
One GPU, Many Models
What works and what Segfaults

 Yash Panchal

 SDET III @ Percona

1

Overview
1. Why Partition a GPU ?

2. GPU sharing methods

3. Video Generation use case (Wan2.2 based models)

4. Potential Crashes and Failures

5. Workload strategies

6. Wan2.2 workload H100 vs B200

7. Conclusion

2

Why Partition a GPU ?

1. Not all models support batching.

2. Application requirement.

3. Want to sell Compute.

4. Simply cannot afford another GPU

3

 GPU Sharing

4

Figure A: GPU Sharing diagram

Time Slicing MPS MIG

Full GPU availability GPU shared between processes GPU split into isolated portions

High context switch overhead Low context switch overhead No context switch overhead

Time sensitive Resource Sensitive Fixed resource

Single workload at a time 48 clients/processes are supported Max 7 fixed sized partitions

Good for workloads that can wait Trusted workloads that can run together Workloads that strictly require isolation

Full GPU allocation (QoS maintained) No QoS Guaranteed QoS Guaranteed

GPU sharing comparison

5

GPU Support

6

MPS MIG
Enterprise GPUs 

 
A100 and +

Yes Yes

Professional GPUs Yes Few Ampere and Blackwell
based

Consumer GPUs Yes No

MPS Overview

• Software level isolation (client/server based)
CUDA API implementation

• Compute and Memory are shared
concurrently.

MPS Components:

1. Client: Any CUDA process is a client

2. Control Daemon: Manages MPS server

3. MPS Server: Shares GPU connections with
clients

7

Figure B: MPS diagram

MPS Setup steps

1. export CUDA_VISIBLE_DEVICES=0

2. nvidia-cuda-mps-control -d

MPS client runtime is built into the CUDA Driver library

 All the subsequent CUDA work uses the MPS server automatically :)

8

Select the GPU device

Start the MPS daemon

MiG Overview

9

• GPU Instance = GPU slices + GPU engines (CE, DEC, JPEG, ENC, OFA)

• GPU slice = GPU Memory slice + GPU Compute slice

• 1 GPU memory slice ~ 1/8 Total GPU Memory

• 1 GPU compute slice ~ 1/7 Total number of compute (SMs)Figure C: GPU instances

Figure D: GPU slices

MiG Slice hierarchy

• MiG instance creation has has two level hierarchy

• You cannot create compute slice first and then assign memory slice to it. 

10

Figure E: 2 Level Slicing A100

Step 1

Step 2

Memory is sliced

Compute is assigned to sliced memory

MiG Partitioning Combinations

11

Figure G: Smallest Instance Figure H: isolated compute with shared Memory Figure I: Multiple compute with Large Memory

Multiple isolated compute instances

• Single 4g.20gb split into 4
isolated 1c.4g.20gb instances

• The 20gb memory is shared by 4
instances

• Memory issues (potential OOM)

 Single isolated large instance

• 1 isolated 4g.20gb instance

• The 20gb memory is shared by
single instance

• Potential of unused compute
(Idle compute)

Single isolated compute instance

• 1 isolated 1g.5gb instance

• Full isolation of compute and
memory

• Size might be an issue

MIG Overhead

12

Figure J: H100 MiG available profiles

• No Free Lunch: There will always be some
overhead.

• You will compromise for utilizing MiG feature

• SM CE and Memory GiB are not exactly partitioned

• 1g = 16 SMs (base)

• 3g = 60 SMs (3 x base + few additional SMs)

• 7g = 132 SMs (all SMs)

MiG Partition Creation

13

1. nvidia-smi -i 0 -mig 1 (Enable MiG Mode for GPU 0)

2. nvidia-smi mig -i 0 -cgi 9,9 (GPU instance creation)

3. nvidia-smi mig -i 0 -cci (Compute instance assignment)

Figure K : List available GPU devices (Only one device)

Figure L : List available MIG gpu instance profiles on a H100 GPU

Figure M: List created GPU Instances

Figure N: List created Compute Instances

Steps to create MIG Profiles

Combining MiG and MPS

14

Figure O: H100 with 2 MIG and 1 MIG with MPS

MIG Instance can have MPS within it

MIG instances cannot be created if
MPS is already enabled earlier.

(stop the MPS daemon and then MIG instances can be created)

Video Generation

• Does not support batching like LLMs

• Large Model 12B Parameter

• prompt + image + audio to generate Video

• 480P

• ~ 58 GB VRAM (Peak)

• ~ 55 GB VRAM (Constant)

15

• Does not support batching like LLMs

• Medium Model 5B Parameter

• prompt to generate Video

• 720P

• ~ 33 GB VRAM (Peak)

• ~ 21 GB VRAM (Constant)

Wan2.2 TI2V 5BWan2.2 S2V 14B

OOM: 2x Wan2.2 s2v 14B Model

16

Figure P: Running two Large Wan2.2 S2V 14B Model processes for 480P Video Generation on H100 having 80GB VRAM using MPS

Deliberate Failure example: Wan2.2 S2V 14B requires ~ 56GB VRAM for single 480P video generation

B A

C D

OOM: 3x Wan2.2 TI2v 5B Model

17

x x

Figure Q : 3 x Wan2.2 TI2V 5B processes started at same time

Figure R : One peaks at 33GB

Figure S : PID 72374 peaks before crashing

x

1 Crashed 2 Survived

Video Generation: Performance Tests

18

Test Method Memory Usage Result Time/Video
Baseline

Wan2.2 S2V 14B
 Full GPU ~ 55 GB Constan

~ 58 GB Peak Works 4m 5s

Baseline

Wan2.2 TI2V 5B
 Full GPU ~ 21 GB Constant

~ 33 GB Peak Works 4m 2s

2 x Wan2.2 s2v 14B MPS

2 process OOM 1 OOM

1 Survived 8m 50s

Wan2.2 S2V 14B

+

Wan2.2 TI2V 5B

MPS 
2 process ~ 80 GB

Worked

The 14B task finished early

6m 50s for 14B

7m 30s for 5B

3 x Wan2.2 TI2V 5B MPS

3 process OOM 1 OOM  

2 Survived 5min 45s

2 x Wan2.2 TI2V 5B MIG

2 Instances ~ 80 GB Works 6m 50s

3 x Wan2.2 TI2V 5B

1m start delay

MPS

2 -> 3 -> 2 -> 1

Processes
~ 79 GB Works 3m 20s

2 x Wan2.2 s2v 14B MIG

2 Large instance NA Not possible Model too

large for H100 MiG
Use B200 :) 180GB VRAM 

3 Videos using MPS 12 mins

Figure P: Running two Large Wan2.2 S2V 14B Model processes for 480P Video Generation on H100 having 80GB VRAM using MPS

MPS staggered start method

19

Figure T: Failed 3x Wan2.2 TI2V 5B Parallel job

Start after 1 min Start after 2 min

Start at 0 min

Wan2.2 TI2V 5B predictive workload

(last 30 seconds is where 33GB peak memory utilization occurs)

Add 1 min delay start between each workloads

This took 10m 30s to generate 3 Videos

(This approach is not possible using MiG, max 2 parallel 40GB MiG partitions)

Figure T: Staggered start 3 x Wan2.2 TI2V on H100 GPU

B200 GPU MiG Profiles

• B200 has 180GB VRAM

• Wan2.2 parallel video generation

• TI2V 5B:

• Max 3 relevant MiG Partitions

• S2V 14B:

• Max 2 relevant MiG Partitions

20

Figure U: MiG Partitions options on B200

MPS on B200 for 3 Wan2.2 S2V 14B

21

Figure V: MPS start 3 x Wan2.2 S2V 14B on B200 GPU with 180GB

H100 vs B200 for Wan2.2

22

Max Videos that can be generated in
parallel TI2V 5B S2V 14B

H100 using MPS 2 to 3(staggered) 1

B200 using MPS 5 3

H100 using MiG 2 1

B 200 using MiG 3 (faster) to 4 2

Figure W: Max no of video generation using MPS and MiG for two Wan2.2 models

Conclusion

• No single partitioning method is perfect

• MIG is not possible at places but MPS works

• For large video generation models like wan 2.2 S2V 14B MiG use B200

• Identify the behavior of the workload first

• Optimize the model as much as possible

23

Thank You

24

MiG specific Talk @ 6:00 PM Today (30 mins): Virtualization and Cloud Infrastructure

GPU monitoring methods Talk @ 9:50 AM Tomorrow (40 mins): Software Performance

https://fosdem.org/2026/schedule/track/virtualization-and-cloud-infrastructure/
https://fosdem.org/2026/schedule/track/software-performance/

Reference

• Images B,C,D,E,F,G,H,I are sourced from NVIDIA Documentations,

• Rest of the images are from CLI and created using draw.io

• Models used for demo are Wan2.2 S2V 14B and Wan2.2 TI2V 5B

25

http://draw.io

