

Ariel OS – The Embedded Rust Software Stack for Microcontroller-based Internet of Things

About us

Kaspar Schleiser

Koen Zandberg

... part of Ariel OS contributors:

Ariel OS: A library operating system for secure, memory-safe, low-power Internet of Things, written in Rust

Outline

1. Context
2. Rust embedded and the Ecosystem
3. Ariel OS
4. Getting started: From Hello World to Networking
5. Wrapping up

Context: Microcontroller hardware

Restrictions

- Limited processing power
- Low memory
- Single memory: no user- vs kernel-space, no MMU, but probably an MPU

Context: Microcontroller hardware

Restrictions

- Limited processing power
- Low memory
- Single memory: no user- vs kernel-space, no MMU, but probably an MPU

Firmware

- **Baremetal**: no underlying OS with threads, networking, heap allocation...
- **No alloc**: deterministic behaviour, avoid panic and memory fragmentation

Outline

1. Context
2. Rust embedded and its Ecosystem
3. Ariel OS
4. Getting started: From Hello World to Networking
5. Wrapping up

Rust: Language

Memory safety!

Rust: Language

Memory safety!

But we know that by now.

Rust: Language

Crates:

Shared code on crates.io, integrated in the Cargo build system.

Traits:

Interfaces that allow for interoperability between crates.

no_std:

No use of the standard library and dynamic memory allocations

Async

Provide asynchronous cooperative multitasking implementations with minimal memory usage

Fosters collaboration across projects

Rust Embedded: Ecosystem

What the ecosystem provides:

`embedded-hal` traits

Provide good generic interfaces for common peripherals across architectures

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

Driver crates

Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

Driver crates

Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Rust Embedded: Ecosystem

What the ecosystem provides:

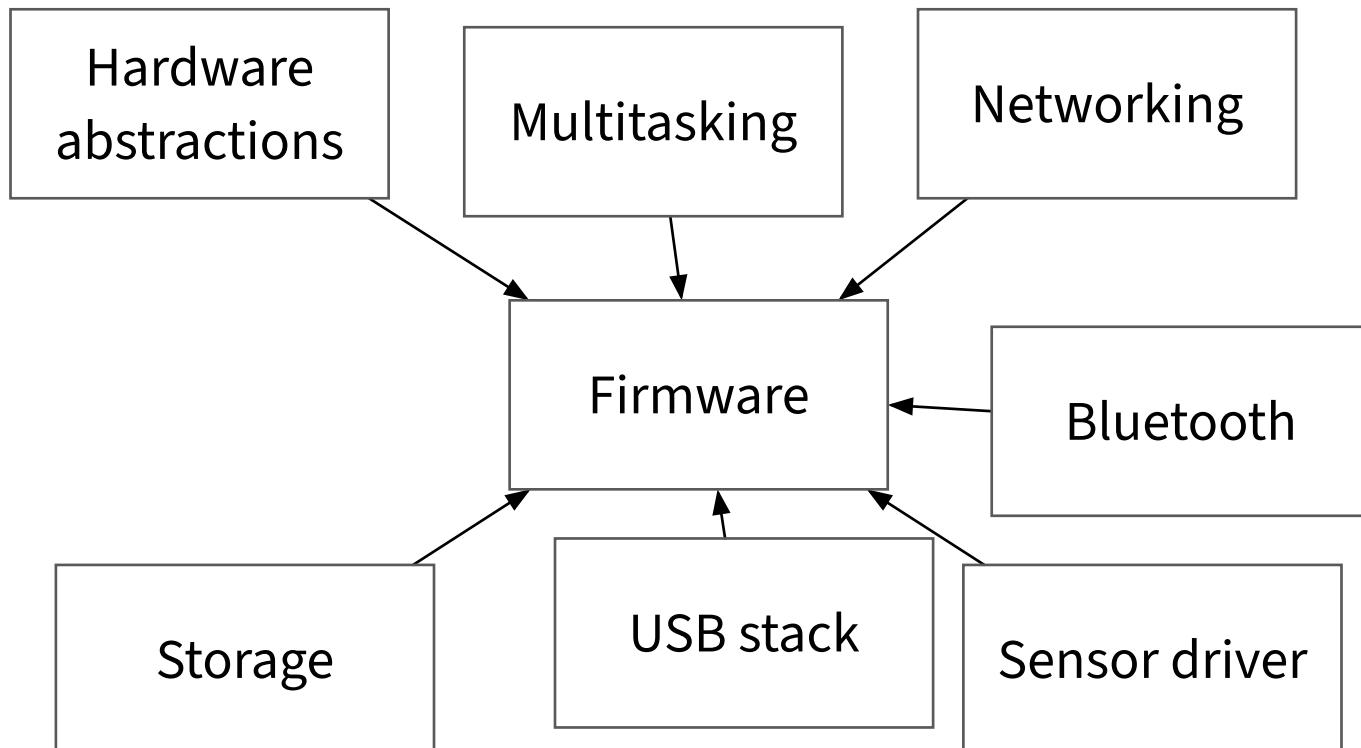
embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

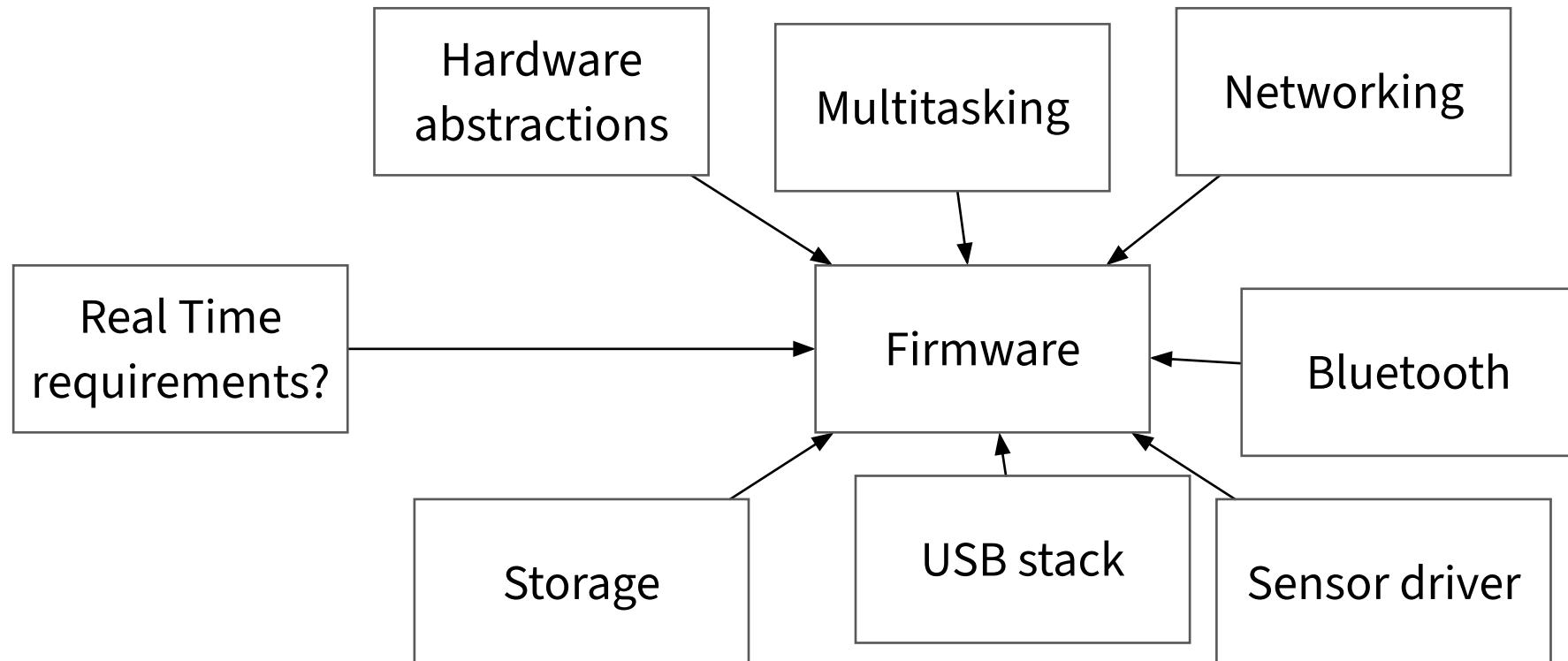
Driver crates

Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

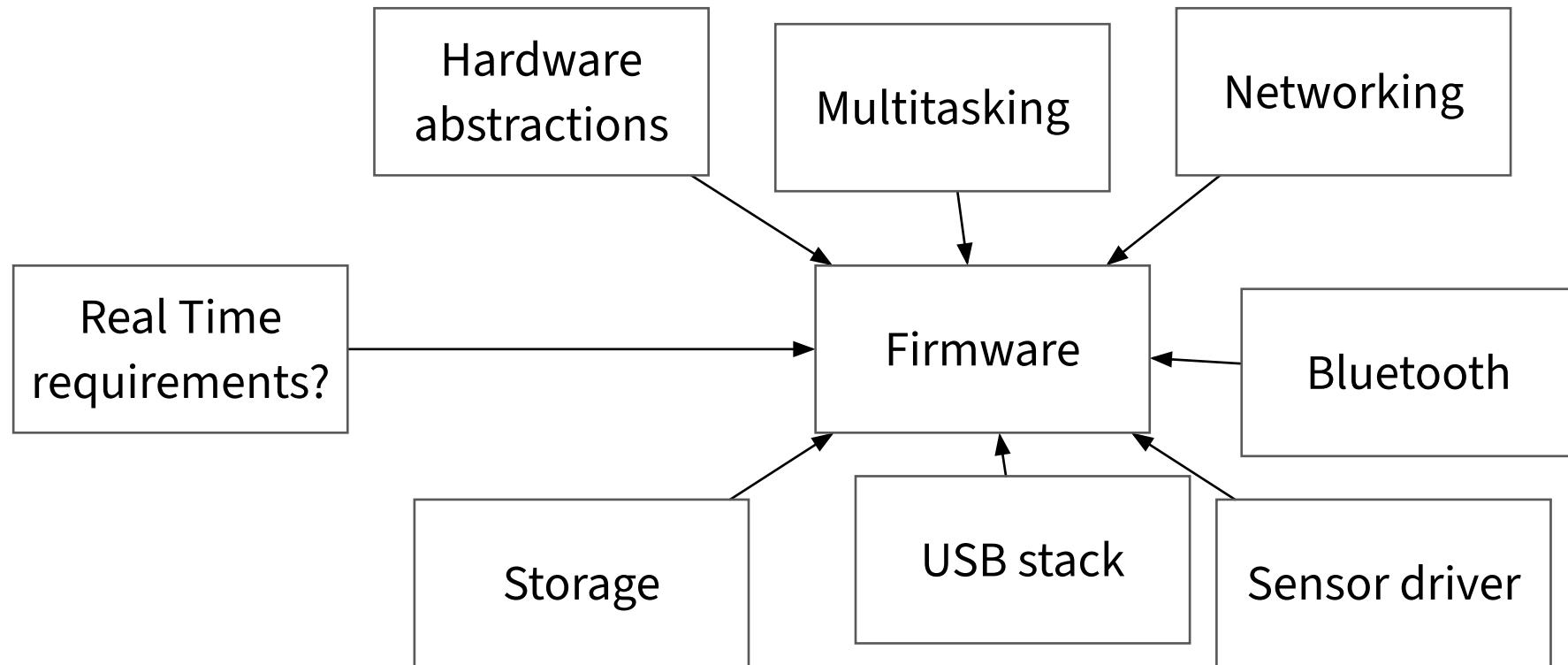
Async framework: Embassy


- Implements hardware abstractions for STM32, nRF and Pi Pico
- Provides a low memory async scheduler

The ecosystem of crates around embedded Rust is huge and growing fast!

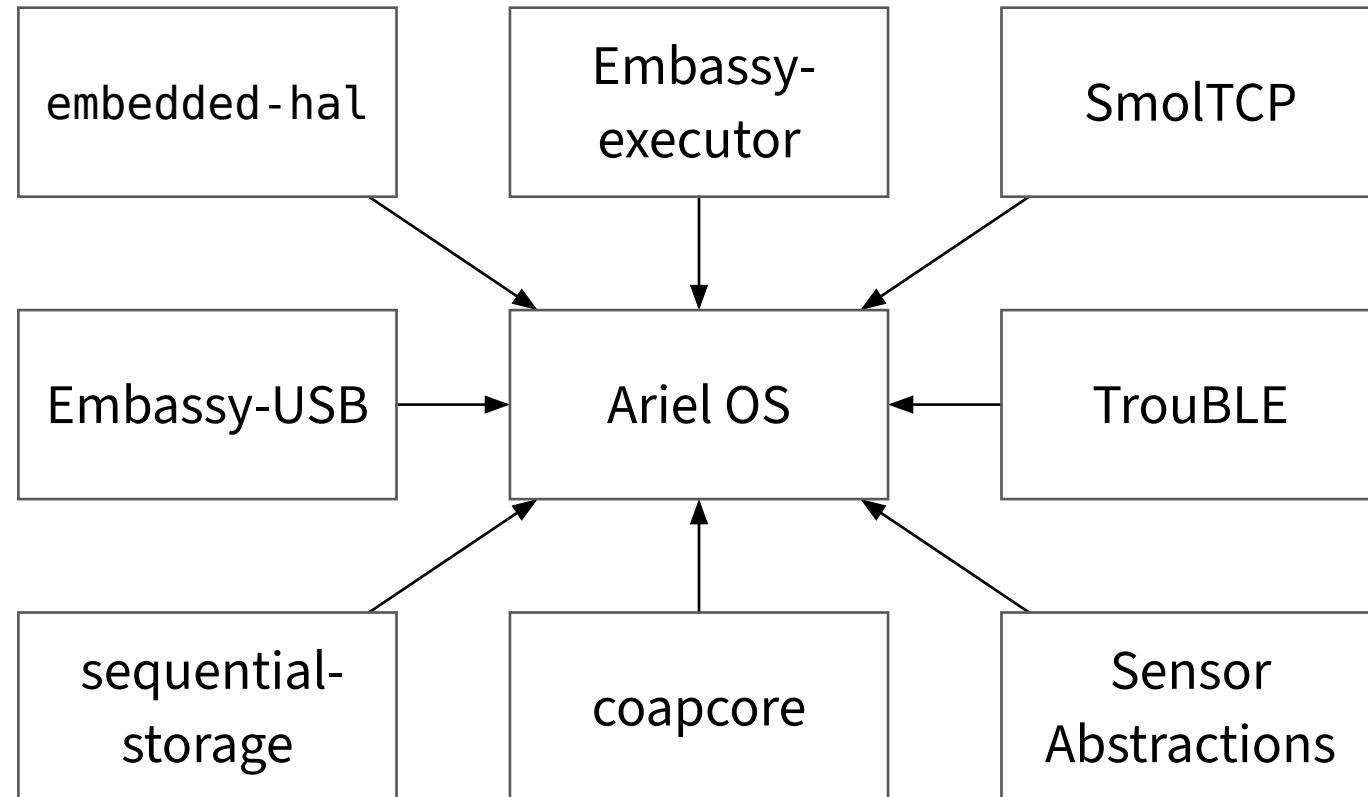

Collecting everything

Firmware


Collecting everything

Collecting everything

Collecting everything



Curating and integrating crates for everything is time consuming

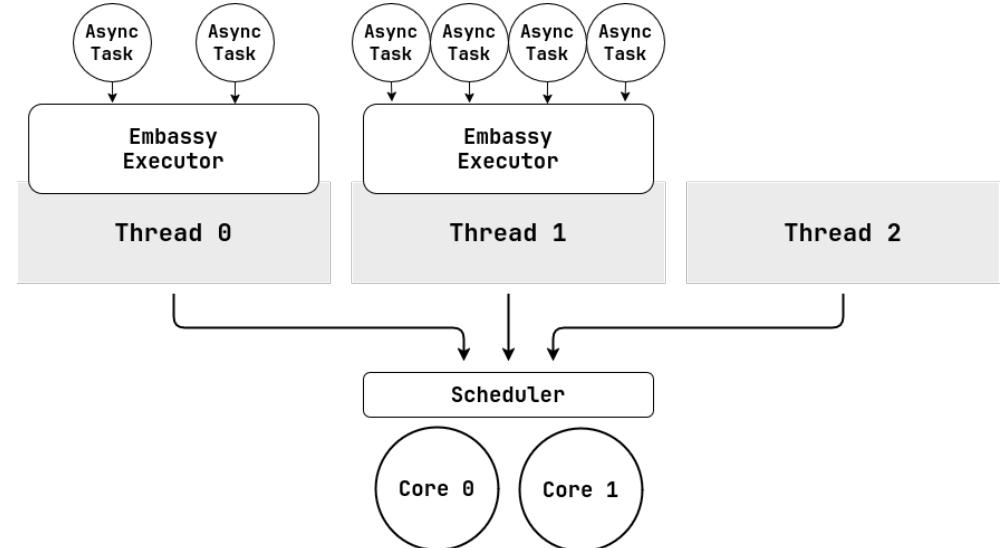
Outline

1. Context
2. Rust embedded and the Ecosystem
3. Ariel OS
4. Getting started: From Hello World to Networking
5. Wrapping up

Ariel OS

Ariel OS integrates crates into a coherent operating system

Ariel OS: Concurrency


Threading

- Preemptive scheduler
- Priority-based scheduling
- Separate stacks

Async

- Based on the Embassy executor
- Can run inside a thread

**Support both preemptive scheduling
and low memory async scheduling**

Ariel OS: To the Ecosystem

Provide high level functionality

Sensor abstractions

- Enumerate available sensors on a board
- Read out available sensors
- Provides a generic interface to sensors and measurements.

Ariel OS: To the Ecosystem

Provide high level functionality

Sensor abstractions

- Enumerate available sensors on a board
- Read out available sensors
- Provides a generic interface to sensors and measurements.

Structured Board Descriptions

Provide machine-readable descriptions of boards

- Microcontroller information
- Peripherals
- Supported features

Ariel OS: Build system

The configuration space is huge

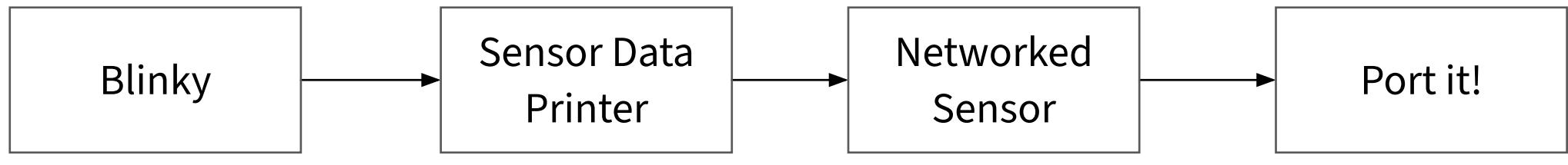
- Enable features
- Features can conflict
- Catch issues *before* compilation

Ariel OS: Build system

The configuration space is huge

- Enable features
- Features can conflict
- Catch issues *before* compilation

Laze

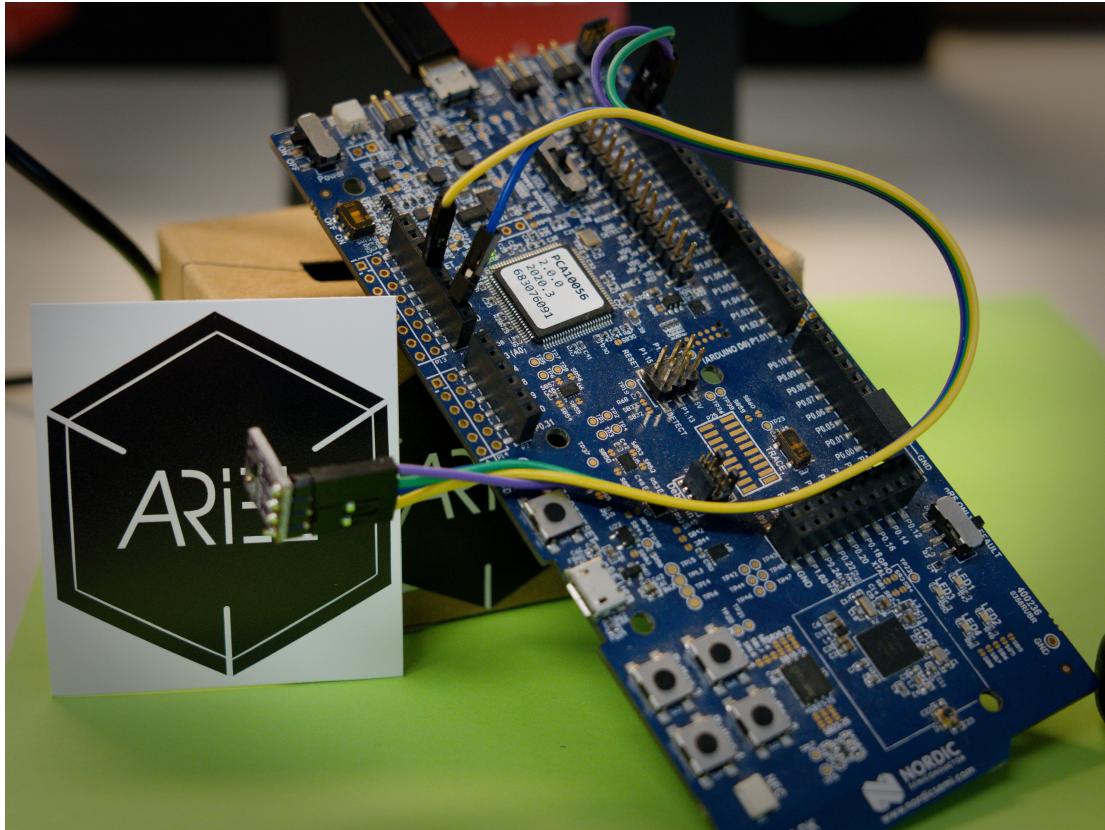

yaml-based declarative build configuration.

- Select required modules
- Abstract away board specifics
- Steers cargo builds
- Runs tasks to flash and inspect builds

Outline

1. Context
2. Rust embedded and the Ecosystem
3. Ariel OS
4. Getting started: From Hello world to Networking
5. Wrapping up

Goal


Minimal setup
with blinking LED

Connect a
sensor

Connect the
sensor to
the internet

Port the example
to another board

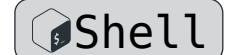
Hello World: Hardware

Hello World: Steps

Goal

Show a basic blinking LED

Hardware:


Nordic nRF52840 development kit

Steps

1. Generate the basic project from the template
2. Define LED (GPIO) pin
3. Toggle the led pin in a loop

Hello World: Steps

```
1 $ cargo generate --git https://github.com/ariel-os/ariel-os-  
  template --name hello-fosdem
```


Project content

```
└── Cargo.toml  
└── laze-project.yml  
└── src/  
    └── main.rs
```

Hello World: Code

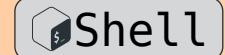
```

1  #![no_main]      Rust } Boilerplate
2  #![no_std]
3
4  use ariel_os::debug::
5    {ExitCode, exit, log::*};
6
7  #[ariel_os::task(autostart)]
8  async fn main() {
9        info!("Hello World!");
10
11       exit(ExitCode::SUCCESS);
12 }
```

```

1 # laze-project.yml
2 apps:
3   - name: hello-fosdem
```

```


1 # Cargo.toml
2 [package]
3 name = "hello-fosdem"
4 version = "0.1.0"
5 edition = "2024"
6 [dependencies]
7 ariel-os = { path = "..." }
8 ariel-os-boards = { path = "..." }
```

YAML

TOML

Hello World: Running

```
1 $ laze build -b nrf52840dk run
2 [...] (compiling & flashing)
3 [INFO ] Hello World! (hello_fosdem hello-fosdem/src/
4 main.rs:8)
5 Firmware exited successfully
```


} Printed
by hardware

Hello World: Add the LED

```
1 define_peripherals!(Peripherals { led0: P0_13 });
2
3 #[ariel_os::task(autostart, peripherals)]
4 async fn main(peripherals: Peripherals) {
5     let mut led0 = Output::new(peripherals.led0, Level::Low);
6
7     loop {
8         Timer::after_millis(1000).await;
9         led0.toggle();
10    }
11 }
```


Hello World: Add the LED

```
1 [dependencies]
2 # add "time" feature
3 ariel-os = { path = "...", features = ["time"] }
```

[T]TOML

Hello World: it blinks

Hello World: it blinks

Sensor Data Printer: Steps

Goal

Add an I2C temperature and humidity sensor

Hardware

SHT31 Temperature & Humidity sensor

Steps

1. Add SHT3x sensor driver crate
2. Define I2C bus in `pins.rs`
3. Read & print out sensor data

Sensor Data Printer: add sensor driver crate

```
1 [dependencies]
2 # ...
3 embedded-sht3x = { git = "https://gitlab.com/ghislainmary/embedded-sht3x",
4                     features = [
5                         "async"
6                     ]
7                 }
```

[T]TOML

Sensor Data Printer: define I2C bus/pins

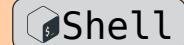
```
1  mod board {  
2      use ariel_os::hal::{peripherals, define_peripherals};  
3  
4      pub type SensorI2c = ariel_os::hal::i2c::controller::TWISPI0;  
5  
6      define_peripherals!(Peripherals {  
7          led0: P0_13,  
8          i2c_sda: P0_26,  
9          i2c_scl: P0_27,  
10     }));  
11 }
```


Sensor Data Printer: initialize I2C bus

```
1 #[ariel_os::task(autoload, peripherals)]
2 async fn main(peripherals: board::Peripherals) {
3     let mut led0 = Output::new(peripherals.led0, Level::Low);
4
5     let mut i2c_config = Config::default();
6     i2c_config.frequency = const
7         { highest_freq_in(Kilohertz::kHz(100)..=Kilohertz::kHz(400)) };
8
9     let i2c_bus = board::SensorI2c::new(peripherals.i2c_sda,
10                                         peripherals.i2c_scl,
11                                         i2c_config)
```


I2C setup

Sensor Data Printer: perform measurement


```
13     // set up sht3x driver
14     let mut sensor = Sht3x::new(i2c_bus, DEFAULT_I2C_ADDRESS, Delay);
15
16     loop {
17         // Perform a temperature and humidity measurement
18         let measurement = sensor.single_measurement().await.unwrap();
19         let temp = measurement.temperature.celcius();
20         let hum = measurement.relative_humidity;
21
22         info!("temp: {} °C, rel. hum.: {} %\n", temp, hum);
23
24         Timer::after_millis(1000).await;
25     }
```


Retrieve
Measurement

Sensor Data Printer: that's it

```
1 $ laze build -b nrf52840dk run
2 [...] (compiling)
3     Running `probe-rs run --protocol=swd --chip nrf52840_xxAA --preverify build/
4     bin/nrf52840dk/cargo/thumbv7em-none-eabihf/release/hello-fosdem`
5     Verifying ✓ 100% [#####
6     Finished in 0.65s
7 [INFO ] temp: 19.165329 °C, rel. hum.: 39.252308 %
8     (hello_fosdem hello-fosdem-2026/src/main.rs:49)
9 [INFO ] temp: 19.17868 °C, rel. hum.: 39.33318 %
10    (hello_fosdem hello-fosdem-2026/src/main.rs:49)
11 [INFO ] temp: 19.151978 °C, rel. hum.: 39.261463 %
12    (hello_fosdem hello-fosdem-2026/src/main.rs:49)
13 [INFO ] temp: 19.151978 °C, rel. hum.: 39.223316 %
14    (hello_fosdem hello-fosdem-2026/src/main.rs:49)
```


Networked Sensor: Steps

Goal

Provide the sensor measurements over a TCP socket

Steps

1. Add TCP send function
2. Call from our main loop
3. Add dependencies
4. Select networking in `laze.yml`

Networked Sensor: TCP send

```
1  async fn report(s: &str) -> Result<(), &'static str> {  
2      let host_addr = Ipv4Address::from_str("192.168.1.131").unwrap();  
3      let stack = net::network_stack().await.unwrap();  
4      let mut rx_buffer = [0; 256];  
5      let mut tx_buffer = [0; 256];  
6      stack.wait_config_up().await;  
7      let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut  
8          tx_buffer);  
9      socket.connect((host_addr, 4242)).await.map_err(|_| "connect")?  
10     socket.write_all(s.as_bytes()).await.map_err(|_| "write_all")?  
11     socket.flush().await.map_err(|_| "flush")?  
12     Ok(())  
13 }
```


Rust

Boilerplate

Create
Socket,
connect,
send

Networked Sensor: Add to the loop

```
1 loop {  
2     // ...  
3     let mut s: String<64> = String::new();  
4     write!(s, "temp: {:.1} °C, rel. hum.: {:.1} %\n").unwrap();  
5  
6     if let Err(e) = report(s.as_str()).await {  
7         info!("reporting failed: {}", e);  
8     }  
9 }
```

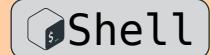
Rust

Format String

Call report

Networked Sensor: Add dependencies

```
1 [dependencies]
2 ariel-os = { path = "...",
3 features = [
4     "i2c",
5     "tcp",
6     "time",
7 ]
8 // ...
9 embedded-io-async = "0.6.1"
10 heapless = "0.9.2"
```


[T]TOML

```
1 apps:
2   - name: hello-fosdem
3     selects:
4       - network
```

YA
ML YAML

Networked Sensor: output

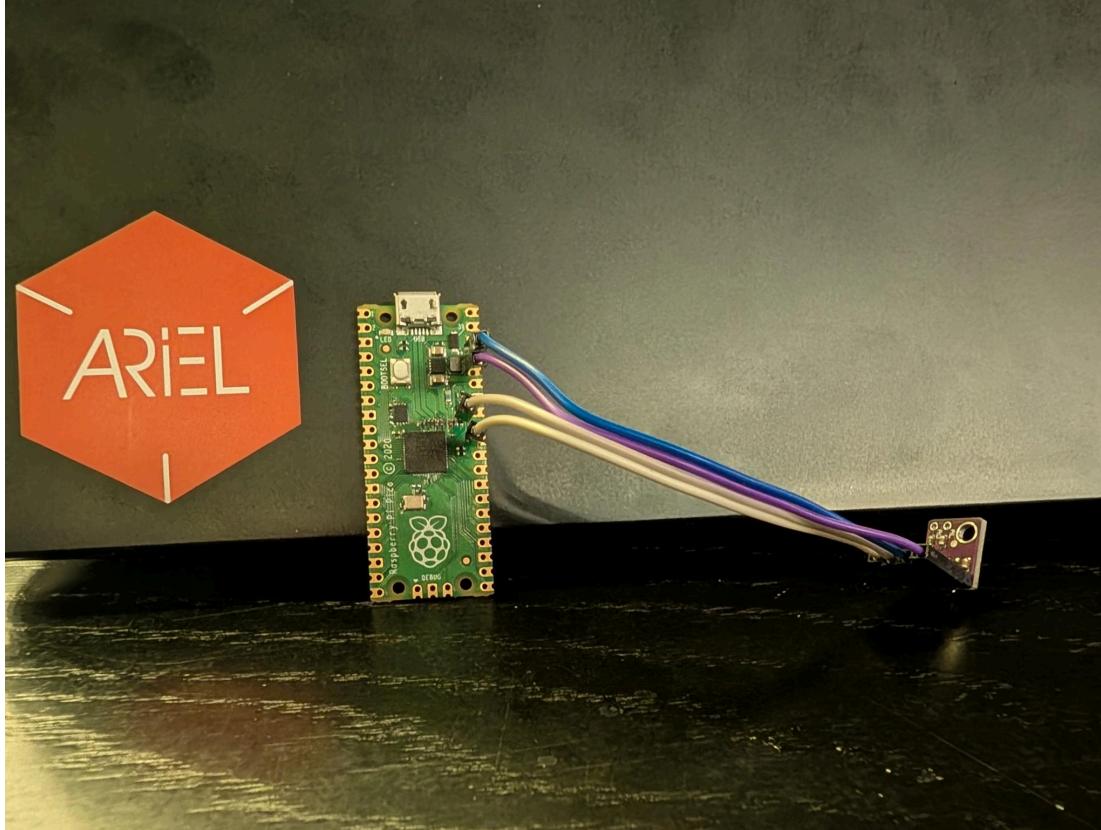
```
1 $ socat -u TCP-LISTEN:4242,fork STDOUT
2 temp: 20.1 °C, rel. hum.: 45.3 %
3 temp: 20.1 °C, rel. hum.: 45.2 %
4 temp: 20.1 °C, rel. hum.: 45.3 %
```


Port it: Steps

Goal

Run the networked sensor on different hardware

Steps


1. define I2C and LED pins for the next board

Port it: defining I2C and LED pins

```
1 #[cfg(context = "nrf52840dk")]
2 mod board { /* ... previous version ... */ }
3
4 #[cfg(context = "rpi-pico")]
5 mod board {
6     pub type SensorI2c = ariel_os::hal::i2c::controller::I2C0;
7     define_peripherals!(Peripherals {
8         led0: PIN_25,
9         i2c_sda: PIN_12,
10        i2c_scl: PIN_13,
11    });
12 }
```


Port it: that's it

What's up next

release 0.3.0 landing next week

Adding Bluetooth Low Energy, native “board”, Structured Board Descriptions, ...

release after that

secure software updates, better power management, ...

Wrapping up

- Ariel OS curates and integrates the embedded Rust ecosystem
- Embedded Rust has never been that easy

You're now thinking:

Wrapping up

- Ariel OS curates and integrates the embedded Rust ecosystem
- Embedded Rust has never been that easy

You're now thinking:

- “Why did they use IPv4 in 2026?”

Wrapping up

- Ariel OS curates and integrates the embedded Rust ecosystem
- Embedded Rust has never been that easy

You're now thinking:

- “Why did they use IPv4 in 2026?”
- “This looks so approachable, I’ll try it!”

Thanks!

Join the action:

<https://ariel-os.org>