
Ariel OS — The Embedded Rust Software Stack for Microcontroller-

based Internet of Things

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

About us

Kaspar Schleiser Koen Zandberg

… part of Ariel OS contributors:

Ariel OS: A library operating system for secure, memory-safe, low-power Internet of

Things, written in Rust
2 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Outline

1. Context

2. Rust embedded and the Ecosystem

3. Ariel OS

4. Getting started: From Hello World to Networking

5. Wrapping up

3 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Context: Microcontroller hardware

Restrictions

• Limited processing power

• Low memory

• Single memory: no user- vs kernel-space, no MMU, but probably an MPU

4 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Context: Microcontroller hardware

Restrictions

• Limited processing power

• Low memory

• Single memory: no user- vs kernel-space, no MMU, but probably an MPU

Firmware

• Baremetal: no underlying OS with threads, networking, heap allocation…

• No alloc: deterministic behaviour, avoid panic and memory fragmentation
4 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Outline

1. Context

2. Rust embedded and its Ecosystem

3. Ariel OS

4. Getting started: From Hello World to Networking

5. Wrapping up

5 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust: Language

Memory safety!

6 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust: Language

Memory safety!

But we know that by now.
6 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust: Language

Crates:

Shared code on crates.io, integrated in the Cargo build system.

Traits:

Interfaces that allow for interoperability between crates.

no_std:

No use of the standard library and dynamic memory allocations

Async

Provide asynchronous cooperative multitasking implementations with minimal

memory usage

Fosters collaboration across projects
7 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

8 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

Driver crates

Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

8 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

Driver crates

Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

8 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits

Provide good generic interfaces for common peripherals across architectures

Driver crates

Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Async framework: Embassy

• Implements hardware abstractions for STM32, nRF and Pi Pico

• Provides a low memory async scheduler

The ecosystem of crates around embedded Rust is huge and growing fast!

8 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Collecting everything

Firmware

9 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Collecting everything

Firmware

Hardware

abstractions Multitasking Networking

Sensor driverUSB stack

Bluetooth

Storage

9 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Collecting everything

Firmware

Hardware

abstractions Multitasking Networking

Sensor driverUSB stack

Bluetooth

Storage

Real Time

requirements?

9 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Collecting everything

Firmware

Hardware

abstractions Multitasking Networking

Sensor driverUSB stack

Bluetooth

Storage

Real Time

requirements?

Curating and integrating crates for everything is time consuming

9 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Outline

1. Context

2. Rust embedded and the Ecosystem

3. Ariel OS

4. Getting started: From Hello World to Networking

5. Wrapping up

10 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Ariel OS

Ariel OS

embedded-hal
Embassy-

executor
SmolTCP

Sensor

Abstractions
coapcore

Embassy-USB TrouBLE

sequential-

storage

Ariel OS integrates crates into a coherent operating system
11 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Ariel OS: Concurrency

Threading

• Preemptive scheduler

• Priority-based scheduling

• Separate stacks

Async

• Based on the Embassy executor

• Can run inside a thread

Support both preemptive scheduling

and low memory async scheduling

12 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Ariel OS: To the Ecosystem

Provide high level functionality

Sensor abstractions

• Enumerate available sensors on a board

• Read out available sensors

• Provides a generic interface to sensors and measurements.

13 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Ariel OS: To the Ecosystem

Provide high level functionality

Sensor abstractions

• Enumerate available sensors on a board

• Read out available sensors

• Provides a generic interface to sensors and measurements.

Structured Board Descriptions

Provide machine-readable descriptions of boards

• Microcontroller information

• Peripherals

• Supported features

13 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Ariel OS: Build system

The configuration space is huge

• Enable features

• Features can conflict

• Catch issues before compilation

14 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Ariel OS: Build system

The configuration space is huge

• Enable features

• Features can conflict

• Catch issues before compilation

Laze

yaml-based declarative build configuration.

• Select required modules

• Abstract away board specifics

• Steers cargo builds

• Runs tasks to flash and inspect builds

14 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Outline

1. Context

2. Rust embedded and the Ecosystem

3. Ariel OS

4. Getting started: From Hello world to Networking

5. Wrapping up

15 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Goal

Blinky
Sensor Data

Printer

Networked

Sensor
Port it!

Minimal setup

with blinking LED

Connect a

sensor

Connect the

sensor to

the internet

Port the example

to another board

16 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Hardware

17 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Steps

Goal

Show a basic blinking LED

Hardware:

Nordic nRF52840 development kit

Steps

1. Generate the basic project from the template

2. Define LED (GPIO) pin

3. Toggle the led pin in a loop

18 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Steps

1
$ cargo generate --git https://github.com/ariel-os/ariel-os-
template --name hello-fosdem

Shell

Project content

├─ Cargo.toml

├─ laze-project.yml

└─ src/

└─ main.rs

19 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Code

1 #![no_main] Rust
} Boilerplate

2 #![no_std]

3

4 use ariel_os::debug::

5 {ExitCode, exit, log::*};

6

7 #[ariel_os::task(autostart)]

8 async fn main() {

9 info!("Hello World!");

10

11 exit(ExitCode::SUCCESS);

12 }

1 # laze-project.yml YAML

2 apps:

3 - name: hello-fosdem

1 # Cargo.toml TOML

2 [package]

3 name = "hello-fosdem"

4 version = "0.1.0"

5 edition = "2024"

6 [dependencies]

7 ariel-os = { path = "..." }

8 ariel-os-boards = { path = "..." }

20 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Running

1 $ laze build -b nrf52840dk run Shell

2 [...] (compiling & flashing)

3
[INFO] Hello World! (hello_fosdem hello-fosdem/src/
main.rs:8)

} Printed
by hardware

4 Firmware exited successfully

21 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Add the LED

1 define_peripherals!(Peripherals { led0: P0_13 }); Rust

2

3 #[ariel_os::task(autostart, peripherals)]

4 async fn main(peripherals: Peripherals) {

5 let mut led0 = Output::new(peripherals.led0, Level::Low);

6

7 loop {

8 Timer::after_millis(1000).await;

9 led0.toggle();

10 }

11 }

22 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: Add the LED

1 [dependencies] TOML

2 # add "time" feature

3 ariel-os = { path = "...", features = ["time"] }

23 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: it blinks

24 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Hello World: it blinks

25 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Sensor Data Printer: Steps

Goal

Add an I2C temperature and humidity sensor

Hardware

SHT31 Temperature & Humidity sensor

Steps

1. Add SHT3x sensor driver crate

2. Define I2C bus in pins.rs

3. Read & print out sensor data

26 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Sensor Data Printer: add sensor driver crate

1 [dependencies] TOML

2 # …

3 embedded-sht3x = { git = "https://gitlab.com/ghislainmary/embedded-sht3x",

4 features = [

5 "async"

6]

7 }

27 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Sensor Data Printer: define I2C bus/pins

1 mod board { Rust

2 use ariel_os::hal::{peripherals, define_peripherals};

3

4 pub type SensorI2c = ariel_os::hal::i2c::controller::TWISPI0;

5

6 define_peripherals!(Peripherals {

7 led0: P0_13,

8 i2c_sda: P0_26,

9 i2c_scl: P0_27,

10 });

11 }

28 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Sensor Data Printer: initialize I2C bus

1 #[ariel_os::task(autostart, peripherals)] Rust

2 async fn main(peripherals: board::Peripherals) {

3 let mut led0 = Output::new(peripherals.led0, Level::Low);

4

5 let mut i2c_config = Config::default();

6 i2c_config.frequency = const

7 { highest_freq_in(Kilohertz::kHz(100)..=Kilohertz::kHz(400)) };

8

9 let i2c_bus = board::SensorI2c::new(peripherals.i2c_sda,

10 peripherals.i2c_scl,

}

I2C setup

11 i2c_config)

29 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Sensor Data Printer: perform measurement

13 // set up sht3x driver Rust

14 let mut sensor = Sht3x::new(i2c_bus, DEFAULT_I2C_ADDRESS, Delay);

15

16 loop {

17 // Perform a temperature and humidity measurement

18 let measurement = sensor.single_measurement().await.unwrap();

19 let temp = measurement.temperature.celcius();

}

Retrieve
Measurement

20 let hum = measurement.relative_humidity;

21

22 info!("temp: {} °C, rel. hum.: {} %\n", temp, hum);

23

24 Timer::after_millis(1000).await;

25 }

30 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Sensor Data Printer: that’s it

1 $ laze build -b nrf52840dk run Shell

2 [...] (compiling)

3
 Running `probe-rs run --protocol=swd --chip nrf52840_xxAA --preverify build/

bin/nrf52840dk/cargo/thumbv7em-none-eabihf/release/hello-fosdem`

4 Verifying ✔ 100% [####################] 20.00 KiB @ 30.90 KiB/s (took 1s)

5 Finished in 0.65s

6 [INFO] temp: 19.165329 °C, rel. hum.: 39.252308 %

7 (hello_fosdem hello-fosdem-2026/src/main.rs:49)

8 [INFO] temp: 19.17868 °C, rel. hum.: 39.33318 %

9 (hello_fosdem hello-fosdem-2026/src/main.rs:49)

10 [INFO] temp: 19.151978 °C, rel. hum.: 39.261463 %

11 (hello_fosdem hello-fosdem-2026/src/main.rs:49)

12 [INFO] temp: 19.151978 °C, rel. hum.: 39.223316 %

13 (hello_fosdem hello-fosdem-2026/src/main.rs:49)

31 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Networked Sensor: Steps

Goal

Provide the sensor measurements over a TCP socket

Steps

1. Add TCP send function

2. Call from our main loop

3. Add dependencies

4. Select networking in laze.yml

32 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Networked Sensor: TCP send

1 async fn report(s: &str) -> Result<(), &'static str> { Rust

2 let host_addr = Ipv4Address::from_str(" 192.168.1.131 ").unwrap();

3 let stack = net::network_stack().await.unwrap();

4 let mut rx_buffer = [0; 256];

5 let mut tx_buffer = [0; 256];
}

Boilerplate

6 stack.wait_config_up().await;

7
 let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut

tx_buffer);

8 socket.connect((host_addr, 4242)).await.map_err(|_| "connect")?;
}

Create
Socket,
connect,

send9 socket.write_all(s.as_bytes()).await.map_err(|_| "write_all")?;

10 socket.flush().await.map_err(|_| "flush")?;

11 Ok(())

12 }

33 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Networked Sensor: Add to the loop

1 loop { Rust

2 // ...

3 let mut s: String<64> = String::new();
} Format

String4 write!(s, "temp: {temp:.1} °C, rel. hum.: {hum:.1} %\n").unwrap();

5

6 if let Err(e) = report(s.as_str()) .await {

7 info!("reporting failed: {}", e);
}

 Call

report
8 }

9 }

34 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Networked Sensor: Add dependencies

1 [dependencies] TOML

2
ariel-os = { path = "...",
features = [

3 "i2c",

4 "tcp",

5 "time",

6] }

7 // ...

8 embedded-io-async = "0.6.1"

9 heapless = "0.9.2"

1 apps: YAML

2 - name: hello-fosdem

3 selects:

4 - network

35 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Networked Sensor: output

1 $ socat -u TCP-LISTEN:4242,fork STDOUT Shell

2 temp: 20.1 °C, rel. hum.: 45.3 %

3 temp: 20.1 °C, rel. hum.: 45.2 %

4 temp: 20.1 °C, rel. hum.: 45.3 %

36 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Port it: Steps

Goal

Run the networked sensor on different hardware

Steps

1. define I2C and LED pins for the next board

37 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Port it: defining I2C and LED pins

1 #[cfg(context = "nrf52840dk")] Rust

2 mod board { /* ... previous version ... */ }

3

4 #[cfg(context = "rpi-pico")]

5 mod board {

6 pub type SensorI2c = ariel_os::hal::i2c::controller:: I2C0 ;

7 define_peripherals!(Peripherals {

8 led0: PIN_25 ,

9 i2c_sda: PIN_12 ,

10 i2c_scl: PIN_13 ,

11 });

12 }

38 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Port it: that’s it

39 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

What’s up next

release 0.3.0 landing next week

Adding Bluetooth Low Energy, native “board”, Structured Board Descriptions, …

release after that

secure software updates, better power management, …

40 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Wrapping up

• Ariel OS curates and integrates the embedded Rust ecosystem

• Embedded Rust has never been that easy

You’re now thinking:

41 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Wrapping up

• Ariel OS curates and integrates the embedded Rust ecosystem

• Embedded Rust has never been that easy

You’re now thinking:

• “Why did they use IPv4 in 2026?”

41 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Wrapping up

• Ariel OS curates and integrates the embedded Rust ecosystem

• Embedded Rust has never been that easy

You’re now thinking:

• “Why did they use IPv4 in 2026?”

• “This looks so approachable, I’ll try it!”

41 / 42

Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things

Thanks!

Join the action:

https://ariel-os.org
42 / 42

https://ariel-os.org

	Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things
	About us
	Outline
	Context: Microcontroller hardware
	Restrictions
	Firmware
	Restrictions
	Firmware

	Outline
	Rust: Language
	Rust: Language
	Crates:
	Traits:
	no_std:
	Async

	Rust Embedded: Ecosystem
	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	Collecting everything
	Outline
	Ariel OS
	Ariel OS: Concurrency
	Threading
	Async

	Ariel OS: To the Ecosystem
	Provide high level functionality
	Structured Board Descriptions
	Provide high level functionality
	Structured Board Descriptions

	Ariel OS: Build system
	The configuration space is huge
	Laze
	The configuration space is huge
	Laze

	Outline
	Goal
	Hello World: Hardware
	Hello World: Steps
	Goal
	Hardware:
	Steps

	Hello World: Steps
	Project content

	Hello World: Code
	Hello World: Running
	Hello World: Add the LED
	Hello World: Add the LED
	Hello World: it blinks
	Hello World: it blinks
	Sensor Data Printer: Steps
	Goal
	Hardware
	Steps

	Sensor Data Printer: add sensor driver crate
	Sensor Data Printer: define I2C bus/pins
	Sensor Data Printer: initialize I2C bus
	Sensor Data Printer: perform measurement
	Sensor Data Printer: that's it
	Networked Sensor: Steps
	Goal
	Steps

	Networked Sensor: TCP send
	Networked Sensor: Add to the loop
	Networked Sensor: Add dependencies
	Networked Sensor: output
	Port it: Steps
	Goal
	Steps

	Port it: defining I2C and LED pins
	Port it: that's it
	What's up next
	release 0.3.0 landing next week
	release after that

	Wrapping up
	Thanks!

