€

Externally verifying Linux
deadline scheduling

rrrrrrrrrrrr

Speaking today

Theodore Tucker

ROLE

Software Engineer

TENURE

Joined Codethink in
2024

EDUCATION

Still studying:
BSc Combined STEM
Open University

Contents

01

Linux deadline
scheduling

04

Results

02

Measurement
hardware

05

Continuous
compliance with HIL

tests

03

Measurement
firmware

Linux deadline scheduling

Starting point: multithreaded Linux-based OS on multi-core
processor in safety-related context

Working towards certification of scheduling as a safety
function under IEC 61508

Interactions of threads, cores, and external interrupts make
behaviour difficult to predict...

We need to rigorously measure that performance on real
hardware for every iteration of the OS image

... but threads must meet hard real-time performance
constraints

30¥NOS N3dO | XN'OOMNIHLIA0D @

Linux deadline scheduling

Linux kernel provides SCHED_DEADLINE policy (since 3.14) to
— model and implement real-time scheduling requirements for
threads

On each sched_setattr call, the kernel performs the
admission test

Employs earliest deadline first (EDF) algorithm to share CPU
time between competing threads

If I accept this thread, can | still share CPU time to meet its
and every other thread’s demands?

When a real-time thread starts, it provides its real-time
requirements to the kernel with sched_setattr syscall

sched_setattr arguments:
e Period (ns) — how often should | execute?
e Deadline (ns) — when in the period should | have
finished executing by?
e Runtime (ns) — what is my worst case execution time
each period?

30¥NOS N3dO | XN'OOMNIHLIA0D @

Linux deadline scheduling

|

— CHY»

other
threads’ rusty-worker runtime other threads’ runtime
runtime

|

I

rusty-worker

runtime other threads’ runtime

CPU TIME

30¥NOS N3dO | XN'OOMNIHLIA0D @

CTRL OS

— Codethink Trustable Reproducible Linux

Starts as a SCHED_OTHER “monitor” thread

- Based on latest Linux kernel and Freedesktop-SDK userland

Monitor thread starts a SCHED_DEADLINE “worker” thread
with user-configurable arguments

Reference target hardware: Intel NUC 11TNKv5 (amd64) and
Radxa Rock 5B (aarch64)

Monitor thread uses Linux's monotonic clock to measure and
report the “true” runtime and period of the worker thread

Testing images integrate rusty-worker — a Rust program
which exercises the deadline scheduler

Measured runtimes and periods reported to an onboard
Safety Monitor to cause an external mitigation on failure

Measured runtimes and periods also reported to systemd
journal for offboard post-test analysis

But... the deadline scheduler relies on the same monotonic
clock that rusty-worker uses to measure its performance

30¥NOS N3dO | XN'OOMNIHLIA0D @

Externally measuring deadline scheduling

PERIOD

— CHET

other
threads’
runtime

rusty-worker runtime

other threads’ runtime

PERIOD

I

rusty-worker

runtime

other threads’ runtime

Started working
signal to Pico

CPU TIME

Completed work
signal to Pico

30¥NOS N3dO | XN'OOMNIHLIA0D @

Test harness

— KiCAD-designed custom PCB

2x Raspberry Pi Pico: a verifier and a probe to flash the
verifier with verification firmware at test start

The verifier:
e receives UART start/finish signals from DUT at TTL
or RS232 levels (shifter onboard)
e computes min/mean/max period/runtime over a
10-second window
° reports measurements to test runner over USB CDC

The probe:
e runs RPi Foundation's debug-probe firmware
- ° receives binaries from the test runner over USB
(CMSIS-DAP)
° flashes binaries to the verifier Pico over ARM SWD

&
© Codethink Ltd 2025 g

|
|
|

@
®
a
N
I
®
D
i

ted
~ |
B |
N
u
®
a
w

CTRL External Verification
5| Test Harness Rev 3A

| N

858

)

7,

@E

]

.

1

Raspberry

8888888880086668

b
- 6668886688

£ 8

) .

i 3 en
 swo Ji/[SXe] EIN-Rl,

=X
ey

RE
« e a] n

(©)

30¥NOS N3dO | XN'OOMNIHLIA0D

Verification firmware

— Written in Rust with embedded-hal and rp2040-hal crates

Rust requires more verbose peripheral initialisation

Interrupt triggered when signal received on UART: signal
queued with monotonic timestamp (us precision)

Rust provides compile-time guarantees of type- and
memory-safety, and deeper understanding of hardware

In main loop, signals are dequeued, scheduling parameters
calculated, and reported as YAML over USB CDC

Rust compiler natively supports cross-compilation for the
RP2040 - no special GCC version needed

Runtime:
samples: 999
min: 322
mean: 335
max: 355

— Period:
samples: 999
min: 9997
mean: 9999
max: 10001
window-uid: DFAA4DA88620B17E

Easier to reproducibly build the verification firmware
binary with a reproducible compiler

CTRL OS uses Apache BuildStream to define and build OS
and Cl images...

30¥NOS N3dO | XN'OOMNIHLIA0D @

Verification firmware BuildStream definition
(abridged)

Wrapper around rust-lld linker to alter memory layout for ARM
Cortex-M: ensures stack overflows result in a handleable error

rather than overwriting static variables

kind: manual

build-depends:
- components/flip-1link.bst Rust compiler with thumbvém-none-eabi architecture enabled at
- components/rust-embedded.bst build-time in config.toml
- freedesktop-sdk.bst:components/gcc.bst

config:

install-commands:

- cargo build --release --features uart®

- install -D -m 660 target/thumbvém-none-eabi/release/vfrs_scheduling
%{install-root}/opt/verification-firmware-rs/vfrs_scheduling_uart®

SEFEESS Versions and hashes provided for all input code and libraries: aids
- kind: git_repo SBOM generation
url: sif:platform/verification-firmware-rs.git
track: '*. % *'
ref: 2026.01.05_4c619d4c75dbfc81b58d8ead4a63bc4abdc2ac316a-0-g4c619d4c75dbfc81b58d8ead4ab3bc4abec2ac316a
- kind: cargo
ref:
- name: arrayvec
version: 0.7.6
sha: 7c¢02d123df0@17efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50
- name: bare-metal
version: 0.2.5
sha: 5deb64efa5bd81e31fcd1938615a6d98c82eafcbcd787162b6f63b91d6bac5b3
etc.

(©)

30¥NOS N3dO | XN'OOMNIHLIA0D

Test architecture

30¥NOS N3dO | XN'OOMNIHLIA0D @

Device under test External GitLab Cl test
NUC / Rock 5B measurement PCB runner
CTRL OS Bit-for-bit
UsB CDC reproducible image TCP

Started/ Externally Externally

rUSty-Worker COmpleted Verifier Pico measured measured

, period/runtime period/runtime
signals

OpenSearch data

Se!f-report'ed lake
period/runtime Probe PiCO Python test
library

CMSIS DAP

SySte md Self-reported Self-reported
journal period/runtime period/runtime

systemd-journal-remote

Results

According to external measurements, self-reported
measurements are accurate

NUC: paired measurements within +/- 100 ps
Rock 5B: paired measurements within +/- 10 ps

Analysis performed in Jupyter notebooks querying data
from OpenSearch and applying scientific Python libraries

We have confidence rusty-worker is accurate, so we can
trust its data when arguing CTRL OS's scheduling ability

720

measurement_source
external
rusty-worker

740 760
Mean runtime / ps

3OUNOS N3dO | MN'0OMNIHLIA0D @

Results

External measurements performed for every iteration of
CTRL build definitions in GitLab Cl over 15 months

External measurements more accurate on Rock 5B than NUC
Rock 5B's TTY device is on SoC, NUC's is a PCle peripheral

Changes in OS reflected in these measurements — profound
understanding of kernel behaviour

External measurements less accurate when PREEMPT_RT
enabled

kthreads can be interrupted when writing to a TTY device,
so time taken to get bits on the wire is non-constant

30¥NOS N3dO | XN'OOMNIHLIA0D @

Continuous compliance: Eclipse Trustable Software Framework (TSF)

Goals:
° Link external measurement results to our
expectations of CTRL OS
- ° Perform tests and analysis automatically for every
CTRL OS commit
° Communicate the results and implications to
engineers and stakeholders

Eclipse Trustable Software Framework provides both
high-level expectations for software and analysis tooling

Expectations are linked to evidence in a directed acyclic
graph (DAG), with each node having a score [0.0, 1.0]

The absolute error in the critical process's mean period compared with external
measurements is less than 100 ps for this SHA of CTRL and its parents in the last 30 days

on NUC hardware.

Supported Requests:

Evidence may be scored by Python “validators" which
query OpenSearch and analyse test results

Cl generates a HTML report containing scores for each
commit’s test results, trackable over time

Summary Status

The external measurements of the 0.98 v Item Reviewed
critical process's scheduling are v Link Reviewed
consistent with the critical

process's own reports for this

SHA of CTRL and its parents in

the last 30 days on NUC

hardware.

(©)

3OUNOS N3dO | MN'0OMNIHLIA0D

15

Argumentation

TA-TESTS
All tests for CTRL OS, and its build and test environments, are
constructed from controlled/mirrored sources and are
reproducible, with any exceptions documented

Intermediate argumentation

SIF-CONSTRUCTION-EVIDENCE-1
The latest reproducibility test results confirm that the test
container main branch was fully reproducible for that
iteration.

Python validator checking GitLab CI job result

TA-ANALYSIS
All risks identified in the risk analysis section are analysed and
appropriate actions are identified

Safety argumentation
e.g. constraints from STPA analysis

CTRL-EXTERNAL-SCHEDULING-MEASUREMENT-
MEAN_PERIOD_HISTORY_NUC
The absolute error in the critical process's mean period
compared with external measurements is less than 100 us for
this SHA of CTRL and its parents in the last 30 days on NUC
hardware.

Python validator checking measurements in
OpenSearch

30¥NOS N3dO | XN'OOMNIHLIA0D @

Conclusion

External measurements provide confidence in our analysis
— of Linux deadline scheduling and deep understanding of the
kernel

The Trustable Software Framework allows those test results
to continuously support our defence of Linux as a feasible
RTOS to engineers, stakeholders, and safety assessors

With open-source software and hardware components, from
compilers to infrastructure, we orchestrated complex
hardware-in-the-loop tests as part of regular Cl pipelines
without sacrificing provenance

https://gitlab.com/theodoretucker_ct/slides

https://gitlab.com/CodethinkLabs/trustable/trustable

3OUNOS N3dO | MN'0OMNIHLIA0D @

17

https://gitlab.com/theodoretucker_ct/slides

Thank You.
Questions?

Codethink Ltd.

3rd Floor Dale House,
35 Dale Street,
MANCHESTER,

M1 2HF,

United Kingdom

theodore.tucker@codethink.co.uk

connect@codethink.co.uk

30¥NOS N3O | XN'OOMNIHLIA0D @

