardware Tests Peripheral Tests

o Board Detection e SRAM Allocation
@ Hostname verification @ Device presence
@ Kernel version check @ Memory mapping

e 12C Communication o GP Timer Counters
@ Channel count validation o Counter detection
@ Bus scan per channel @ Increment validation

o Network Interface o ALSA Audio
@ Ethernet/MAC detection @ Sound card detection
@ IP address validation @ Codec identification
@ Ping connectivity
@ iperf3 performance ° RPMSg / Clock

@ Inter-core communication
@ Clock tree access

10/25

Test Results: SC594-SOM-EZKIT

Score: 80%

16 Passed / 4 Failed (20 Total Tests)

Category Tests Passed Failed
Board Detection Hostname, Kernel Info 2 0
12C Communication Channel Count, Ch0/Ch1/Ch2 Scans 3 1
Network Interface Ethernet, IP, Ping, iperf3 3 1
SRAM Allocation Device Presence, Memory Mapping 1 1
GP Timer Counters Detection, Function 2 0
ALSA Audio Card, Codec Detection 2 0
RPMsg Communication Device, Bind, Echo 2 1
Clock Configuration Debug Access 1 0
Total 16 4

11/25

Detailed Test Output

=== Board Detection Tests ===
[PASS] Hostname: adsp-sc594-som-ezkit
[PASS] Kernel Info: Linux adsp-sc594-som-ezkit 6.12.0-yocto-standard-00085-g27fd...

=== I2C Communication Tests ===
[FAIL] Channel Count: 1 channels (expected 3)
[PASS] Channel O Scan: Scan completed, devices: No
[PASS] Channel 1 Scan: Scan completed, devices: No
[PASS] Channel 2 Scan: Scan completed, devices: Yes

=== Network Interface Tests ===
[PASS] Ethernet Detection: MAC: XX:XX:XX:XX:XX:XX
[PASS] IP Address: IP: XX.XX.XX.XX
[PASS] Ping Test: Ping successful
[FAIL] iperf3 Performance: iperf3 failed or timeout

GP Timer Counter Tests
[PASS] Counter Detection: 8 counters found
[PASS] Counter Function: Diff: 111720833 (175922355 -> 287643188)

=== ALSA Audio Tests ===
[PASS] Card Detection: Card: scbxxasoccard
[PASS] Codec Detection: Codec: ADAU1962

12/25

Failed Tests Analysis

Test Expected Actual

[2C Channel Count 3 channels 1 channel

iperf3 Performance Throughput data Timeout/connection failed
SRAM Memory Mapping mmap success mmap failed

RPMsg Device Presence Devices found 0 devices found

Possible Causes:
@ 12C: Device tree configuration or driver loading issue
o iperf3: Network server not running or firewall blocking
@ SRAM: Kernel module not loaded or permission issue
@ RPMsg: SHARC cores not loaded or remoteproc not started

13/25

Step 4: Generated Test Rubric

Output: Markdown test rubric for documentation

Hardware Test Rubric: SC594-SOM-EZKIT
Date: 2026-01-26 16:08:12
xSerial Port: /dev/ttyUSBO
Kernel : Linux 6.12.0-yocto-standard

Test Results Summary

| Category | Passed | Failed | Total |
| Seoscoscoscssosnonoos | eosccsas | oeoecses [|eosccsa
| Board Detection | 2 | o | 2

| I2C Communication | 3 | 1 | 4

| Network Interface | 3 | |

| | | | |

Overall Score: 80% (16/20)

Issues Identified
1. I2C Channel Count: Expected 3, found 1
2. iperf3: Connection timeout

Output Location
docs/hardware-testing/test_rubric_SC594-SOM-EZKIT_2026-01-26_160812.md

14/25

Supported ADI SC5XX Boards

Board Processor 12C Ch Crypto Config File
SC598-SOM-EZKIT Cortex-A55 + SHARC+ 3 (skip ch0) Yes scb98-som-ezkit. json

SC594-SOM-EZKIT Cortex-A5 + SHARC+ 3 No scb94-som-ezkit. json
SC589-MINI Cortex-A5 + SHARC+ 2 No sc589-mini. json
SC589-EZKIT Cortex-A5 + SHARC+ 3 No scb89-ezkit. json
SCH84-EZKIT Cortex-A5 + SHARC+ 3 No scb84-ezkit. json
SC573-EZKIT Cortex-Ab5 + SHARC+ 3 No scb73-ezkit. json

Serial Communication Settings:
e Baud rate: 115200
o Credentials: root / adi
@ Flow control: None (GPIO-controlled on SOM boards)

15/25

GitHub Actions Workflow Overview

Workflow: build-linux-images.yml
Automated CI/CD pipeline for building, flashing, and testing ADI SC5XX boards

Workflow Triggers:
e workflow_dispatch — Manual trigger with version/manifest inputs
@ repository_dispatch — External API triggers
@ pull request — PR events (opened, edited, synchronize)

@ push — Push to claude_testing branch

Key Feature: Claude Al Integration

The workflow includes stages that invoke Claude Code CLI for automated hardware
identification and test execution

16 /25

rkflow Architecture

Set Variables
timestamp, paths

Checkout
repos + context

Reboot Board
clean tftpboot

sanity checks

Standard Stages (blue)

@ Variable setup and checkout

@ Board reboot and artifact download

@ Bootloader flash and Linux boot

Flash Boot Linux Claude
Bootloader via UART HW ldentify
Run Tests /

Download
artifacts

Claude
Testing

Claude Al Stages (orange)

@ Hardware identification

@ Automated test execution

@ Rubric generation

17/25

Claude Stage 1: Hardware ldentification

Step: “Hardware identification and testing via Claude”

- name: Hardware identification and testing via Claude
run: |

source /etc/scbxx-utils/${{ matrix.platform }}.sh bootmodel
source /variables/claude_vars.sh
cd claude_context_1
claude -p "Identify board type from /tftpboot/ filenames"
claude -p "Find board on /dev/ttyUSB* at 115200 baud,
claude -p "Run hardware tests with matching

verify hostname"
config, save rubric"

Claude Prompts Executed:
© TFTP Check — Identify board from /tftpboot/ contents
@ UART Detection — Probe serial ports to find connected board
© Test Execution — Run hardware test infrastructure

Context Repository

Uses claude_context_1 (branch: hardware_identification)

18/25

Claude Stage 2: Automated Testing

Step: “Claude Testing”

- name: Claude Testing
run: |
source /etc/scbxx-utils/${{ matrix.platform }}.sh bootmodel
source /variables/claude_vars.sh
cd claude_context_2
claude -p "scan the files from /etc/scbxx-utils and run the
ha are te
to

specific

for the ${{ matrix.platform }} board connected
machine and generate a ru c "

oric

Single Comprehensive Prompt:
@ Scans /etc/scbxx-utils/ for board configuration scripts

o |dentifies the specific platform (sc594-som-ezkit, sc598-som-ezkit)
@ Executes hardware tests via UART
@ Generates markdown test rubric

Context Repository

Uses claude_context_2 (branch: hardware_run)

19/25

Claude Context Reposit

claude_context_1 claude_context_2
Branch: hardware_identification Branch: hardware_run
@ TFTP directory analysis @ Board configuration parsing
@ UART port discovery @ Test suite execution
@ Board hostname detection @ Rubric generation
Key Files: Key Files:
@ CLAUDE.md @ CLAUDE.md
@ uart_discovery.py @ run_hardware_tests.py

Separation of Concerns
Two separate context repositories allow specialized Claude prompts for each phase

20/25

Workflow Run Example: SC594-SOM-EZKIT

From workflow run

Job: Flash and Boot (scb94-som-ezkit, full)
Runner: LNX-RO-1 (analog-Precision-5520)
Branch: claude_testing

Status: Completed (with test failures)

Test Results:
GPTIMER-COUNTERS: PASS (8 timers detected)
SRAM: PASS
I2C: FAIL (1 of 3 channels working)
RPMsg: FAIL (Echo test 1 failed)
Networking: PASS (ping 0K, iperf3 ~94 Mbits/sec)
ALSA Devices: PASS (adaul962-hifi-0 detected)
Clock: PASS

Final Score: 3 failures / 7 test categories

Workflow Outcome

Claude successfully identified the board, executed tests via UART, and the results were
captured in the workflow logs

21/25

Hardware Testing Infrastructure Summary

4-Step Testing Pipeline

Q Identify Flash Project — Parse /tftpboot/ for board configuration
@ Detect UART Connection — Probe serial ports, match hostname patterns
© Run Hardware Tests — Execute JSON-configured test suite via UART

@ Generate Test Rubric — Produce markdown documentation

SC594-SOM-EZKIT Results Framework Capabilities
@ Detected on /dev/ttyUSBO @ O test categories
o Kernel: Linux 6.12.0 @ 20+ individual tests
@ Score: 80% (16/20 tests) @ 6 supported board types
o Key issues: 12C, iperf3, SRAM, RPMsg @ Automated rubric generation

22/25

Cl/CD Integration Summary

GitHub Actions Workflow
Fully automated pipeline from build to test with Claude Al integration

—

Claude-Powered Stages:

© Hardware Identification (3 prompts)

@ Check TFTP for flashed configuration
@ Detect board via UART connections
@ Execute hardware test infrastructure

@ Automated Testing (1 comprehensive prompt)

@ Parse /etc/sc5xx-utils/ configurations
@ Run platform-specific hardware tests

Key Benefits

No manual intervention required — intelligent test execution and automated documentation

23/25

Quick Reference Commands

Step 1: Check TFTP configuration
ls -la /tftpboot/

Step 2: Detect UART connections
python3 -c "

import serial

ser = serial.Serial(’/dev/ttyUSBO’,
ser.write(b’hostname\n’)

print (ser.read (1000) .decode ())

Step 3: Run hardware tests
python3 run_hardware_tests.py \

115200,

--config configs/scb94-som-ezkit.json \

--port /dev/ttyUSBO

timeout=2)

Output: test_rubric_SC594-SOM-EZKIT_<timestamp>.md

24 /25

Thank youl!

	Hardware Testing Infrastructure Overview
	Step 1: Identify Flash Project
	Step 2: Detect UART Connection
	Step 3: Run Hardware Tests
	Test Results: SC594-SOM-EZKIT
	Step 4: Generated Test Rubric
	Supported Hardware
	CI/CD Workflow Integration
	Summary

