
Codethink February 2026

Externally verifying Linux
deadline scheduling

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

1

ROLE

Speaking today

TENURE

EDUCATION

22

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

Theodore Tucker

Software Engineer Joined Codethink in
2024

Still studying:
BSc Combined STEM
Open University

03
Measurement
firmware

Contents

01
Linux deadline
scheduling

02
Measurement
hardware

04
Results

05
Continuous
compliance with HIL
tests

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

4

Linux deadline scheduling

– Starting point: multithreaded Linux-based OS on multi-core
processor in safety-related context

– Interactions of threads, cores, and external interrupts make
behaviour difficult to predict…

– … but threads must meet hard real-time performance
constraints

– Working towards certification of scheduling as a safety
function under IEC 61508

– We need to rigorously measure that performance on real
hardware for every iteration of the OS image

– On each sched_setattr call, the kernel performs the
admission test

– If I accept this thread, can I still share CPU time to meet its
and every other threadʼs demands?

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

5

Linux deadline scheduling

–
Linux kernel provides SCHED_DEADLINE policy (since 3.14 to
model and implement real-time scheduling requirements for
threads

– Employs earliest deadline first EDF) algorithm to share CPU
time between competing threads

– When a real-time thread starts, it provides its real-time
requirements to the kernel with sched_setattr syscall

–

sched_setattr arguments:
● Period (ns) – how often should I execute?
● Deadline (ns) – when in the period should I have

finished executing by?
● Runtime (ns) – what is my worst case execution time

each period?

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

6

Linux deadline scheduling

– Starts as a SCHED_OTHER “monitorˮ thread

– Monitor thread starts a SCHED_DEADLINE “workerˮ thread
with user-configurable arguments

– Monitor thread uses Linuxʼs monotonic clock to measure and
report the “trueˮ runtime and period of the worker thread

– Measured runtimes and periods reported to an onboard
Safety Monitor to cause an external mitigation on failure

– Measured runtimes and periods also reported to systemd
journal for offboard post-test analysis

– But… the deadline scheduler relies on the same monotonic
clock that rusty-worker uses to measure its performance

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

7

CTRL OS

– Codethink Trustable Reproducible Linux

– Based on latest Linux kernel and Freedesktop-SDK userland

– Reference target hardware: Intel NUC 11TNKv5 (amd64) and
Radxa Rock 5B (aarch64

– Testing images integrate rusty-worker – a Rust program
which exercises the deadline scheduler

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

8

Externally measuring deadline scheduling

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

9

Test harness

– KiCAD-designed custom PCB

– 2x Raspberry Pi Pico: a verifier and a probe to flash the
verifier with verification firmware at test start

–

The verifier:
● receives UART start/finish signals from DUT at TTL

or RS232 levels (shifter onboard)
● computes min/mean/max period/runtime over a

10-second window
● reports measurements to test runner over USB CDC

–

The probe:
● runs RPi Foundationʼs debug-probe firmware
● receives binaries from the test runner over USB

CMSISDAP
● flashes binaries to the verifier Pico over ARM SWD

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

10

– Rust requires more verbose peripheral initialisation

– Rust provides compile-time guarantees of type- and
memory-safety, and deeper understanding of hardware

– Rust compiler natively supports cross-compilation for the
RP2040 – no special GCC version needed

– Easier to reproducibly build the verification firmware
binary with a reproducible compiler

– CTRL OS uses Apache BuildStream to define and build OS
and CI images…

Verification firmware

– Written in Rust with embedded-hal and rp2040-hal crates

– Interrupt triggered when signal received on UART: signal
queued with monotonic timestamp (µs precision)

– In main loop, signals are dequeued, scheduling parameters
calculated, and reported as YAML over USB CDC

–

Runtime:
 samples: 999
 min: 322
 mean: 335
 max: 355
Period:
 samples: 999
 min: 9997
 mean: 9999
 max: 10001
window-uid: DFAA4DA88620B17E

kind: manual

build-depends:
- components/flip-link.bst
- components/rust-embedded.bst
- freedesktop-sdk.bst:components/gcc.bst

config:
 install-commands:
 - cargo build --release --features uart0
 - install -D -m 660 target/thumbv6m-none-eabi/release/vfrs_scheduling
%{install-root}/opt/verification-firmware-rs/vfrs_scheduling_uart0

sources:
- kind: git_repo
 url: sif:platform/verification-firmware-rs.git
 track: '*.*.*'
 ref: 2026.01.05_4c619d4c75dbfc81b58d8ea4a63bc4a0c2ac316a-0-g4c619d4c75dbfc81b58d8ea4a63bc4a0c2ac316a
- kind: cargo
 ref:
 - name: arrayvec
 version: 0.7.6
 sha: 7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50
 - name: bare-metal
 version: 0.2.5
 sha: 5deb64efa5bd81e31fcd1938615a6d98c82eafcbcd787162b6f63b91d6bac5b3
 # etc.

Rust compiler with thumbv6m-none-eabi architecture enabled at
build-time in config.toml

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

11

Verification firmware BuildStream definition
(abridged)

Wrapper around rust-lld linker to alter memory layout for ARM
Cortex-M: ensures stack overflows result in a handleable error

rather than overwriting static variables

Versions and hashes provided for all input code and libraries: aids
SBOM generation

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

12

Test architecture

Device under test
NUC / Rock 5B

CTRL OS

rusty-worker

systemd
journal

GitLab CI test
runner

Bit-for-bit
reproducible image

External
measurement PCB

Probe Pico

Verifier Pico

OpenSearch data
lake

Firmware

Self-reported
period/runtime

Started/
completed

signals

UART USB CDC

CMSIS DAP

TCP

SWD

Python test
library

systemd-journal-remote

Self-reported
period/runtime

Firmware

Externally
measured

period/runtime

Self-reported
period/runtime

Externally
measured

period/runtime

TCP

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

13

Results

– According to external measurements, self-reported
measurements are accurate

– NUC: paired measurements within +/- 100 µs
Rock 5B: paired measurements within +/- 10 µs

– Analysis performed in Jupyter notebooks querying data
from OpenSearch and applying scientific Python libraries

– We have confidence rusty-worker is accurate, so we can
trust its data when arguing CTRL OSʼs scheduling ability

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

14

Results

– External measurements performed for every iteration of
CTRL build definitions in GitLab CI over 15 months

– Changes in OS reflected in these measurements – profound
understanding of kernel behaviour

1. External measurements more accurate on Rock 5B than NUC
Rock 5Bʼs TTY device is on SoC, NUCʼs is a PCIe peripheral

2.
External measurements less accurate when PREEMPT_RT
enabled
kthreads can be interrupted when writing to a TTY device,
so time taken to get bits on the wire is non-constant

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

15

Continuous compliance: Eclipse Trustable Software Framework TSF

–

Goals:
● Link external measurement results to our

expectations of CTRL OS
● Perform tests and analysis automatically for every

CTRL OS commit
● Communicate the results and implications to

engineers and stakeholders

– Eclipse Trustable Software Framework provides both
high-level expectations for software and analysis tooling

– Expectations are linked to evidence in a directed acyclic
graph DAG, with each node having a score 0.0, 1.0

– Evidence may be scored by Python “validatorsˮ which
query OpenSearch and analyse test results

– CI generates a HTML report containing scores for each
commitʼs test results, trackable over time

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

16

Argumentation

TAANALYSIS
All risks identified in the risk analysis section are analysed and

appropriate actions are identified

Safety argumentation
e.g. constraints from STPA analysis

CTRLEXTERNALSCHEDULINGMEASUREMENT
MEAN_PERIOD_HISTORY_NUC

The absolute error in the critical process's mean period
compared with external measurements is less than 100 µs for
this SHA of CTRL and its parents in the last 30 days on NUC

hardware.

TATESTS
All tests for CTRL OS, and its build and test environments, are

constructed from controlled/mirrored sources and are
reproducible, with any exceptions documented

Intermediate argumentation

SIFCONSTRUCTIONEVIDENCE1
The latest reproducibility test results confirm that the test

container main branch was fully reproducible for that
iteration.

Python validator checking GitLab CI job result Python validator checking measurements in
OpenSearch

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

17

Conclusion

–
External measurements provide confidence in our analysis
of Linux deadline scheduling and deep understanding of the
kernel

–
With open-source software and hardware components, from
compilers to infrastructure, we orchestrated complex
hardware-in-the-loop tests as part of regular CI pipelines
without sacrificing provenance

https://gitlab.com/theodoretucker_ct/slides

–
The Trustable Software Framework allows those test results
to continuously support our defence of Linux as a feasible
RTOS to engineers, stakeholders, and safety assessors

https://gitlab.com/CodethinkLabs/trustable/trustable

https://gitlab.com/theodoretucker_ct/slides

Codethink Ltd.

3rd Floor Dale House,
35 Dale Street,
MANCHESTER,
M1 2HF,
United Kingdom

Thank You.
Questions?

C
O

D
ETH

IN
K.C

O
.U

K | O
PEN

 SO
U

RC
E

18

theodore.tucker@codethink.co.uk

connect@codethink.co.uk

