
FOSDEM 2026

Dave Hughes – CTO

Lukas Stockner – Principal Engineer

Building Cloud Infrastructure for AI

2

• Background: software engineer, sysadmin, and network

wrangler

• Passionate technologist

• Open -source developer, user and enthusiast

• Problem solver

whoami

Dave Hughes
CTO
Stelia

3

• Background: rendering, HPC, everything infrastructure

• Got into cloud infra by coincidence, ended up staying

• Passionate about performance and the big picture

whoami

Lukas Stockner
Principal Engineer
Stelia

What is a cloud?

5

• Abstraction of resources and infrastructure

• Self-service

• On -demand

• Elastic

• API driven

• Multi-tenant

What is a cloud?

What is a 'GPU cloud'?

7

• GPUs (though other accelerators will be common in future)

• (typically) RDMA interconnect

• Fast storage

• Read: not fastest

• Not necessarily RDMA

• Dense/very big servers

• Three rough scales of consumption

• 'a GPU' - basic PCIe passthrough

• 'a GPU node' - typically requires P2P and potentially NVLink or equivalent

• 'a GPU cluster' - typically requires cross -node interconnect

What is a 'GPU' cloud?

'GPU clouds': the good, the bad and the ugly

9

• Bare-metal

• Purchase the assets – image the assets – Handover

• OpenStack

• Cloud (like) in nature, though quite complex / tightly coupled

• Many problems arising from the above

• Kubernetes

• Give people the ability to run containers

• No strong isolation of tenants

• Designed for containers first – shared kernel and drivers etc

• Various other: network not quite right, …, etc

• Other

• Nomad, Triton

'GPU Clouds': the good, the bad and the ugly

How to design a cloud 101

11

• Redundancy everywhere

• Scheduling maintenance windows doesn't scale across many tenants

• Avoid manual steps e.g. bootstrapping, VLAN allocations, …, etc

• Isolation is critical – for QoS as well as security

• Standardization is key

• Minimize state

How to design a cloud 101

Hardware selection

13

• CPU compute, storage, control plane etc.

• Standard OEM kit

• GPU compute

• Standard 8 -way server

• Mostly identical across vendors

• Typically overkill specs

• Mainboard + PLX + GPUs

• Originated from mining / rendering

• 'Standard' server with some GPUs

• Not great from a density perspective

• Note: OCP has been proven to be king at scale – but you need that scale to justify non OEM kit.

Hardware selection

Firmware

15

• Ideal world: full control – both for security and scalability

• Real world: coreboot + OpenBMC is … rare to say the least

• Room for improvement

• Active work from vendors, e.g. Supermicro have contributed to getting Intel Sapphire/Emerald Rapids support into

coreboot

• Great work from 3mdeb + 9elements

• At least redfish tends to work

• Fun fact: each NVIDIA GPU tray has its own OpenBMC -based controller

Firmware

Orchestration

17

• Need way to run workloads (customer, internal and supporting)

• Kubernetes works very well here

• "good enough", widely known and supported

• Purely internal, all customer workloads run in containerized VMs

• Doubles as a platform for managing resources

• Overlay networks, instances, IP allocations etc. as CRDs

• Custom logic implemented as controllers

• Solid API and tooling ecosystem

Orchestration

OS deployment

19

• Traditional mode: Image all servers

• Problem: State drift

• Solution – minimize state wherever possible

• Nodes are ephemeral – just reboot for new state

• Some state required for K8s and Ceph control plane

• Images build with mkosi – fully packed into the initramfs

• Delivered via UEFI HTTP netboot

• Config sourced from Netbox, image renders templates on boot

OS deployment

Networking

21

• Crucial for a cloud environment

• Scalability and flexibility are non -negotiable

• Separate underlay (connects servers) and overlays (connect workloads)

• Underlay:

• Routing -to-the-host

• SONiC on switches

• Overlays:

• VXLAN / EVPN

• Underlay isolated in its own network namespace

• Kubernetes overlay for cluster traffic

• Public overlay for internet connectivity

• Tenant overlays for customer - internal traffic

Networking

22

• Basic custom SDN to have full flexibility

• Endpoints (e.g. instances, load balancers, services, edge routes) sit in overlay

• Endpoints announce reachability info (e.g. prefixes) via Kubernetes CRD

• Public IPv6, but also routes IPv4

• Daemon watches state and manages Linux network stack

• Translated to BGP for hardware edge routers

• Stateless L4 load balancer

• Traffic offloading planned, two approaches

• Userspace : Bind NICs to VPP, connect host and containers via TAP, connect VMs via vhost-user

• Hardware: Move entire logic to DPU, connect workloads via VFs

Networking: Public Overlay
IP: 2001:db8::f00/64
MAC: 12:34:56:78:9a:bc
Routes:
• 2001:db8:1:1::/64
• 2001:db8:2::/60
• 198.51.100.3, ports 1024 -1280

23

• Public IPv6 /64 subnet, plus delegated /60

• Stateful firewall using netfilter + conntrack

• in instance container to avoid centralization

• Public IPv4 address is optional

• Alternative: NAT

• Challenge: Decentral, scalable, allow mapping traffic to customer

• Solution: Assign port slice of a shared public IP to each instance

• Instance container NATs to those ports

• Return traffic is routed to load balancer, forwarded based on port

Networking: Instances

24

• Needs to be hardware -accelerated (3.6 TBit/s!)

• Luckily one NIC per GPU, so no need to share

• InfiniBand: Partitioning via PKeys

• Create VF on NIC, assign GUID

• Associate GUID with PKey on subnet manager

• Pass VF to VM

• RoCE

• NICs can do basic VLAN isolation

• Better to do it on the switches

Networking: RDMA

Storage

26

• Want: fast and reliable … unfortunately not exactly a feasible combination

• Split storage is an option

• Local: NVMe – fast but ephemeral

• Network: Robust primarily – fast secondarily

• Local:

• Easy to bottleneck on software (here: RAID0 + LVM + dm -crypt + virtio-blk)

• Solution: SPDK – exposes 4 Gen4 NVMe drives at 98% of raw host throughput (26GB/s)

• Network:

• Ceph provides a robust, reliable and reasonably fast unified storage platform

• File system via virtio-fs, Block via SPDK, Object via RadosGW , Kubernetes via Rook

Storage

Virtualization

28

• Obvious option at first glance: KubeVirt

• Designed (on last check) for seamless integration of legacy applications into Kubernetes

• We want the opposite – full isolation

• vhost-user, custom networking, NUMA, PCIe logic etc. requires a lot of tricks

• Simple: Just QEMU via small wrapper

• NUMA

• Select GPU(s) based on locality, e.g. same PLX

• Select CPU core(s) based on GPU locality, e.g. same socket

• Pin vCPU(s) to physical core(s)

• Communicate NUMA topology to guest

Virtualization

29

• PCIe topology

• GPU -GPU and GPU -NIC traffic is PCIe P2P, would overwhelm CPU root complex

• Workloads need to know topology

• Can be configured manually, but easier to just model through QEMU

• Pitfall: IOMMU forces P2P through the CPU!

• Avoid via ATS on NIC and ACS Direct Translation on PLX

• GPU -GPU interconnect (NVLink / UALink)

• 1x GPU is easy – just skip interconnect

• 8x GPU(s) is easy – just passthrough entirely

• Mixed is difficult – need to configure lanes from the host

Virtualization: GPUs

30

Questions?

Dave Hughes Lukas Stockner

lukas.stockner@stelia.aidavid.hughes@stelia.ai

	Slide 1: Building Cloud Infrastructure for AI
	Slide 2: whoami
	Slide 3: whoami
	Slide 4: What is a cloud?
	Slide 5: What is a cloud?
	Slide 6: What is a 'GPU cloud'?
	Slide 7: What is a 'GPU' cloud?
	Slide 8: 'GPU clouds': the good, the bad and the ugly
	Slide 9: 'GPU Clouds': the good, the bad and the ugly
	Slide 10: How to design a cloud 101
	Slide 11: How to design a cloud 101
	Slide 12: Hardware selection
	Slide 13: Hardware selection
	Slide 14: Firmware
	Slide 15: Firmware
	Slide 16: Orchestration
	Slide 17: Orchestration
	Slide 18: OS deployment
	Slide 19: OS deployment
	Slide 20: Networking
	Slide 21: Networking
	Slide 22: Networking: Public Overlay
	Slide 23: Networking: Instances
	Slide 24: Networking: RDMA
	Slide 25: Storage
	Slide 26: Storage
	Slide 27: Virtualization
	Slide 28: Virtualization
	Slide 29: Virtualization: GPUs
	Slide 30: Questions?

