FOSDEM 2026

Building Cloud Infrastructure for Al

Dave Hughes — CTO

Lukas Stockner — Principal Engineer

$ STELIA

whoami

- Background: software engineer, sysadmin, and network
wrangler

- Passionate technologist
- Open-source developer, user and enthusiast

« Problem solver

Dave Hughes
CTO
Stelia

$ STELIA 2

whoami

Background: rendering, HPC, everything infrastructure
Got into cloud infra by coincidence, ended up staying

Passionate about performance and the big picture

$ STELIA

Lukas Stockner

Principal Engineer
Stelia

What is a cloud?

What is a cloud?

Abstraction of resources and infrastructure
Self-service

On-demand

Elastic

APl driven

Multi-tenant

$ STELIA

What is a 'GPU cloud'?

What is a 'GPU' cloud?

GPUs (though other accelerators will be common in future)
(typically) RDMA interconnect
Fast storage
Read: not fastest
Not necessarily RDMA
Dense/very big servers
Three rough scales of consumption
'a GPU' - basic PCle passthrough
'a GPU node' - typically requires P2P and potentially NVLink or equivalent

'a GPU cluster' - typically requires cross-node interconnect

$ STELIA

'GPU clouds': the good, the bad and the ugly

'GPU Clouds': the good, the bad and the ugly

Bare-metal
Purchase the assets — image the assets — Handover
OpenStack
Cloud (like) in nature, though quite complex / tightly coupled
Many problems arising from the above
Kubernetes
Give people the ability to run containers
No strong isolation of tenants
Designed for containers first — shared kernel and drivers etc
Various other: network not quite right, ..., etc
Other
Nomad, Triton

$ STELIA

How to design a cloud 101

How to design a cloud 101

Redundancy everywhere

Scheduling maintenance windows doesn't scale across many tenants
Avoid manual steps e.g. bootstrapping, VLAN allocations, ..., etc
Isolation is critfical — for QoS as well as security
Standardization is key

Minimize state

$ STELIA

n

Hardware selection

Hardware selection

CPU compute, storage, control plane etc.
Standard OEM kit
GPU compute
Standard 8-way server
Mostly identical across vendors
Typically overkill specs
Mainboard + PLX + GPUs
Originated from mining / rendering
'Standard' server with some GPUs
Not great from a density perspective

Note: OCP has been proven to be king at scale — but you need that scale to justify non OEM kit.

$ STELIA

Firmware

Firmware

|deal world: full control — both for security and scalability
Real world: coreboot + OpenBMC is ... rare to say the least
Room for improvement

Active work from vendors, e.g. Supermicro have contributed to getting Intel Sapphire/Emerald Rapids support into
coreboot

Great work from 3mdeb + Qelements
At least redfish tends to work

Fun fact: each NVIDIA GPU tray has its own OpenBMC-based controller

$ STELIA

15

Orchestration

Orchestration

Need way to run workloads (customer, internal and supporting)
Kubernetes works very well here

"good enough', widely known and supported

Purely internal, all customer workloads run in containerized VMs
Doubles as a platform for managing resources

Overlay networks, instances, IP allocations etc. as CRDs

Custom logic implemented as conftrollers

Solid API and tooling ecosystem

s STELIA

17

OS deployment

OS deployment

" config.initrd
Traditional mode: Image all servers Sl

Problem: State drift image.vmlinuz
netbootd
Solution — minimize state wherever possible image.initrd

Nodes are ephemeral — just reboot for new state image.efi

Some state required for K8s and Ceph control plane
UEFI HTTP

Images build with mkosi — fully packed into the initramfs boot

Delivered via UEFI HTTP netboot

Linux boot

Config sourced from Netbox, image renders templates on boot

config-apply

systemd

s STELIA 19

Networking

Networking

« Crucial for a cloud environment

- Scalability and flexibility are non-negotiable

« Separate underlay (connects servers) and overlays (connect workloads)
- Underlay:

+ Routing-to-the-host

Other host services K8s Overlay

Public Overlay

. SONIC on switches

NIC
Calico Tenant Overlay NIC

RN S

veth | veth veth | veth | veth

- Overlays:

- VXLAN / EVPN Underlay NetNS

« Underlay isolated in its own network namespace
- Kubernetes overlay for cluster traffic

| FW/NAT
- Public overlay for internet connectivity /
TAP

: - TAP
- Tenant overlays for customer-internal traffic

QEMU \
2]

Basic pod NetNS| Exposed pod NetNS Instance NetNS

s STELIA

Networking: Public Overlay

IP: 2001:db8::f00/64
MAC: 12:34:56:78:9a:bc

Basic custom SDN to have full flexibility Routes:
« 2001.db8:1:1::/64
Endpoints (e.g. instances, load balancers, services, edge routes) sit in overlay e 2001:db8:2::/60

+ 198.51100.3, ports 1024-1280

Endpoints announce reachability info (e.g. prefixes) via Kubernetes CRD
Public IPv6, but also routes IPv4
Daemon watches state and manages Linux network stack
Translated to BGP for hardware edge routers
Stateless L4 load balancer
Traffic offloading planned, two approaches
Userspace: Bind NICs to VPP, connect host and containers via TAP, connect VMs via vhost-user

Hardware: Move entire logic to DPU, connect workloads via VFs

s STELIA 22

Networking: Instances

Public IPv6 /64 subnet, plus delegated /60

Stateful firewall using netfilter + conntrack
in instance container to avoid centralization

Public IPv4 address is optional

Alternative: NAT
Challenge: Decentral, scalable, allow mapping traffic to customer
Solution: Assign port slice of a shared public IP to each instance
Instance container NATs to those ports

Return traffic is routed to load balancer, forwarded based on port

s STELIA

Internet

L4 Load
—_— Balancer

Edge Router

Public Overlay

Forwarding +
Firewall +
NAT

Instance

23

Networking: RDMA

Needs to be hardware-accelerated (3.6 TBit/s!)
Luckily one NIC per GPU, so no need to share
InfiniBand: Partitioning via PKeys
Create VF on NIC, assign GUID
Associate GUID with PKey on subnet manager
Pass VF to VM
RoCE

NICs can do basic VLAN isolation

Better to do it on the switches

s STELIA

24

Storage

S.I.o ra g e VhOSt user vhost-user

cryptodev cryptodev

Want: fast and reliable ... unfortunately not exactly a feasible combination v] v

SPDK
Split storage is an option blobstore

Local: NVMe — fast but ephemeral RAIDO
Network: Robust primarily — fast secondarily | vfio | vfio vfio [vfio |
- ~TSTT
Easy to bottleneck on software (here: RAIDO + LVM + dm-crypt + virtio-blk)
Solution: SPDK — exposes 4 Gen4 NVMe drives at 98% of raw host throughput (26GB/s)
Network:

Ceph provides a robust, reliable and reasonably fast unified storage platform

File system via virtio-fs, Block via SPDK, Object via RadosGW, Kubernetes via Rook

s STELIA 26

Virtualization

Virtualization

Obvious option at first glance: KubeVirt
Designed (on last check) for seamless integration of legacy applications into Kubernetes
We want the opposite — full isolation
vhost-user, custom networking, NUMA, PCle logic etc. requires a lot of tricks

Simple: Just QEMU via small wrapper

NUMA

Select GPU(s) based on locality, e.g. same PLX
Select CPU core(s) based on GPU locality, e.g. same socket
Pin vCPU(s) to physical core(s)

Communicate NUMA topology to guest

s STELIA

NVSwitch |CEEEE NVSwitch

Virtualization: GPUs

PCle topology
GPU-GPU and GPU-NIC traffic is PCle P2P, would overwhelm CPU root complex
Workloads need to know topology

Can be configured manually, but easier to just model through QEMU
Pitfall: IOMMU forces P2P through the CPU!

Avoid via ATS on NIC and ACS Direct Translation on PLX

GPU-GPU interconnect (NVLink / UALink)
Ix GPU is easy — just skip interconnect
8x GPU(s) is easy — just passthrough entirely

Mixed is difficult — need to configure lanes from the host

s STELIA

NVSwitch |CEEEE NVSwitch

Questions?

Dave Hughes
david.hughes@stelia.ai

s STELIA

Lukas Stockner

lukas.stockner@stelia.ai

30

	Slide 1: Building Cloud Infrastructure for AI
	Slide 2: whoami
	Slide 3: whoami
	Slide 4: What is a cloud?
	Slide 5: What is a cloud?
	Slide 6: What is a 'GPU cloud'?
	Slide 7: What is a 'GPU' cloud?
	Slide 8: 'GPU clouds': the good, the bad and the ugly
	Slide 9: 'GPU Clouds': the good, the bad and the ugly
	Slide 10: How to design a cloud 101
	Slide 11: How to design a cloud 101
	Slide 12: Hardware selection
	Slide 13: Hardware selection
	Slide 14: Firmware
	Slide 15: Firmware
	Slide 16: Orchestration
	Slide 17: Orchestration
	Slide 18: OS deployment
	Slide 19: OS deployment
	Slide 20: Networking
	Slide 21: Networking
	Slide 22: Networking: Public Overlay
	Slide 23: Networking: Instances
	Slide 24: Networking: RDMA
	Slide 25: Storage
	Slide 26: Storage
	Slide 27: Virtualization
	Slide 28: Virtualization
	Slide 29: Virtualization: GPUs
	Slide 30: Questions?

