Multi-Writer CDC
Challenges

Sunny Bains
PingCAP

FOSDEM 2026

Traditional Replication

- MULTIPLE
= —Q READER e 2 Single writer

222 multiple reader
MULTIPLE
' Q READER o
e = Ordering of events

4

SINGLE
WRITER

: MySQL PostgreSQL
Examples Ml__]SClRL binlog @ WAL replication

TiDB CDC

Distributed Write Architecture

TE

Raft Log
(Local)

" \— TikV Node —

CE

Raft Log
(Local)

\—— TiKV Node —

CE

SQL Node \—— TiKV Node ——

» Multiple SQL Nodes write to multiple TiKV nodes.
» Distributed transactions can touch multiple TiKV

nodes.

» The Raft log stores the replicated state machine

and distributed transactions.

Raft Log
(Local)

» The Raft log is per TiKV node not a global log.

Global TSO Ordering & Commit

Ordered Stream O\
. TSO (TSO Global Downstream
. (Timestamp Commit Order) Reader

Oracle)

» CDC Events have to be read from the Raft logs and
then ordered according to the global commit order
based on the commit TSO when propagating
the CDC.

» Downstream readers must see events in the TSO
global order in which they were committed when
reading from the CDC stream.

The Ordering Guarantee

The execution order is: DML - DDL - DML. TiCDC ensures schema correctness
by coordinating execution.

°
— H

.

(INSERT INTO ¢ (id, val)... (ts=100) |

——

o

Set Barrier
TS =150
(DDL timestamp)

& J

—

2. — o
—

—

Replicate all DML
with ts < 150 to

)

INSERT INTO t (id, val, new_col)... (ts=200) |

—

._ >
DDL BARRIER (ts=150)
e ' (N (
< @ 4, O L
o :
—
Wait until Execute the DDL Resume
CheckpointTS downstream replicating DML
reaches 150 with ts > 150

downstream

o

2

o

J

.

J

PingCAP Docs

PREVIOUS ARCHITECTURE

Centralized Owner node
Owner handles changefeeds,
table progress, scheduling
Workers tightly coupled to
Owner logic

WORKER
NODE

MOTIVATION &
BACKGROUND

Growing cluster scale exposes
architectural limits

Owner-centric design becomes
a bottleneck

stability and operability

Cloud-native and multi-tenant
support are constrained

RA
4N
Increasing complexity impacts
@&

Scaling Challenges with High Region Count

(- B

1 Million Regions across
3 TiKV Nodes

L + ~333K regions per TiKV

f

?
el
JT ke
Concurrent gRPC Streams
+ ~333K per TiCDC capture

N\

This Creates:

ResolvedTs Messages
+ ~333K every tick interval

. Memory Pressure

Each Delegate/Resolver
holds state

CPU

i

CPU Overhead

Processing millions of
small messages

IRRERE

(tg)) Network Amplification
A ResolvedTs fanout

Real-World Symptoms (From TiKV issues):
A CDC endpoint CPU 100% with just 800 ops/s (#9981)
A TiKV O0OM from buffered CDC events (#8168, #9996)
A Resolver memory unbounded growth (#15412)

CLOUD-NATIVE CHALLENGES

- % -
x * Difficult
i« multi-tenancy

* No fine-grained
'33 _E‘;.Ii} resource control
<§? ,./\ * High operational
@{@ complexity

SCALABILITY LIMITATIONS
N

. . . e Sy
Owner is a single-point .~ .0)

bottleneck

~100k tables, ~400
changefeeds, ~10 nodes

~700MB/s throughput,
~3 DDLs/sec

@

Old architecture vs new Architecture .

L

(.

The “Classic” TiCDC architecture faced scaling challenges that were addressed in v8.5.4-r1.

'

A Previous limitations

The SOms Timer Trap:

“Owner” node’s 50ms polling loop
capped DDL speed (~3/sec),
introducing a "lag floor.”

Stateful/Stateless Mixing:
Tightly coupled components.
Node failure caused massive
“Stop-the-world" latency spikes.

Large Transaction Buffering: a
GB-sized transactions overwhelmed _’ ‘.‘A
Sorter memory, leading to OOM _’-:
errors or disk thrashing. 5 AV s

s

» Event-Driven Architecture:
Moving to a purely event-driven
model for sub-millisecond processing
and higher DDL throughput.

» Task Splitting:
Splitting single table replication
across multiple nodes for "hotspot”
(ultra-high write volume) handling.

» Decoupled Log Service:
Dedicated stateful “Log Service” for
sorting/storage, leaving stateless
“Processors” to push data,
enabling faster scale-out.

M Ongoing & Future Improvements

5=

Hotspot Handling

€5

Faster Scale-Out

..\

CORE DESIGN PRINCIPLES

e —

O b
< M : 0l
y) - &
el | elae - BEE
O\.\g/?"c ol é i
DecentT;ization Even:riven Clear s::aration

processing of concerns

NEW ARCHITECTURE COMPONENTS -

————

- »j{j Upstream 4
k 1= F Adapter

Log Service

g

———
——— :‘:

» ik QT 0
oxv:::,;zimiﬂiﬁ»@ 2 0——0 Coordinator
i 4 T o

TiCDC Architecture

How CDC Hooks into RaftStore (Coprocessor Observer Pattern)

~

4 TiKV Node

CmdObserver
(CDC Observer)

RaftStore # Apply FSM =%

- \ 4
| : CDC Endpoint
’ RPC Stream : :
Delegate Lock e g(ChangeData) = TICDC Client
per region Resolver

CDC doesn't intercept Raft messages.
Instead, it uses the Coprocessor Observer pattern.

Batched Res:olvede & Multiplexed Streams (Op‘timizations)

e

1. Batched ResolvedTs (Network Optimization) | | 2.Multiplexed Streams (Connection Optimization)
- Single gRPC stream handles multiple regions
= O(regions) Before: 1 stream per region After: 1 stream per store (multiplexed)
=B 83 ‘ Messages ,C)L\ 3 req_id: 1
Q = Echd —
88 _» g d TikV TicDC | :
. = Batche :
Many Regions =& E _# TiKV req_id: N
A ResolvedTs ! Sl £¢
-5 x 1 stream
x 333K streams (multiplexed by request_id)
Reduces message count from O(regions) to O(1) per interval. The “request_id™ field in ChangeDataRequest enables this multiplexing.
_ 7 N
‘ { Additional Optimizations }
g Region Merge (B-Tree) 4. Memory Quota & Backpressure 5. Resolved-by-Raft

~ Raft log 7 :
- " When quota exhausted Avoids tracking every
»» MinResolvedTs f;) = & —> backpressure - slow 0 () lock; uses Raft's applied
t.tree.Ascend(...) Memory Quota Backpressure down event generation. Applied Index e

. J (S ~

TiCDC New Architecture (v8.5+)

The new architecture fundamentally redesigns for scale:

Data sharing Disk-backed Event-driven O(1) complexity

Changefeeds

Changefeeds

Changefeeds

Log : : = | : \ 1

Service

|

Multiple changefeeds Events stored on No timer polling Unaffected by
share one Log Service disk, not memory overhead table count

Changefeeds

Changefeeds

Mounter’s Role

Sits between the sorter and sink in the data flow:

p
TiKV = Puller | = Sorter ——»[

——

Mounter 7| = Sink
—)

What It Does

—= Downstream |

o
Decodes raw KV pairs

(=)
+ [}
S’

Deserializes TiKV CDC
low-level key-value changes
into structured row data.

Why It's Separate

N

Schema resolution

q,OQg_

Maps raw bytes to column
names/types using table
schema. Handles mid-stream
DDL changes.

7

7

Constructs row change
events

INSERT

Produces a canonical
representation with table,
operation, new, and old
column values.

™~

-
Formats for downstream
consumption

EEdh
SQL > JSON

Prepares data in formats the

sink understands (e.g., SQL,
JSON/Avro).

% Decoupling encoding logic allows Sorter to work on opaque bytes (faster, simpler) and Sink to receive

clean, structured events.

@J The mounter is a compute-heavy component (lots of deserialization).

N

Technical Deep Dive: The Heart of TiCDC

A. The Resolved TS (Timestamp) {:@% B. Event Sorting and Transaction
Mechanism Reconstruction
e Watermark Tracking: Each TiKV node e Sorter: Buffers and flushes interleaved logs
maintains a "Resolved TS" (no earlier writes in strict chronological order (often via
guaranteed). Pebble).

e Global Aggregation: S
TiCDC pulls Resolved TS .52)
from all Regions.)

e The Bar: Calculates v/z’\" \$

e Mounter: Transforms raw "Key:Value" bytes
into RowChangedEvent using schema
snapshot.

£ . 4 R ° biddd
Minimum Resolved TS / b ol 5‘ -l—

TTreY
{}

"safe-to-emit” RESOLVED TS =1 I HHH > ;'}E
as the “safe-to-emit = 2 i 3 {@}l

line. 2 @ ° EEEE]
‘ Sorter Mounter

Cluster Startup Workflow

Instances register Coordinator Changefeeds
in ETCD elected scheduled

Instance Join / Leave

|

/.

v

VRS

Dynamic Coordinator Automatic
registration rebalances workloads recovery

Special Scenarios

Network isolation Partitioned tables Upgrade / downgrade
handling compatibility

UPSTREAM ADAPTER

I
QT p

—»»@—o

-~ o’éb

Pulls upstream
changes

g»

(<< *)

Acts as
event source

-:':' s, a0

Horizontally
scalable

LOG SERVICE

7 ; = £ =
rOJ : ‘°'
& u|i@u|n e i
Local disk event Table Stream Event Schema

storage Manager Store Store

DOWNSTREAM ADAPTER

s
R=A
()~
N
Event Changefeed Event Redo Log
dispatch Maintainer Store Uploader

COORDINATOR

. GQ G, . o
P

. I !

= S Qe e i
— — —
255 Bfs So@o<
Schedules Manages No data-plane
changefeeds metadata in ETCD responsibilities

New Changefeed Creation

Create Create Fetch and
maintainer dispatchers push events

Persistence & Metadata

Changefeed
Checkpoint Ts
in ETCD

-

Downstream

Table Checkpoint Ts
downstream

(U

» g
1@

Controlled update
frequency

New Changefeed Creation

Create » Create e Fetch and
maintainer Spatchers ~~~ push events

Large Changefeeds & Tables

More changefeeds Large tables Transaction integrity
supported can be split preserved
|
-i.._‘__
1 1

Third-Party Sink Support

Golang plugins RPC/Webhook sinks Extensible
architecture

Coordinator vs Maintainer

/fé ©~ O
“ scheduling $ Cmafggﬁ‘ffeed \ &93
**/ Maintainer

. Clear
responsibility
split

Failure Handling

.."k? ‘\wl’ - .
L iy - S~ i 3 3
i X

! O = O
Crash recovery ETCD-based Brain-split
via metadata leadership prevention

Automatic state restoration Distributed consensus Quorum-based stability

Summary
https://github.com/pingcap/ticdc

Linear Higher Cleaner Cloud-native
scalability throughput - architecture ready

