Innovations with YAML/CABAC
in H.264/AVC software decoding

Thibault Raffaillac, Ph.D.

Software engineer at Quantum Surgical (Montpellier, France)

FOSDEM'26 — 31 January 2026

edge264

H.264/AVC decoder for Progressive High &
MVC 3D protiles

e BSD-3-Clause license 1

e x86/x64, ARM32/64, WASM (in progress) |
1

e Linux, Windows, Mac

e Prefetching

e CI/CD

e Custom bitstream encoder
e Stress testing (in progress)

e Netflix support

B 2015 Macbook (x64)

B RasPi 5 (ARM64)

80
50
20
20
60
30

Speed (%)

20000
80000
70000
60000
50000
40000
30000
20000
170000

Code size (loc)

H.264/AVC decoder structure

Compressed
bistream

Reference
frames

T

—
"
= —
e
P >
Headers Slices > Inter-frame
parsing parsing prediction
; Intra-frame
prediction
YAML
I . CABAC
oggmg
—> IDCT

Deblocking

Decompressed
frame

1. YAML logging output

1. Debugging

. 3. Custom
% 2. Reencoding

4. Data
analysis

1-1. Debugging

- nal ref idc:
nal unit type:
profile 1idc:
constraint set flags: [1, 1,
level 1dc:
chroma format 1dc:

bit depth: {luma: ¢, chroma:

logZ2 max frame num:
pic order cnt type:
logZ2 max pilc order cnt 1sb:
max num ref frames:

gaps 1n frame num value allowed flag:

pic size 1n mbs: {width:
frame mbs only flag:
direct 8x8 1nference flag:
max num reorder frames:
max dec frame buffering:
decode NAL result:

4

height:

J

e Readability by slim syntax
(vs. XML/JSON), coloring,
comments (vs. JSON)

e Compactness by recursive
format (vs. CSV), inline structs

e Scriptability by design
(vs. TXT, HTML)

1-2. Reencoding

A

edge264_test tests/gen_avc.py

i bunny.yam| Uik o
bunny.264 bunny.264

Use a high-level language!

Include context from past parameter sets = low overhead, easier to reencode

frame_num:

frame num: {bilits: , value: }

e Versus lib h264bitstream: 9400 loc with C = 500 loc with Python

1-2. Reencoding

A

edge264_test tests/gen_avc.py

........
pe /W

- bunny.yam| il e

bunny.264 bunny.264
Python integers = infinite big-endian bit buffers (with leading set bit)
* |nitialize empty bit bufter buf =
® |nsert n-bit value buf = buf<<n | wvalue
e Get buffer size nbits = buf.bit length()-
e Remove leading bit & pad to bytes buf = (buf ©~ 1<<nbits) << (-nbits%8)
e \Write to file f.write(buf.to bytes((nbits+7/)//5, "big"))

1-3. Custom test streams

A A

gen_avc.py x

missing-ps.yaml| missing-ps.264

YAML encoder — create bitstreams for stress testing
e Catch up after ffmpeg/openh264 on 10+ years of field testing

e Search for shall clauses in spec! (e.g. « A sequence parameter set RBSP, with that particular
value of seq_parameter_set_id, shall be available to the decoding process prior to its activation. »)

e Can be included in public repository & CI/CD since | own them

e Much smaller than conformance bitstreams = much faster to run test suite

8

1-4. Data analysis

Current thread scheduling

Frame dependencies

00:00:02 00:00:03 00:00:04 00:00:05 00:00:06
00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
000000000 200000000 400000000 600 000000 800000000

Frameld=0 first_m.. Fra.. F..

Framel...

Decoding time per size

1400 -
o
1200
o
L 10001 o
g o
o
2 800 ‘0
2)
S -4 ¢ ® 9
£ <
s0{ § & N 2o
o
400 - w
o
o

1000

2000 3000
bytes

4000

5000

Frameld=9 f.. Fr.. m
Frameld=5.. F..

Frame...

Fram... Frameld=1...

Frameld=19...
Frameld=18...
Frameld=17...

Frameld=2...
Frameld=25 ...

o
@
100000 A
80000 A
o
v 60000 4
o
§ [l
S
40000 A
20000 A
0.0 0.2 0.4 0.6 0.8 1.0 1.2
bytes le6

2. CABAC decoding

Screenshot of Firefox Profiler (collected with samply)

Total (samples) Self
41 % 2387 2387 » get_ae libedge264.1.0.0.dylib € get 1 bit from CABAC
29 % 1689 1689 » | decode_inter libedge264.1.0.0.dylib
8,3 % 484 484 » deblock_mb libedge264.1.0.0.dylib
7,3 % 429 429 » parse_residual_coeffs_cabac libedge264.1.0.0.dylib
3,0 % 176 176 » add_idct4x4 libedge264.1.0.0.dylib
2,8 % 166 166 » parse_slice_data_cabac libedge264.1.0.0.dylib
2,3 % 134 134 » parse_NxN_residual_cabac libedge264.1.0.0.dylib
2,0 % 116 116 » decode_direct_mv_pred libedge264.1.0.0.dylib
1,4 % 80 80 » parse_mvd_pair_cabac libedge264.1.0.0.dylib
0,9 % 55 55 » | add_idct8x8 libedge264.1.0.0.dylib
0,8 % 45 45 » parse_ref_idx_cabac libedge264.1.0.0.dylib
0,6 % 36 36 » parse_chroma_residual_cabac libedge264.1.0.0.dylib
0,4 % 22 22 » parse_slice_layer_without_partitioning libedge264.1.0.0.dylib
0,3 % 18 18 » parse_inter_residual_cabac libedge264.1.0.0.dylib
0,1 % 8 8 » madvise libsystem_kernel.dylib
0,1 % 6 6 » | transform_dc2x2 libedge264.1.0.0.dylib
0,1 % 5 5 » decode_intradx4 libedge264.1.0.0.dylib
0,0 % 2 2 » | decode_intra8x8 libedge264.1.0.0.dylib
0,0 % 2 2 » pthread_cond_broadcast libsystem_pthread.dylib
0,0 % 1 1 » | worker_loop libedge264.1.0.0.dylib
0,0 % 1 1 » decode_intraChroma libedge264.1.0.0.dylib
0,0 % 1 1 » _platform_memmove$VARIANT$Haswell libsystem_platform.dylib
0,0 % 1 1 » _kernelrpc_mach_vm_deallocate_trap libsystem_kernel.dylib

10

2. CABAC decoding

offset loaded from bitstream probability threshold for value being decoded
0 0.51 0.7 1

| — cet_ae() =

11

2. CABAC decoding

9-bit offset loaded from bitstream 9-bit range initialized at start
0 260 357 510

12

2. CABAC decoding

10-bit offset loaded from bitstream (initial range) << 1
0 520 714 1020

| 1 — cet_ae() =

13

2-1. Extending CABAC state to size_t

Initially load 64 bits in offset, and shift range up 55 bits (64 - 9)

At each renormalization, offset & range are < 8-bit, refill 56 bits (7 bytes) into
offset & shift range up the same

* Trades less frequent renormalizations with new counting of extra bits

e \Wide loads work well with on-the-fly unescaping (c.t. last year)
range € [256;511] = range's 9th bit is set = bit count = 64 - clz(range)

e Allows keeping bit count without an extra variable or extra set bit (ffmpeq)

14

2-2. Batch-decoding CABAC bypass

0 offset range

2-2. Batch-decoding CABAC bypass

0 offset range

000 : 001 ! 010 ! 011 ! 100 | 101 | 110 | 111

2-2. Batch-decoding CABAC bypass

To get N bypass bits (with size_t format):

* Ensure offset & range have = N extra bits (renorm otherwise)
e Shift range down N bits

o offset / range — N bypass bits

e offset % range — new offset

To return M unconsumed bits:

e offset + range * unconsumed — new offset

e Shift range up M bits

17

Thank you for your attention!
https://github.com/tvlabs/edge264

traf@ik.me
1. YAML logging output 2. CABAC decoding
1. Decoding 1. Extending state to size_t
Reencoding (Python #4) 2. Batch-decoding bypass (div %)

. Custom test streams (shall &)

~ow N

. Data analysis

https://github.com/tvlabs/edge264
mailto:traf@ik.me

1. x86-64 microarchitecture runtime variants

x86-64-v1
N x86-64-v2
: : : . // N N
Compile entire lib for x86-64-v1, compile /| edge2edc |
. . . / / link-time inclusion
ib minus top-level functions for v2 and v3, \-... / runtime detection
| \ . _v2suffixes)
then branch at runtime (v \ /o
' edge264_headers.cC | ,« edge264_headers.c

e Fasy make selection of optional variants

o Allows SIMD everywhere (except top-
level functions)

/ W \ /

/ { \ /)
7 \ (4
/[l

e Used for logging support too

19

