

One GPU, Many Models

What works and what Segfaults

Yash Panchal

SDET III @ Percona

Overview

1. Why Partition a GPU ?
2. GPU sharing methods
3. Video Generation use case (Wan2.2 based models)
4. Potential Crashes and Failures
5. Workload strategies
6. Wan2.2 workload H100 vs B200
7. Conclusion

Why Partition a GPU ?

1. Not all models support batching.
2. Application requirement.
3. Want to sell Compute.
4. Simply cannot afford another GPU

GPU Sharing

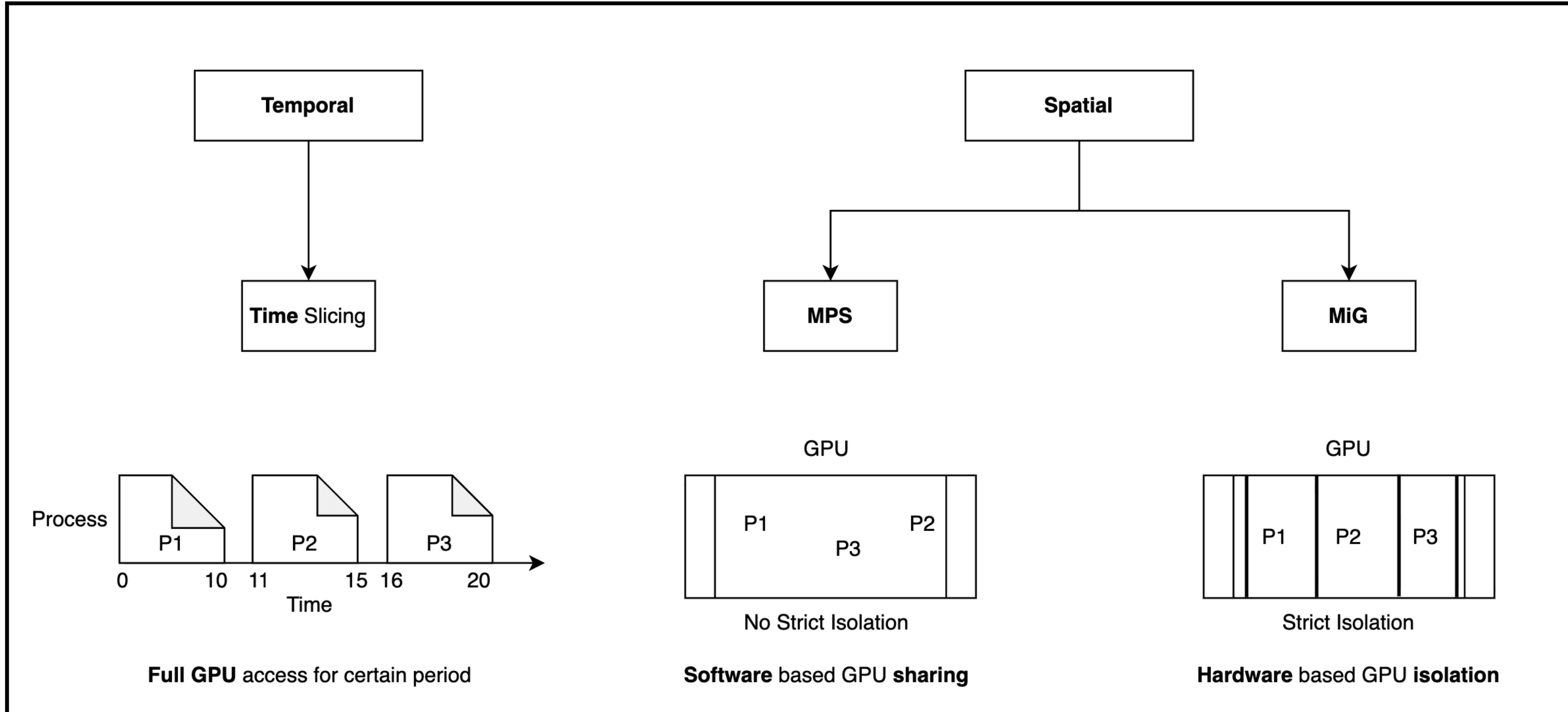
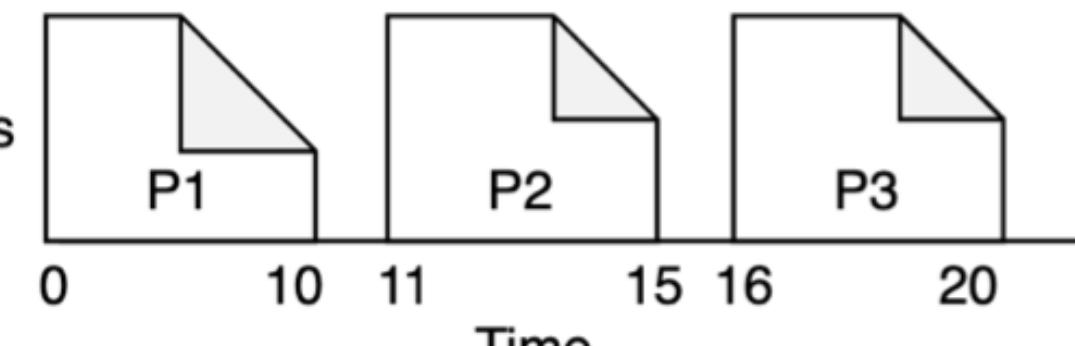
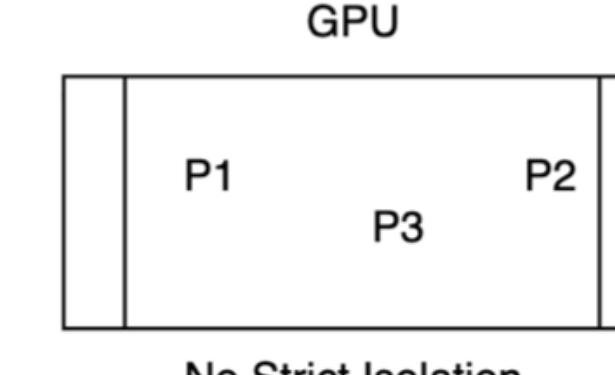
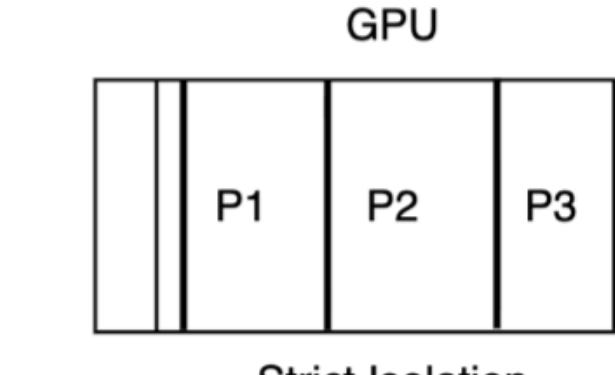
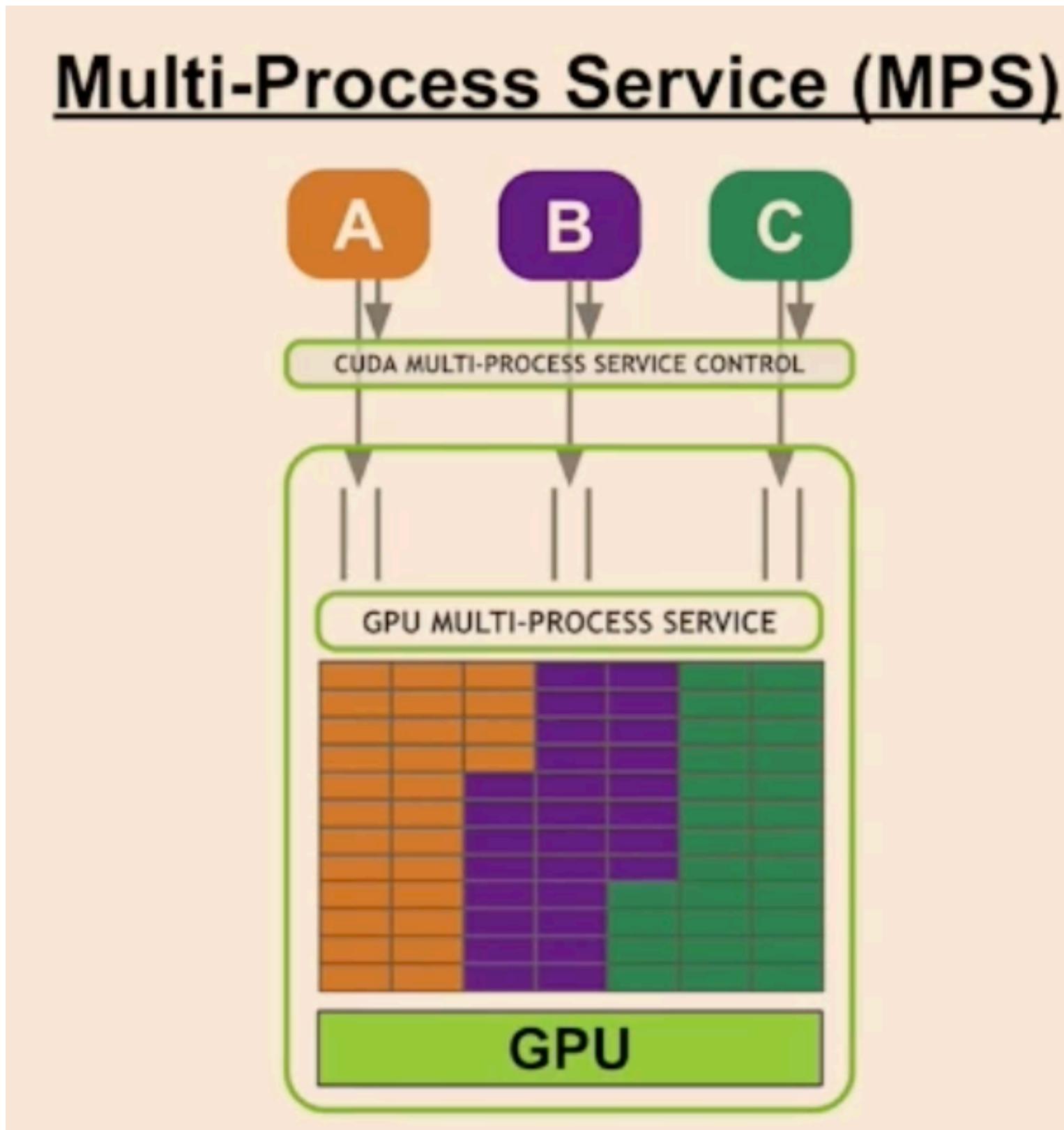





Figure A: GPU Sharing diagram


GPU sharing comparison

Time Slicing	MPS	MIG
	 No Strict Isolation	 Strict Isolation
Full GPU availability	GPU shared between processes	GPU split into isolated portions
High context switch overhead	Low context switch overhead	No context switch overhead
Time sensitive	Resource Sensitive	Fixed resource
Single workload at a time	48 clients/processes are supported	Max 7 fixed sized partitions
Good for workloads that can wait	Trusted workloads that can run together	Workloads that strictly require isolation
Full GPU allocation (QoS maintained)	No QoS Guaranteed	QoS Guaranteed

GPU Support

	MPS	MIG
Enterprise GPUs A100 and +	Yes	Yes
Professional GPUs	Yes	Few Ampere and Blackwell based
Consumer GPUs	Yes	No

MPS Overview

- Software level isolation (client/server based) CUDA API implementation
- Compute and Memory are shared concurrently.

MPS Components:

1. Client: Any CUDA process is a client
2. Control Daemon: Manages MPS server
3. MPS Server: Shares GPU connections with clients

Figure B: MPS diagram

MPS Setup steps

1. `export CUDA_VISIBLE_DEVICES=0` **Select the GPU device**
2. `nvidia-cuda-mps-control -d` **Start the MPS daemon**

MPS client runtime is built into the CUDA Driver library

All the subsequent CUDA work uses the MPS server automatically :)

MiG Overview

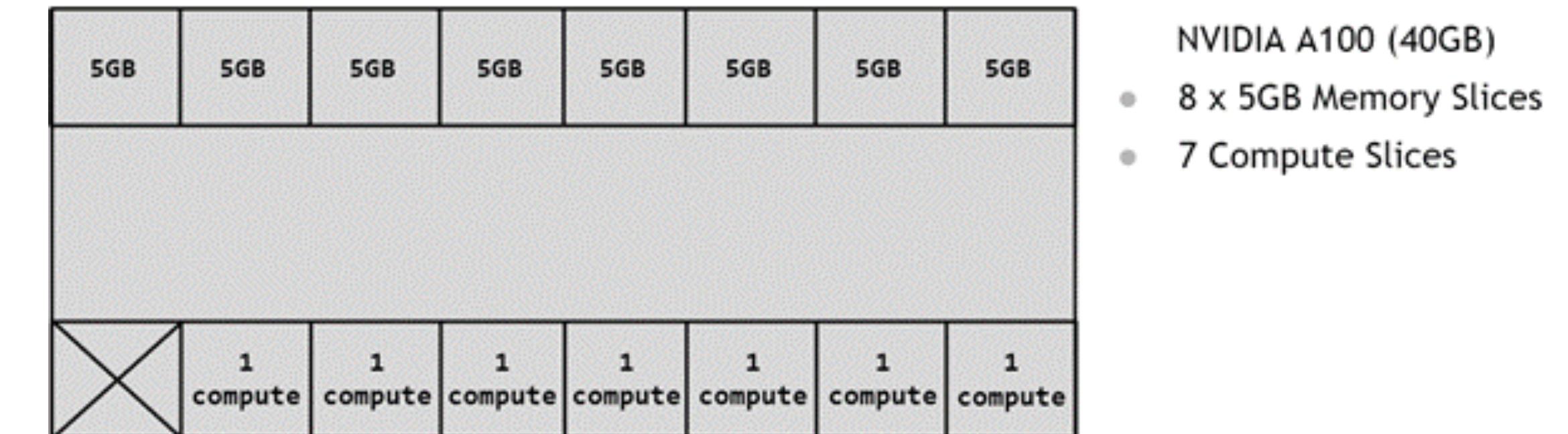
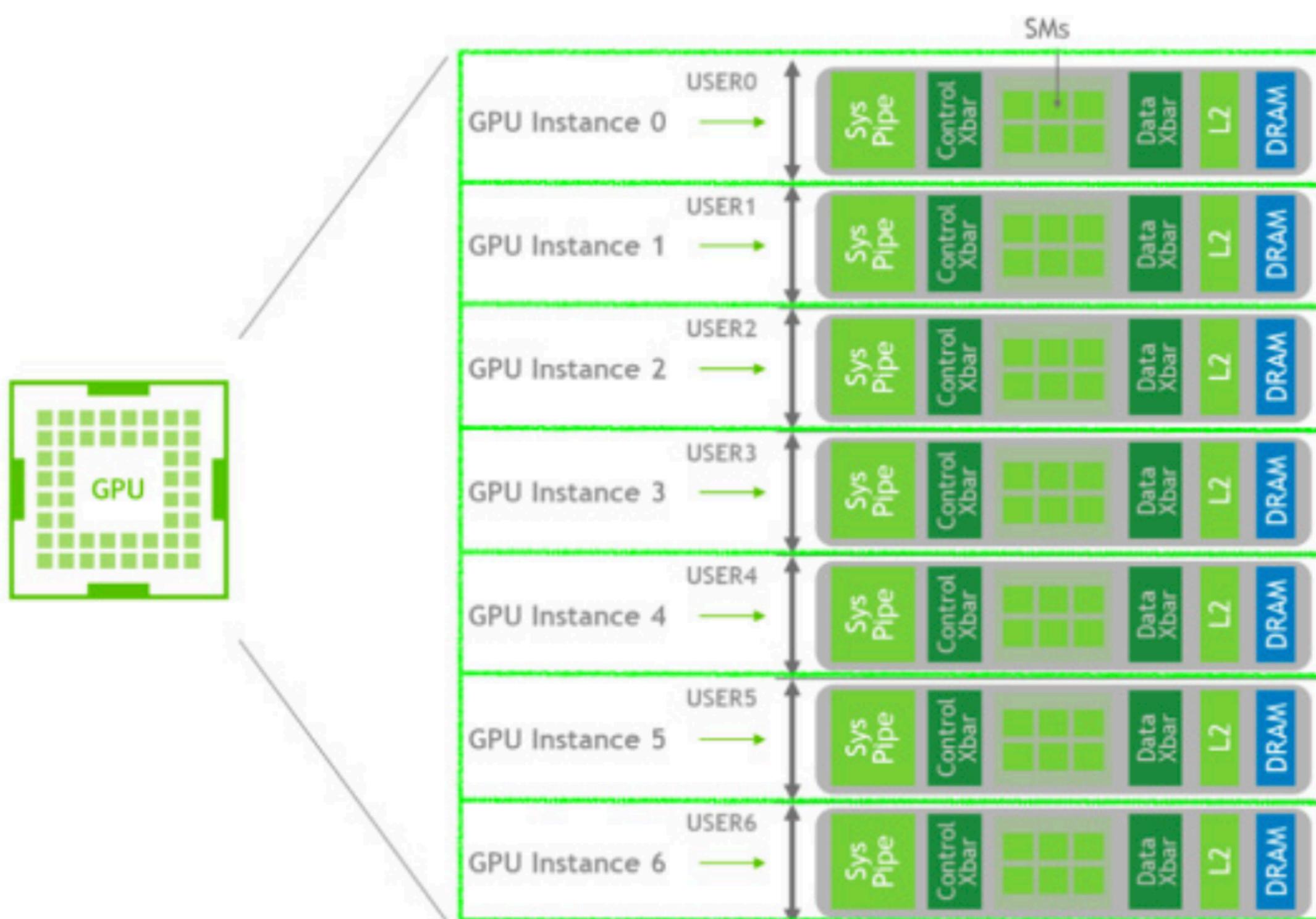
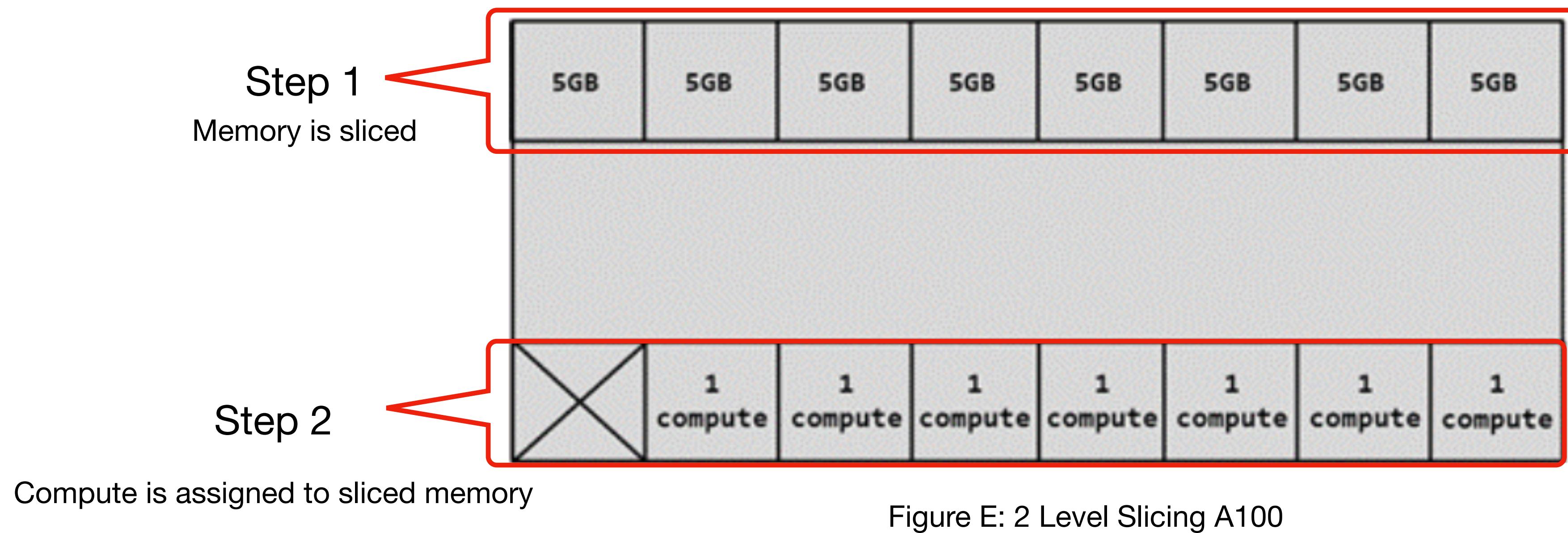




Figure D: GPU slices

- GPU Instance = GPU slices + GPU engines (CE, DEC, JPEG, ENC, OFA)
- GPU slice = GPU Memory slice + GPU Compute slice
- 1 GPU memory slice ~ 1/8 Total GPU Memory
- 1 GPU compute slice ~ 1/7 Total number of compute (SMs)

MiG Slice hierarchy

- MiG instance creation has has two level hierarchy
- You cannot create compute slice first and then assign memory slice to it.

MiG Partitioning Combinations

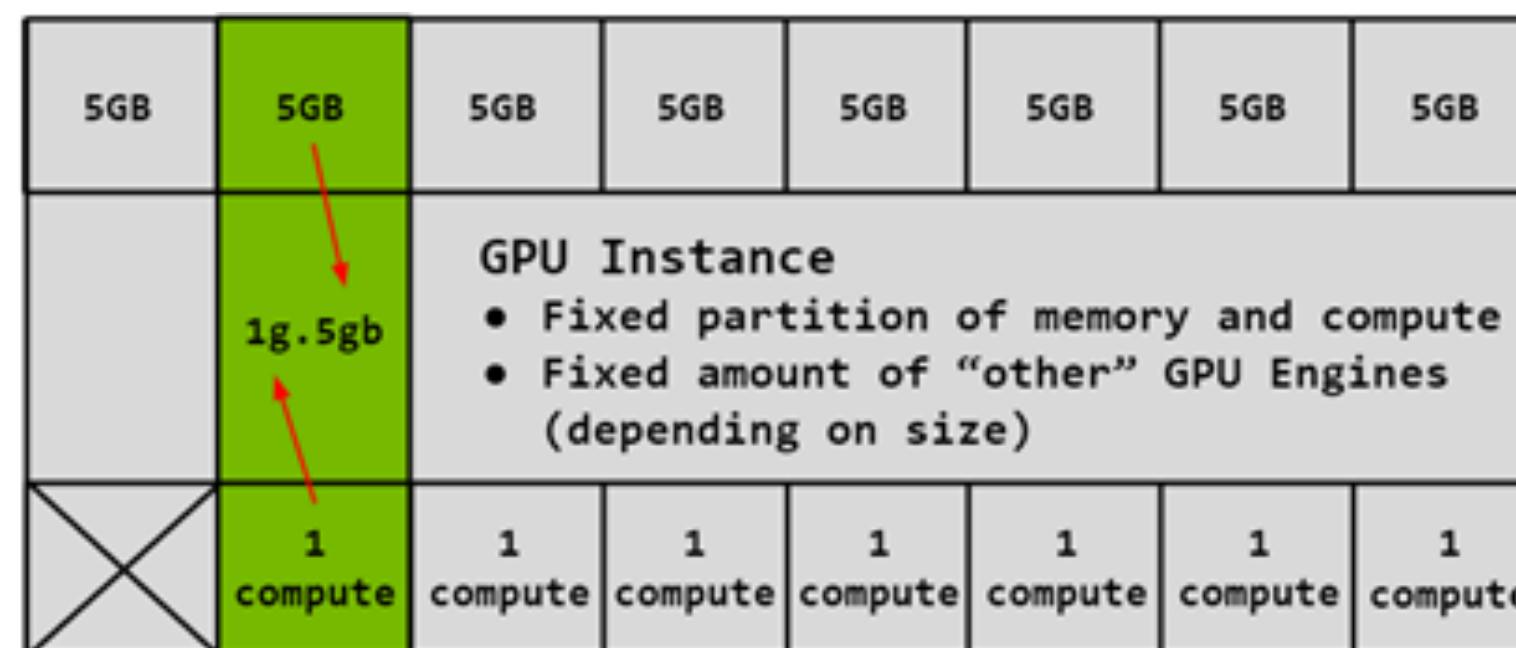


Figure G: Smallest Instance

Single isolated compute instance

- 1 isolated 1g.5gb instance
- Full isolation of compute and memory
- Size might be an issue

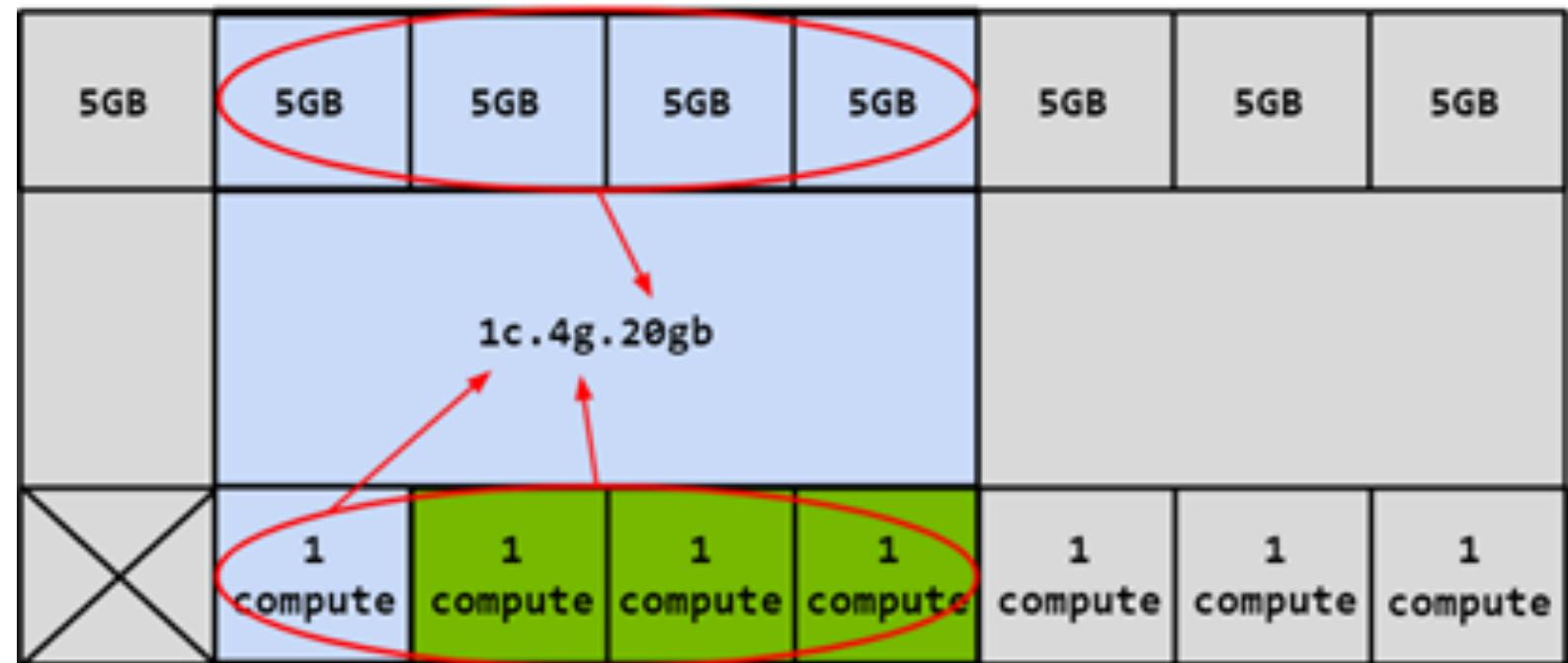


Figure H: isolated compute with shared Memory

Multiple isolated compute instances

- Single 4g.20gb split into 4 isolated 1c.4g.20gb instances
- The 20gb memory is shared by 4 instances
- Memory issues (potential OOM)

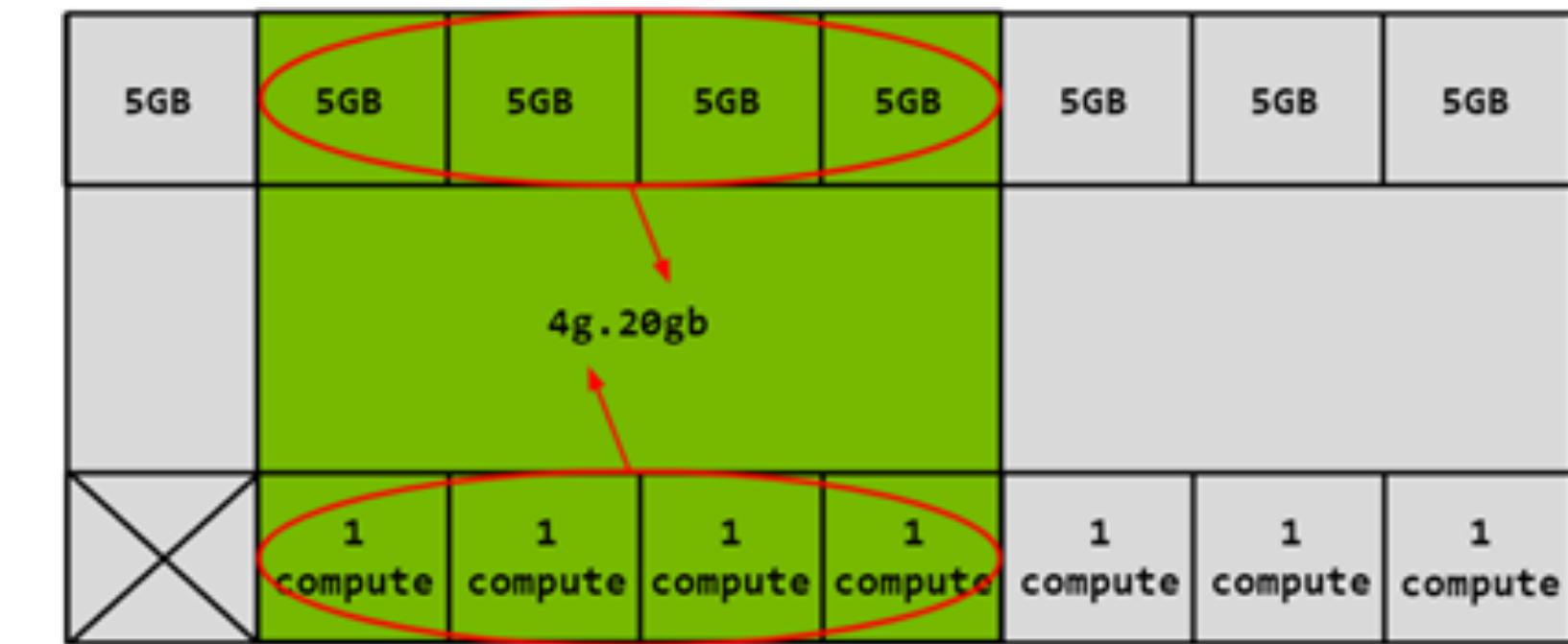


Figure I: Multiple compute with Large Memory

Single isolated large instance

- 1 isolated 4g.20gb instance
- The 20gb memory is shared by single instance
- Potential of unused compute (Idle compute)

MiG Overhead

```
[root@h100-server1:~# nvidia-smi mig -i 0 -lgip
```

GPU instance profiles:								
GPU	Name	ID	Instances	Memory	P2P	SM	DEC	ENC
			Free/Total	GiB		CE	JPEG	OFA
0	MIG 1g.10gb	19	7/7	9.75	No	16	1	0
						1	1	0
0	MIG 1g.10gb+me	20	1/1	9.75	No	16	1	0
						1	1	1
0	MIG 1g.20gb	15	4/4	19.62	No	26	1	0
						1	1	0
0	MIG 2g.20gb	14	3/3	19.62	No	32	2	0
						2	2	0
0	MIG 3g.40gb	9	2/2	39.50	No	60	3	0
						3	3	0
0	MIG 4g.40gb	5	1/1	39.50	No	64	4	0
						4	4	0
0	MIG 7g.80gb	0	1/1	79.25	No	132	7	0
						8	7	1

- No Free Lunch: There will always be some overhead.
- You will compromise for utilizing MiG feature
- SM CE and Memory GiB are not exactly partitioned
- 1g = 16 SMs (base)
- 3g = 60 SMs (3 x base + few additional SMs)
- 7g = 132 SMs (all SMs)

Figure J: H100 MiG available profiles

MiG Partition Creation

Steps to create MiG Profiles

```
root@h100-server1:~# nvidia-smi -L
GPU 0: NVIDIA H100 80GB HBM3 (UUID: GPU-f0adccc6-9d17-0af6-ba0b-82402cce84b5)
```

Figure K : List available GPU devices (Only one device)

```
root@h100-server1:~# nvidia-smi mig -i 0 -lgip
+-----+
| GPU instance profiles:
| GPU  Name           ID  Instances  Memory
|                   Free/Total  GiB   P2P   SM   DEC   ENC
|                   CE      JPEG  OFA
+-----+
| 0  MIG 1g.10gb    19   0/7      9.75   No    16    1    0
|                   1      1    0
+-----+
| 0  MIG 1g.10gb+me 20   0/1      9.75   No    16    1    0
|                   1      1    1
+-----+
| 0  MIG 1g.20gb    15   0/4      19.62  No    26    1    0
|                   1      1    0
+-----+
| 0  MIG 2g.20gb    14   0/3      19.62  No    32    2    0
|                   2      2    0
+-----+
| 0  MIG 3g.40gb    9    0/2      39.50  No    60    3    0
|                   3      3    0
+-----+
| 0  MIG 4g.40gb    5    0/1      39.50  No    64    4    0
|                   4      4    0
+-----+
| 0  MIG 7g.80gb    0    0/1      79.25  No   132    7    0
|                   8      7    1
+-----+
```

Figure L : List available MiG gpu instance profiles on a H100 GPU

1. nvidia-smi -i 0 -mig 1 (Enable MiG Mode for GPU 0)
2. nvidia-smi mig -i 0 -cgi 9,9 (GPU instance creation)
3. nvidia-smi mig -i 0 -cci (Compute instance assignment)

```
root@h100-server1:~# nvidia-smi mig -i 0 -lgi
+-----+
| GPU instances:
| GPU  Name           Profile  Instance  Placement
|                   ID      ID      Start:Size
+-----+
| 0  MIG 3g.40gb     9        1        0:4
+-----+
| 0  MIG 3g.40gb     9        2        4:4
+-----+
```

Figure M: List created GPU Instances

```
root@h100-server1:~# nvidia-smi mig -i 0 -lci
+-----+
| Compute instances:
| GPU  GPU  Name           Profile  Instance  Placement
|           Instance  ID      ID      Start:Size
|           ID
+-----+
| 0    1    MIG 3g.40gb     2        0        0:4
+-----+
| 0    2    MIG 3g.40gb     2        0        0:4
+-----+
```

Figure N: List created Compute Instances

Combining MiG and MPS

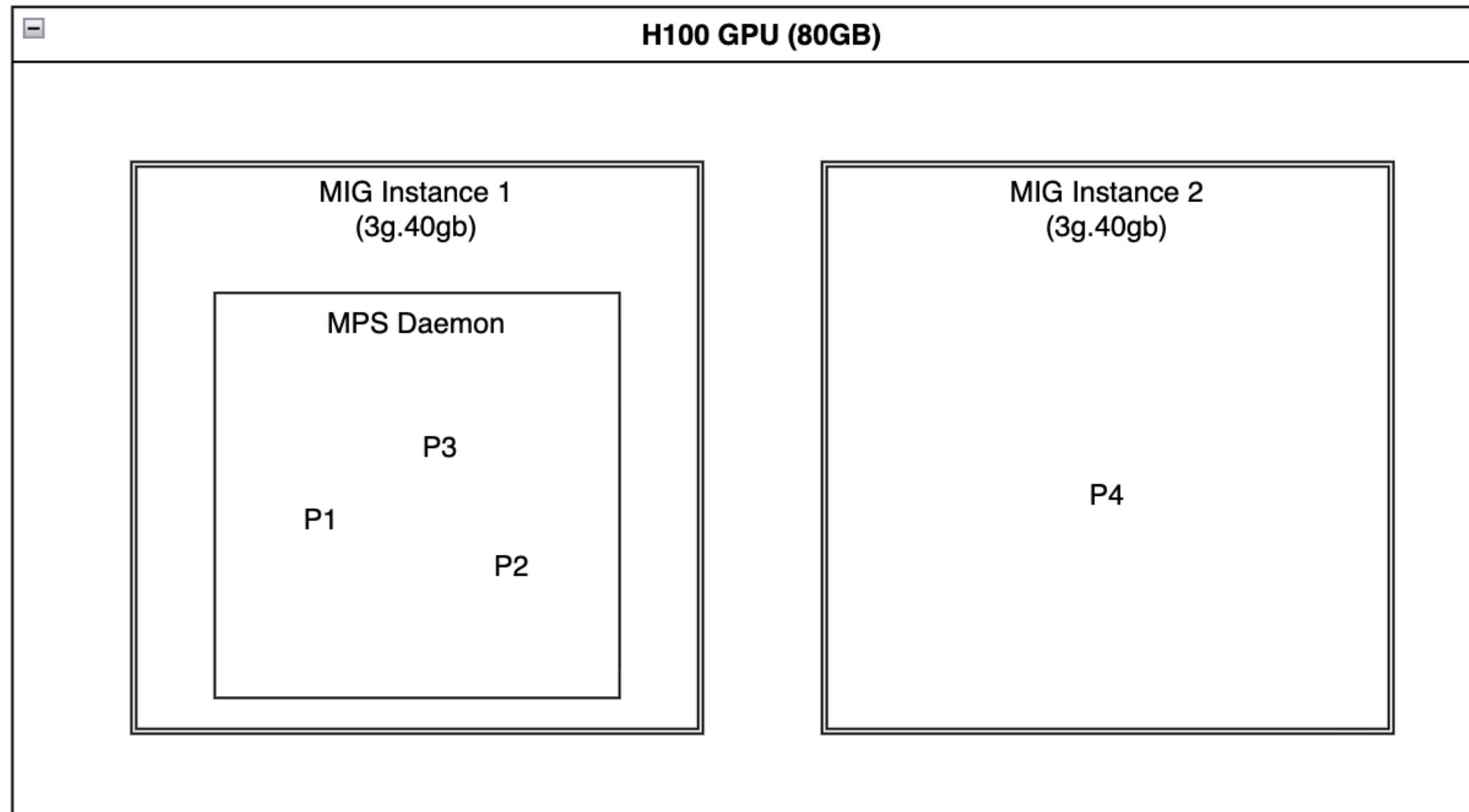


Figure O: H100 with 2 MiG and 1 MiG with MPS

MiG Instance can have MPS within it

MiG instances cannot be created if MPS is already enabled earlier.

(stop the MPS daemon and then MiG instances can be created)

Video Generation

Wan2.2 S2V 14B

- Does not support batching like LLMs
- Large Model 12B Parameter
- prompt + image + audio to generate Video
- 480P
 - ~ 58 GB VRAM (Peak)
 - ~ 55 GB VRAM (Constant)

Wan2.2 TI2V 5B

- Does not support batching like LLMs
- Medium Model 5B Parameter
- prompt to generate Video
- 720P
 - ~ 33 GB VRAM (Peak)
 - ~ 21 GB VRAM (Constant)

OOM: 2x Wan2.2 s2v 14B Model

```
ssh x
Every 1.0s: nvidia-smi
Fri Jan 30 15:23:50 2026
+-----+-----+-----+
| NVIDIA-SMI 580.95.05 | Driver Version: 580.95.05 | CUDA Version: 13.0 |
+-----+-----+-----+
| GPU  Name Persistence-M  Bus-Id Disp.A  Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap | Memory-Usage | GPU-Util  Compute M. |
|          |          |          |          |          |          | MIG M. |
+-----+-----+-----+-----+-----+-----+
| 0  NVIDIA H100 80GB HBM3  On  00000000:05:00.0 Off |          Off | | | | |
| N/A  53C   P0  534W / 700W | 55443MiB / 81559MiB | 100%  Default |
|          |          |          |          |          | Disabled |
+-----+-----+-----+-----+-----+-----+
+-----+-----+-----+
| Processes:                               PID  Type  Process name          GPU Memory |
| GPU  GI  CI          ID  ID          Usage          |
|-----+-----+-----+-----+-----+-----+-----+
| 0  N/A N/A 30354  C  nvidia-cuda-mps-server  66MiB |
| 0  N/A N/A 34081  M+C  python3  55368MiB |
+-----+-----+-----+-----+-----+-----+
```

```
Every 1.0s: nvidia-smi
Fri Jan 30 15:23:43 2026
+-----+-----+-----+
| NVIDIA-SMI 580.95.05 | Driver Version: 580.95.05 | CUDA Version: 13.0 |
+-----+-----+-----+
| GPU  Name Persistence-M  Bus-Id Disp.A  Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap | Memory-Usage | GPU-Util  Compute M. |
|          |          |          |          |          |          | MIG M. |
+-----+-----+-----+-----+-----+-----+
| 0  NVIDIA H100 80GB HBM3  On  00000000:05:00.0 Off |          Off | | | | |
| N/A  48C   P0  616W / 700W | 79612MiB / 81559MiB | 100%  Default |
|          |          |          |          |          | Disabled |
+-----+-----+-----+
+-----+-----+-----+
| Processes:                               PID  Type  Process name          GPU Memory |
| GPU  GI  CI          ID  ID          Usage          |
|-----+-----+-----+-----+-----+-----+-----+
| 0  N/A N/A 30354  C  nvidia-cuda-mps-server  66MiB |
| 0  N/A N/A 34048  M+C  python3  39768MiB |
| 0  N/A N/A 34081  M+C  python3  39768MiB |
+-----+-----+-----+-----+-----+-----+
```

```
ssh x
File "/Wan2.2/myenv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 928, in _apply
    module._apply(fn)
[Previous line repeated 2 more times]
File "/Wan2.2/myenv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 955, in _apply
    param_applied = fn(param)
File "/Wan2.2/myenv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1355, in convert
    return t.to(
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 80.00 MiB. GPU 0 has a total capacity of 79.18 GiB of which 41.38 MiB is free. Process 30354 has 66.00 MiB memory in use. Including non-PyTorch memory, this process has 40.23 GiB memory in use. Process 34081 has 38.84 GiB memory in use. Of the allocated memory 39.60 GiB is allocated by PyTorch, and 18.18 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments=True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
(myenv) root@h100-server1:/Wan2.2#
```

```
ero_init ssh True, 'zero_timestep': True, 'enable_motioner': False, 'add_last_motion': True, 'trainable_token': False, 'enable_tsm': False, 'enable_framepack': True, 'framepack_drop_mode': 'padd', 'audio_dim': 1024, 'motion_frames': 73, 'cond_dim': 16}, 'drop_first_motion': True, 'sample_shift': 3, 'sample_steps': 40, 'sample_guide_scale': 4.5}
[2026-01-30 15:22:35,428] INFO: Input prompt: The Person is speaking professionally while looking at the viewer. Make sure the face is not distorted or blurred and has realistic and relevant emotions/expressions
[2026-01-30 15:22:35,435] INFO: Input image: f1.jpg
[2026-01-30 15:22:35,435] INFO: Creating WanS2V pipeline.
[2026-01-30 15:23:19,951] INFO: loading ./Wan2.2-S2V-14B/models_t5_umt5-xxl-enc-bf16.pth
[2026-01-30 15:23:28,037] INFO: loading ./Wan2.2-S2V-14B/Wan2.1_VAE.pth
[2026-01-30 15:23:28,360] INFO: Creating WanModel from ./Wan2.2-S2V-14B/
Loading checkpoint shards: 100%|██████████| 4/4 [00:04<00:00, 1.16s/it]
[2026-01-30 15:23:33,460] INFO: Generating video ...
| 0/10 [00:00<?, ?it/s]
```

Figure P: Running two Large Wan2.2 S2V 14B Model processes for 480P Video Generation on H100 having 80GB VRAM using MPS

Deliberate Failure example: Wan2.2 S2V 14B requires ~ 56GB VRAM for single 480P video generation

OOM: 3x Wan2.2 TI2v 5B Model

```
ssh x
Every 1.0s: nvidia-smi
h100-server1: Fri Jan 30 18:08:47 2026

Fri Jan 30 18:08:47 2026
+
| NVIDIA-SMI 580.95.05     Driver Version: 580.95.05    CUDA Version: 13.0 |
+-----+-----+-----+-----+-----+-----+-----+-----+
| GPU  Name     Persistence-M | Bus-Id     Disp.A  | Volatile Uncorr. ECC
| Fan  Temp     Perf          | Pwr:Usage/Cap | Memory-Usage | GPU-Util  Compute M.
|      Temp     |             |              |             |          MIG M.
+-----+-----+-----+-----+-----+-----+-----+-----+
| 0  NVIDIA H100 80GB HBM3   Off | 00000000:05:00.0 Off |          Off
| N/A  66C     P0          668W / 700W | 66770MiB / 81559MiB | 100%     Default
|                  |                         |              |          Disabled
+-----+-----+-----+-----+-----+-----+-----+-----+
+
| Processes:          GPU Memory
| GPU  GI CI PID  Type  Process name     Usage
| ID   ID
+-----+-----+-----+-----+-----+-----+
| 0   N/A N/A 72221  C   python3          22250MiB
| 0   N/A N/A 72257  C   python3          22250MiB
| 0   N/A N/A 72374  C   python3          22250MiB
+-----+-----+-----+-----+-----+-----+
```

Figure Q : 3 x Wan2.2 TI2V 5B processes started at same time

```
ssh x
Every 1.0s: nvidia-smi
h100-server1: Fri Jan 30 18:09:24 2026

Fri Jan 30 18:09:24 2026
+
| NVIDIA-SMI 580.95.05     Driver Version: 580.95.05    CUDA Version: 13.0 |
+-----+-----+-----+-----+-----+-----+-----+-----+
| GPU  Name     Persistence-M | Bus-Id     Disp.A  | Volatile Uncorr. ECC
| Fan  Temp     Perf          | Pwr:Usage/Cap | Memory-Usage | GPU-Util  Compute M.
|      Temp     |             |              |             |          MIG M.
+-----+-----+-----+-----+-----+-----+-----+-----+
| 0  NVIDIA H100 80GB HBM3   Off | 00000000:05:00.0 Off |          Off
| N/A  62C     P0          692W / 700W | 78504MiB / 81559MiB | 100%     Default
|                  |                         |              |          Disabled
+-----+-----+-----+-----+-----+-----+-----+
+
| Processes:          GPU Memory
| GPU  GI CI PID  Type  Process name     Usage
| ID   ID
+-----+-----+-----+-----+-----+-----+
| 0   N/A N/A 72221  C   python3          33984MiB
| 0   N/A N/A 72257  C   python3          22250MiB
| 0   N/A N/A 72374  C   python3          22250MiB
+-----+-----+-----+-----+-----+-----+
```

Figure R : One peaks at 33GB

3 x Wan2.2 TI2V 5B	MPS 3 process	OOM	1 OOM 2 Survived	5min 45s
--------------------	------------------	-----	---------------------	----------

```
ssh x
return forward_call(*args, **kwargs)
File "/Wan2.2/wan/modules/vae2_2.py", line 230, in forward
    x = layer(x, feat_cache[idx])
File "/Wan2.2/myenv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1773,
in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
File "/Wan2.2/myenv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1784,
in _call_impl
    return forward_call(*args, **kwargs)
File "/Wan2.2/wan/modules/vae2_2.py", line 40, in forward
    x = F.pad(x, padding)
File "/Wan2.2/myenv/lib/python3.10/site-packages/torch/nn/functional.py", line 5290, in p
ad
    return torch.C.nn.pad(input, pad, mode, value)
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.60 GiB. GPU 0 has a total c
apacity of 79.18 GiB of which 2.59 GiB is free. Process 72221 has 33.19 GiB memory in use.
Including non-PyTorch memory, this process has 21.65 GiB memory in use. Process 72374 has 2
1.73 GiB memory in use. Of the allocated memory 16.23 GiB is allocated by PyTorch, and 4.47
GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large tr
y setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments=True to avoid fragmentation. See doc
umentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environm
ent-variables)
real    11m10.203s
user    20m15.296s
sys     5m14.712s
(myenv) root@h100-server1:/Wan2.2#
```

Figure S : PID 72374 peaks before crashing

1 Crashed 2 Survived

Video Generation: Performance Tests

Test	Method	Memory Usage	Result	Time/Video
Baseline Wan2.2 S2V 14B	Full GPU	~ 55 GB Constant ~ 58 GB Peak	Works	4m 5s
Baseline Wan2.2 TI2V 5B	Full GPU	~ 21 GB Constant ~ 33 GB Peak	Works	4m 2s
2 x Wan2.2 s2v 14B	MPS 2 process	OOM	1 OOM 1 Survived	8m 50s
Wan2.2 S2V 14B + Wan2.2 TI2V 5B	MPS 2 process	~ 80 GB	Worked The 14B task finished early	6m 50s for 14B 7m 30s for 5B
3 x Wan2.2 TI2V 5B	MPS 3 process	OOM	1 OOM 2 Survived	5min 45s
2 x Wan2.2 TI2V 5B	MIG 2 Instances	~ 80 GB	Works	6m 50s
3 x Wan2.2 TI2V 5B 1m start delay	MPS 2 -> 3 -> 2 -> 1 Processes	~ 79 GB	Works	3m 20s
2 x Wan2.2 s2v 14B	MIG 2 Large instance	NA	Not possible Model too large for H100 MiG	Use B200 :) 180GB VRAM 3 Videos using MPS 12 mins

Figure P: Running two Large Wan2.2 S2V 14B Model processes for 480P Video Generation on H100 having 80GB VRAM using MPS

MPS staggered start method

Wan2.2 TI2V 5B predictive workload

(last 30 seconds is where 33GB peak memory utilization occurs)

Add 1 min delay start between each workloads

This took 10m 30s to generate 3 Videos

(This approach is not possible using MiG, max 2 parallel 40GB MiG partitions)

Start at 0 min

```
B', 't5_model': 'umt5_xxl', 't5_dtype': torch.bfloat16, 'text_len': 512, 'param_dtype': torch.bfloat16, 'num_train_timesteps': 1000, 'sample_fps': 24, 'sample_neg_prompt': '色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走', 'frame_num': 121, 't5_checkpoint': 'models_t5_umt5-xxl-enc-bf16.pth', 't5_tokenizer': 'google/umt5-xxl', 'vae_checkpoint': 'Wan2.2_VAE.pth', 'vae_stride': (4, 16, 16), 'patch_h_size': (1, 2, 2), 'dim': 3072, 'ffn_dim': 14336, 'freq_dim': 256, 'num_heads': 24, 'num_layers': 30, 'window_size': (-1, -1), 'qk_norm': True, 'cross_attn_norm': True, 'eps': 1e-06, 'sample_shift': 5.0, 'sample_steps': 50, 'sample_guide_scale': 5.0}
[2026-01-30 19:10:22,622] INFO: Input prompt: Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage
[2026-01-30 19:10:22,622] INFO: Creating WanTI2V pipeline.
[2026-01-30 19:11:06,024] INFO: loading ./Wan2.2-TI2V-5B/models_t5_umt5-xxl-enc-bf16.pth
[2026-01-30 19:11:12,910] INFO: loading ./Wan2.2-TI2V-5B/Wan2.2_VAE.pth
[2026-01-30 19:11:14,626] INFO: Creating WanModel from ./Wan2.2-TI2V-5B
Loading checkpoint shards: 100%|██████████| 3/3 [00:00<00:00, 76.58it/s]
[2026-01-30 19:11:15,922] INFO: Generating video ...
100%|██████████| 50/50 [04:56<00:00, 5.93s/it]
[2026-01-30 19:17:00,699] INFO: Saving generated video to ti2v-5B_1280*704_1_Two_anthropomorphic_cats_in_comfy_boxing_gear_and_20260130_191700.mp4
[2026-01-30 19:17:03,081] INFO: Finished.

real 6m45.939s
user 8m26.120s
sys 3m57.532s
(myenv) root@h100-server1:/Wan2.2#
```

Start after 1 min

```
: 'google/umt5-xxl', 'vae_checkpoint': 'Wan2.2_VAE.pth', 'vae_stride': (4, 16, 16), 'patch_h_size': (1, 2, 2), 'dim': 3072, 'ffn_dim': 14336, 'freq_dim': 256, 'num_heads': 24, 'num_layers': 30, 'window_size': (-1, -1), 'qk_norm': True, 'cross_attn_norm': True, 'eps': 1e-06, 'sample_shift': 5.0, 'sample_steps': 50, 'sample_guide_scale': 5.0}
[2026-01-30 19:12:25,731] INFO: Input prompt: Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage
[2026-01-30 19:12:25,731] INFO: Creating WanTI2V pipeline.
[2026-01-30 19:13:17,336] INFO: loading ./Wan2.2-TI2V-5B/models_t5_umt5-xxl-enc-bf16.pth
[2026-01-30 19:13:25,588] INFO: loading ./Wan2.2-TI2V-5B/Wan2.2_VAE.pth
[2026-01-30 19:13:27,699] INFO: Creating WanModel from ./Wan2.2-TI2V-5B
Loading checkpoint shards: 100%|██████████| 3/3 [00:00<00:00, 77.50it/s]
[2026-01-30 19:13:31,228] INFO: Generating video ...
100%|██████████| 50/50 [06:51<00:00, 8.24s/it]
[2026-01-30 19:20:10,504] INFO: Saving generated video to ti2v-5B_1280*704_1_Two_anthropomorphic_cats_in_comfy_boxing_gear_and_20260130_192010.mp4
[2026-01-30 19:20:12,867] INFO: Finished.

real 8m54.331s
user 20m53.509s
sys 4m36.699s
(myenv) root@h100-server1:/Wan2.2#
```

Start after 2 min

```
real 8m25.532s
user 20m55.473s
sys 4m17.783s
(myenv) root@h100-server1:/Wan2.2#
```

Figure T: Staggered start 3 x Wan2.2 TI2V on H100 GPU

B200 GPU MiG Profiles

```
root@b200-server:~# nvidia-smi mig -i 0 -lgip
```

GPU instance profiles:								
GPU	Name	ID	Instances Free/Total	Memory GiB	P2P	SM CE	DEC JPEG	ENC OFA
0	MIG 1g.23gb	19	7/7	20.50	No	18 2	1 1	0 0
0	MIG 1g.23gb+me	20	1/1	20.50	No	18 2	1 1	0 1
0	MIG 1g.45gb	15	4/4	44.25	No	30 2	1 1	0 0
0	MIG 2g.45gb	14	3/3	44.25	No	36 4	2 2	0 0
0	MIG 3g.90gb	9	2/2	89.00	No	70 6	3 3	0 0
0	MIG 4g.90gb	5	1/1	89.00	No	72 8	4 4	0 0
0	MIG 7g.180gb	0	1/1	178.50	No	148 16	7 7	0 1

```
root@b200-server:~#
```

Figure U: MiG Partitions options on B200

- B200 has 180GB VRAM
- Wan2.2 parallel video generation
- TI2V 5B:
 - Max 3 relevant MiG Partitions
- S2V 14B:
 - Max 2 relevant MiG Partitions

MPS on B200 for 3 Wan2.2 S2V 14B

```

ssh x b200-server: Sat Jan 31 11:33:51 2026
Every 2.0s: nvidia-smi
Sat Jan 31 11:33:51 2026
+-----+
| NVIDIA-SMI 580.95.05     Driver Version: 580.95.05    CUDA Version: 13.0 |
+-----+
| GPU  Name      Persistence-M  Bus-Id      Disp.A  Volatile Uncorr. ECC |
| Fan  Temp      Perf          Pwr:Usage/Cap | Memory-Usage | GPU-Util  Compute M.  |
|          |          |             |          |          |          |          MIG M. |
+-----+
| 0  NVIDIA B200      On           00000000:05:00.0 Off    Off |
| N/A  34C   P0      142W / 1000W | 79MiB / 183359MiB | 0%      Default |
|          |          |          |          |          |          Disabled |
+-----+
Processes:
+-----+
| GPU  GI  CI          PID  Type  Process name          GPU Memory |
| ID   ID          ID   ID          Usage      |
+-----+
| 0    N/A N/A        3138  C  nvidia-cuda-mps-server  66MiB |
+-----+

```

```

ssh x ion_frames': 73, 'cond_dim': 16}, 'drop_first_motion': True, 'sample_shift': 3, 'sample_steps': 40, 'sample_guide_scale': 4.5}
[2026-01-31 11:22:09,070] INFO: Input prompt: The Person is speaking professionally while looking at the viewer. Make sure the face is not distorted or blurred and has realistic and relevant emotions/expressions
[2026-01-31 11:22:09,081] INFO: Input image: f1.jpg
[2026-01-31 11:22:09,081] INFO: Creating WanS2V pipeline.
[2026-01-31 11:22:57,159] INFO: loading ./Wan2.2-S2V-14B/models_t5_umt5-xxl-enc-bf16.pth
[2026-01-31 11:23:28,688] INFO: loading ./Wan2.2-S2V-14B/Wan2.1_VAE.pth
[2026-01-31 11:23:29,995] INFO: Creating WanModel from ./Wan2.2-S2V-14B/
Loading checkpoint shards: 100%|██████████| 4/4 [02:43<00:00, 40.79s/it]
[2026-01-31 11:26:14,113] INFO: Generating video ...
100%|██████████| 10/10 [02:58<00:00, 17.86s/it]
100%|██████████| 10/10 [03:16<00:00, 19.62s/it]
[2026-01-31 11:33:31,144] INFO: Saving generated video to s2v-14B_832*480_1_The_Person_is_speaking_professionally_while_lookin_20260131_113331.mp4
[2026-01-31 11:33:45,489] INFO: Start merging video and audio...
[2026-01-31 11:33:45,805] INFO: Merge completed, saved to s2v-14B_832*480_1_The_Person_is_speaking_professionally_while_lookin_20260131_113331.mp4
[2026-01-31 11:33:45,828] INFO: Finished.

real    11m41.964s
user    14m46.767s
sys     2m22.149s
(myenv) root@b200-server:/Wan2.2# 
```

```

ssh x [2026-01-31 11:22:58,723] INFO: loading ./Wan2.2-S2V-14B/models_t5_umt5-xxl-enc-bf16.pth
[2026-01-31 11:23:28,689] INFO: loading ./Wan2.2-S2V-14B/Wan2.1_VAE.pth
[2026-01-31 11:23:30,003] INFO: Creating WanModel from ./Wan2.2-S2V-14B/
Loading checkpoint shards: 100%|██████████| 4/4 [02:43<00:00, 40.79s/it]
[2026-01-31 11:26:14,113] INFO: Generating video ...
100%|██████████| 10/10 [02:54<00:00, 17.49s/it]
100%|██████████| 10/10 [03:11<00:00, 19.14s/it]
[2026-01-31 11:33:29,923] INFO: Saving generated video to s2v-14B_832*480_1_The_Person_is_speaking_professionally_while_lookin_20260131_113329.mp4
[2026-01-31 11:33:44,657] INFO: Start merging video and audio...
[2026-01-31 11:33:45,214] INFO: Merge completed, saved to s2v-14B_832*480_1_The_Person_is_speaking_professionally_while_lookin_20260131_113329.mp4
[2026-01-31 11:33:45,243] INFO: Finished.

real    11m39.487s
user    14m36.272s
sys     2m38.519s
(myenv) root@b200-server:/Wan2.2# 
```

```

ssh x [2026-01-31 11:22:54,464] INFO: loading ./Wan2.2-S2V-14B/models_t5_umt5-xxl-enc-bf16.pth
[2026-01-31 11:23:28,689] INFO: loading ./Wan2.2-S2V-14B/Wan2.1_VAE.pth
[2026-01-31 11:23:30,002] INFO: Creating WanModel from ./Wan2.2-S2V-14B/
Loading checkpoint shards: 100%|██████████| 4/4 [02:43<00:00, 40.79s/it]
[2026-01-31 11:26:14,113] INFO: Generating video ...
100%|██████████| 10/10 [02:57<00:00, 17.73s/it]
100%|██████████| 10/10 [03:13<00:00, 19.35s/it]
[2026-01-31 11:33:30,494] INFO: Saving generated video to s2v-14B_832*480_1_The_Person_is_speaking_professionally_while_lookin_20260131_113330.mp4
[2026-01-31 11:33:45,239] INFO: Start merging video and audio...
[2026-01-31 11:33:45,609] INFO: Merge completed, saved to s2v-14B_832*480_1_The_Person_is_speaking_professionally_while_lookin_20260131_113330.mp4
[2026-01-31 11:33:45,636] INFO: Finished.

real    11m43.690s
user    14m48.333s
sys     2m27.046s
(myenv) root@b200-server:/Wan2.2# 
```

Figure V: MPS start 3 x Wan2.2 S2V 14B on B200 GPU with 180GB

H100 vs B200 for Wan2.2

Max Videos that can be generated in parallel	TI2V 5B	S2V 14B
H100 using MPS	2 to 3(staggered)	1
B200 using MPS	5	3
H100 using MiG	2	1
B 200 using MiG	3 (faster) to 4	2

Figure W: Max no of video generation using MPS and MiG for two Wan2.2 models

Conclusion

- No single partitioning method is perfect
- MiG is not possible at places but MPS works
- For large video generation models like wan 2.2 S2V 14B MiG use B200
- Identify the behavior of the workload first
- Optimize the model as much as possible

Thank You

MiG specific Talk @ 6:00 PM Today (30 mins): [Virtualization and Cloud Infrastructure](#)

GPU monitoring methods Talk @ 9:50 AM Tomorrow (40 mins): [Software Performance](#)

Reference

- Images B,C,D,E,F,G,H,I are sourced from NVIDIA Documentations,
- Rest of the images are from CLI and created using [draw.io](#)
- Models used for demo are Wan2.2 S2V 14B and Wan2.2 TI2V 5B