
Innovations with YAML/CABAC 
in H.264/AVC software decoding

FOSDEM'26 — 31 January 2026

Thibault Raffaillac, Ph.D. 
Software engineer at Quantum Surgical (Montpellier, France)



edge264
H.264/AVC decoder for Progressive High & 
MVC 3D profiles


• BSD-3-Clause license


• x86/x64, ARM32/64, WASM (in progress)


• Linux, Windows, Mac


• Prefetching


• CI/CD


• Custom bitstream encoder


• Stress testing (in progress)


• Netflix support

2

0

30

60

90

120

150

180

Speed (%)

edge264

FFmpeg

openh264

2015 Macbook (x64)
RasPi 5 (ARM64)

15%

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

Code size (loc)

edge264

FFmpeg

openh264

4x



Slices
parsing Reference

frames

Inter-frame
prediction

Intra-frame
prediction

IDCT

+ Deblocking

Compressed
bistream

Decompressed
frame

Headers
parsing

H.264/AVC decoder structure

3

16px 4px

CABACYAML

logging



1.   YAML logging output

4

YAML
output

1. Debugging

2. Reencoding 3. Custom
test streams

4. Data
analysis



1-1.   Debugging

5

- nal_ref_idc: 1 
  nal_unit_type: 7 # Sequence parameter set 
  profile_idc: 66 # Baseline 
  constraint_set_flags: [1,1,1,0,0,0] 
  level_idc: 1.2 
  chroma_format_idc: 1 # 4:2:0 # inferred 
  bit_depth: {luma: 8, chroma: 8} # inferred 
  log2_max_frame_num: 16 
  pic_order_cnt_type: 0 
  log2_max_pic_order_cnt_lsb: 16 
  max_num_ref_frames: 1 
  gaps_in_frame_num_value_allowed_flag: 0 
  pic_size_in_mbs: {width: 11, height: 9} 
  frame_mbs_only_flag: 1 
  direct_8x8_inference_flag: 1 
  max_num_reorder_frames: 16 # inferred 
  max_dec_frame_buffering: 16 # inferred 
  decode_NAL_result: 0

• Readability by slim syntax 
(vs. XML/JSON), coloring, 
comments (vs. JSON)


• Compactness by recursive 
format (vs. CSV), inline structs


• Scriptability by design 
(vs. TXT, HTML)



Use a high-level language!


Include context from past parameter sets → low overhead, easier to reencode

frame_num: 0 
 
 
 
frame_num: {bits: 4, value: 0}


• Versus lib h264bitstream: 9400 loc with C → 500 loc with Python

1-2.   Reencoding

6

bunny.yaml
bunny.264 bunny.264

edge264_test tests/gen_avc.py



•  buf = 1


•  buf = buf<<n | value


•  nbits = buf.bit_length()-1


•  buf = (buf ^ 1<<nbits) << (-nbits%8)


•  f.write(buf.to_bytes((nbits+7)//8, byteorder="big"))

Python integers = infinite big-endian bit buffers (with leading set bit)


• Initialize empty bit buffer


• Insert n-bit value


• Get buffer size


• Remove leading bit & pad to bytes


• Write to file

1-2.   Reencoding

7

bunny.yaml
bunny.264 bunny.264

edge264_test tests/gen_avc.py



1-3.   Custom test streams

YAML encoder → create bitstreams for stress testing


• Catch up after ffmpeg/openh264 on 10+ years of field testing


• Search for shall clauses in spec! (e.g. « A sequence parameter set RBSP, with that particular 
value of seq_parameter_set_id, shall be available to the decoding process prior to its activation. »)


• Can be included in public repository & CI/CD since I own them


• Much smaller than conformance bitstreams → much faster to run test suite
8

missing-ps.yaml missing-ps.264

gen_avc.py



1-4.   Data analysis

9

Current thread scheduling

Decoding time per size

0

1

2

3

4

56

7

8

9

10 11

12

13 14

15 16

17 18

19 20

Frame dependencies



2.   CABAC decoding

10

Screenshot of Firefox Profiler (collected with samply)

get 1 bit from CABAC



2.   CABAC decoding

11

0 1

0 10.70.51

0 1

0 10.6 0.73

0 1

0 10.2 0.33

offset loaded from bitstream probability threshold for value being decoded

get_ae() = 0

get_ae() = 1

get_ae() = 1



0 1

0 510357260

0 1

0 357214

0 1

0 143 < 25629 47

260

0 1

0 28657 95

2.   CABAC decoding

12

get_ae() = 0

9-bit offset loaded from bitstream 9-bit range initialized at start

get_ae() = 1

get_ae() = 1

renorm()



0 1

0 1020714520

0 1

0 714428

0 1

0 28657 95

520

2.   CABAC decoding

13

10-bit offset loaded from bitstream (initial range) << 1

get_ae() = 0

get_ae() = 1

get_ae() = 1



2-1.   Extending CABAC state to size_t

Initially load 64 bits in offset, and shift range up 55 bits (64 - 9)


At each renormalization, offset & range are ≤ 8-bit, refill 56 bits (7 bytes) into 
offset & shift range up the same


• Trades less frequent renormalizations with new counting of extra bits


• Wide loads work well with on-the-fly unescaping (c.f. last year)


range ∈ [256;511] → range's 9th bit is set → bit count = 64 - clz(range)


• Allows keeping bit count without an extra variable or extra set bit (ffmpeg)

14



2-2.   Batch-decoding CABAC bypass

15

0 1

0 1

range

0 1

offset

011

0

0 range/2

range/40



2-2.   Batch-decoding CABAC bypass

16

0 1

0 01 1

range

0 0 0 01 1 1 1

offset

000 001 010 011 100 101 110 111

0

range/8 = offset / (range/8)



2-2.   Batch-decoding CABAC bypass

17

To get N bypass bits (with size_t format):


• Ensure offset & range have ≥ N extra bits (renorm otherwise)


• Shift range down N bits


• offset / range → N bypass bits


• offset % range → new offset


To return M unconsumed bits:


• offset + range * unconsumed → new offset


• Shift range up M bits



Thank you for your attention!
https://github.com/tvlabs/edge264


traf@ik.me

1. YAML logging output


1. Decoding


2. Reencoding (Python 🫶)


3. Custom test streams (shall 🔎)


4. Data analysis


2. CABAC decoding


1. Extending state to size_t


2. Batch-decoding bypass (div⁒)

https://github.com/tvlabs/edge264
mailto:traf@ik.me


1.   x86-64 microarchitecture runtime variants

Compile entire lib for x86-64-v1, compile 
lib minus top-level functions for v2 and v3, 
then branch at runtime


• Easy make selection of optional variants


• Allows SIMD everywhere (except top-
level functions)


• Used for logging support too

19

edge264_headers.c

edge264.c

edge264_bitstream.c
edge264_slice.c

edge264_{...}.c

edge264_headers.c

edge264_bitstream.c
edge264_slice.c

edge264_{...}.c

link-time inclusion
runtime detection
_v2 suffixes

x86-64-v1
x86-64-v2


