Ariel OS — The Embedded Rust Software Stack for Microcontroller-
based Internet of Things

About us

Kaspar Schleiser Koen Zandberg

o 0000 O%
g@g@ PEIIO H

... part of Ariel OS contributors:

Ariel OS: A library operating system for secure, memory-safe, low-power Internet of
Things, written in Rust

Outline

. Context

. Rust embedded and the Ecosystem

. Ariel OS

. Getting started: From Hello World to Networking
. Wrapping up

O &~ W DN B

Context: Microcontroller hardware

Restrictions

« Limited processing power

« Low memory

« Single memory: no user- vs kernel-space, no MMU, but probably an MPU

Context: Microcontroller hardware

Restrictions

« Limited processing power
« Low memory
« Single memory: no user- vs kernel-space, no MMU, but probably an MPU

Firmware

« Baremetal: no underlying OS with threads, networking, heap allocation...
 No alloc: deterministic behaviour, avoid panic and memory fragmentation

Outline

. Context

. Rust embedded and its Ecosystem

. Ariel OS

. Getting started: From Hello World to Networking
. Wrapping up

O &~ W DN B

Rust: Language

Memory safety!

Rust: Language

Memory safety!

But we know that by now.

Rust: Language

Crates:
Shared code on crates.io, integrated in the Cargo build system.

Traits:
Interfaces that allow for interoperability between crates.

no_std:
No use of the standard library and dynamic memory allocations

Async
Provide asynchronous cooperative multitasking implementations with minimal
memory usage

Fosters collaboration across projects

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits
Provide good generic interfaces for common peripherals across architectures

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits
Provide good generic interfaces for common peripherals across architectures

Driver crates
Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits
Provide good generic interfaces for common peripherals across architectures

Driver crates
Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits
Provide good generic interfaces for common peripherals across architectures

Driver crates
Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Async framework: Embassy

« Implements hardware abstractions for STM32, nRF and Pi Pico
« Provides a low memory async scheduler

The ecosystem of crates around embedded Rust is huge and growing fast!

Collecting everything

Firmware

Collecting everything

Hardware
abstractions

Storage

Multitasking Networking
Firmware Bluetooth
*
USB stack Sensor driver

Collecting everything

Hardware
abstractions

Real Time
requirements?

Storage

Multitasking Networking
Firmware Bluetooth
*
USB stack Sensor driver

Collecting everything

Hardware
abstractions

Real Time
requirements?

Multitasking

Storage

Networking

.

Firmware

“— Bluetooth

*

haN

USB stack

N

Sensor driver

Curating and integrating crates for everything is time consuming

Outline

. Context

. Rust embedded and the Ecosystem

. Ariel OS

. Getting started: From Hello World to Networking
. Wrapping up

O &~ W DN B

Ariel OS

Embassy-
executor

N

Embassy-USB —> ArielOS |«—— TrouBLE

PN

sequential- Sensor
coapcore :
storage Abstractions

embedded-hal SmolTCP

Ariel OS integrates crates into a coherent operating system

Ariel OS: Concurrency

Threading

« Preemptive scheduler
« Priority-based scheduling
« Separate stacks

Async
« Based on the Embassy executor
« Canruninside a thread

Support both preemptive scheduling
and low memory async scheduling

99

Embassy
Executor

Embassy
Executor

Thread 0

|

Thread 1

lll

Thread 2

|

Scheduler

|

Ariel OS: To the Ecosystem

Provide high level functionality
Sensor abstractions

« Enumerate available sensors on a board
« Read out available sensors

 Provides a generic interface to sensors and measurements.

Ariel OS: To the Ecosystem

Provide high level functionality

Sensor abstractions

« Enumerate available sensors on a board

« Read out available sensors

 Provides a generic interface to sensors and measurements.

Structured Board Descriptions

Provide machine-readable descriptions of boards
« Microcontroller information

 Peripherals

 Supported features

Ariel OS: Build system

The configuration space is huge
 Enable features

« Features can conflict

o Catch issues before compilation

Ariel OS: Build system

The configuration space is huge
 Enable features

« Features can conflict

o Catch issues before compilation

Laze

yaml-based declarative build configuration.
o Select required modules

 Abstract away board specifics

« Steers cargo builds

 Runs tasks to flash and inspect builds

Outline

. Context

. Rust embedded and the Ecosystem

. Ariel OS

. Getting started: From Hello world to Networking
. Wrapping up

O &~ W DN B

Goal

Minimal setup
with blinking LED

Blinky | ——

Sensor Data Networked .
: — E— Port it!
Printer Sensor
Connect the
Connect a Port the example
sensor to
sensor to another board

the internet

Hardware

Hello World

Hello World: Steps

Goal
Show a basic blinking LED

Hardware:
Nordic nRF52840 development kit

Steps

1. Generate the basic project from the template
2. Define LED (GPIO) pin

3. Toggle the led pinin aloop

Hello World: Steps

$ cargo generate --git https://github.com/ariel-os/ariel-os-
template --name hello-fosdem (#Shell

Project content

Cargo.toml

laze-project.yml
— sre/
L~ main.rs

Hello World: Code

© 00 NN O U1 A~ W N =

=
o

11
12

Boilerplate

#![no_main] }

#![no _std]

use ariel os::debug::
{ExitCode, exit, log::*};

#[ariel os::task(autostart)]
async fn main() {

info! ("Hello World!");

exit (ExitCode: :SUCCESS);

w

0O NN O U1l A~ W N =

laze-project.yml

apps:
- name: hello-fosdem

Cargo.toml
[package]

name = "hello-fosdem"
version = "0.1.0"
edition = "2024"
[dependencies]

ariel-os = { path = "..

)

ariel-os-boards = { path = "...

Hello World: Running

1 $ laze build -b nrf52840dk run [(#Shell)
2 [...] (compiling & flashing)
[INFO] Hello World! (hello fosdem hello-fosdem/src/ } Printed

main.rs:8) by hardware

4 Firmware exited successfully

Hello World: Add the LED

1 define peripherals!(Peripherals { led0: PO 13 });
2

3 #[ariel os::task(autostart, peripherals)]

4 async fn main(peripherals: Peripherals) {

5 let mut ledO® = Output::new(peripherals.ledO, Level::Low);

6

7 loop {

8 Timer::after millis(1000).await;

9 led0.toggle();

Hello World: Add the LED

1 [dependencies] [TITOML
2 # add "time" feature

3 ariel-os = { path = "...", features = ["time"] }

Hello World: it blinks

RS =

HO-0razs4uu

]
E
2o
=
=
¥
=3
£

| #=—0hD

t blinks

Hello World

=
=
Ie
'8
g
=

)

E uchng

Sensor Data Printer: Steps

Goal
Add an 12C temperature and humidity sensor

Hardware
SHT31 Temperature & Humidity sensor

Steps

1. Add SHT3x sensor driver crate
2. Definel2C busin pins.rs

3. Read & print out sensor data

Sensor Data Printer: add sensor driver crate

[dependencies] [TITOML
..
embedded-sht3x = { git = "https://gitlab.com/ghislainmary/embedded-sht3x",

features = |
"async”

N OO o B WN R

Sensor Data Printer: define 12C bus/pins

mod board {

use ariel os::hal::{peripherals, define peripherals};

[pub type SensorI2c = ariel_os::hal::iZc::controller::TWISPIO;]

define peripherals!(Peripherals {
ledO: PO 13,

'i2c_sda: PO 26,

oo N oo o A W N =

9 [iZc_scl: P0_27,}

10 }) s
11 }

Sensor Data Printer: initialize 12C bus

1 #[ariel os::task(autostart, peripherals)]
2 async fn main(peripherals: board::Peripherals) {
3 Llet mut led0® = Qutput::new(peripherals.led0, Level::Low);
4
5 let mut i2c _config = Config::default();
§) i2c _config.frequency = const
7 { highest freq in(Kilohertz::kHz(100)..=Kilohertz::kHz(400)) };
8 N
9 let 1i2c bus = board::SensorI2c::new(peripherals.i2c sda,
> I12C setup
10 peripherals.i2c scl,
11 i2c _config) /

Sensor Data Printer: perform measurement

13
14
15
16
17
18
19
20
21
22
23
24
25

// set up sht3x driver
let mut sensor = Sht3x::new(i2c bus, DEFAULT I2C ADDRESS, Delay);

loop {
// Perform a temperature and humidity measurement
Llet measurement = sensor.single measurement().await.unwrap();
let temp = measurement.temperature.celcius();
Llet hum = measurement.relative humidity;

info!("temp: {} °C, rel. hum.: {} %\n", temp, hum);

Timer::after millis(1000).await;

\

Retrieve
Measurement

Sensor Data Printer: that’s it

-

¢ laze build -b nrf52840dk run (#Shell

2 [...] (compiling)

Running “probe-rs run --protocol=swd --chip nrf52840 xxAA --preverify build/
bin/nrf52840dk/cargo/thumbv7em-none-eabihf/release/hello-fosdem’

4 Verifying v 100% [####################] 20.00 KiB @ 30.90 KiB/s (took 1s)
5 Finished in 0.65s

6 [INFO] temp: 19.165329 °C, rel. hum.: 39.252308
7

8

9

o°

(hello fosdem hello-fosdem-2026/src/main.rs:49)
[INFO] temp: 19.17868 °C, rel. hum.: 39.33318 %
(hello fosdem hello-fosdem-2026/src/main.rs:49)
10 [INFO] temp: 19.151978 °C, rel. hum.: 39.261463
11 (hello fosdem hello-fosdem-2026/src/main.rs:49)
12 [INFO] temp: 19.151978 °C, rel. hum.: 39.223316
13 (hello fosdem hello-fosdem-2026/src/main.rs:49)

o°

o°

Networked Sensor: Steps

Goal
Provide the sensor measurements over a TCP socket

Steps

1. Add TCP send function

2. Call from our main loop

3. Add dependencies

4. Select networkingin laze.yml

Networked Sensor: TCP send

10
11
12

async fn report(s: &str) -> Result<(), &'static str> {

let host addr = Ipv4Address::from_str("[192.168.1.131}").unwrap();

let stack = net::network stack().await.unwrap();

Llet mut rx buffer = [0; 2560];

let mut tx buffer = [0; 256];

stack.wait config up().await;

let mut socket = TcpSocket::new(stack, &mut rx buffer, &mut

tx _buffer);

socket.connect((host addr, 4242)).await.map err(| | "connect")?;
socket.write all(s.as bytes()).await.map err(| | "write all")?;
socket.flush().await.map err(| | "“flush")?;

Ok(())

J/

> Boilerplate

Create
Socket,
connect,
send

Networked Sensor: Add to the loop

1 loop |
2 /] ..

3 let mut s: String<64> = String::new(); Format
4 write!(s, "temp: {temp:.1} °C, rel. hum.: {hum:.1l} %\n").unwrap(); } String
5

6 if let Err(e) = [report(s.as_str())].await { Call

7 info!("reporting failed: {}", e); } rep&:)rt
8 }

9 }

Networked Sensor: Add dependencies

1

[dependencies]

ariel-os
features

Ilizcll ,

”time" ,
1}
/]

{ path = "...

[

[embedded—io-async =

"0.6.1"

[heapless

"9.9.2"

1 apps:

2 - name: hello-fosdem
3 [selects:}

4 [- network]

Networked Sensor: output

$ socat -u TCP-LISTEN:4242,fork STDOUT (#Shell

1

2 temp: 20.1 °C, rel. hum.: 45.3 %
3 temp: 20.1 °C, rel. hum.: 45.2 %
4 temp: 20.1 °C, rel. hum.: 45.3 %

Port it: Steps

Goal
Run the networked sensor on different hardware

Steps
1. define 12C and LED pins for the next board

Port it: defining 12C and LED pins

1 [#[cfg(context = "nrf52840dk")]}
2 mod board { /* ... previous version ... */ }

3

4 [#[cfg(context = "rpi-pico")]]

5 mod board {

6 pub type SensorI2c = ariel os::hal::i2c::controller: :;
7 define peripherals!(Peripherals {

8 ledo: (PIN 25,

9 i2c_sda: ,

10 i2c_scl: ,

11 1)

12}

that’si

Porti

¥

20 ysi00a. D

ARRRRARR

W10
AR

o £333qds0y,

RARRRRRRRA

What’s up next

release 0.3.0 landing next week
Adding Bluetooth Low Energy, native “board”, Structured Board Descriptions, ...

release after that
secure software updates, better power management, ...

Wrapping up

« Ariel OS curates and integrates the embedded Rust ecosystem
« Embedded Rust has never been that easy

You’re now thinking:

Wrapping up

« Ariel OS curates and integrates the embedded Rust ecosystem
« Embedded Rust has never been that easy

You’re now thinking:

« “Why did they use IPv4 in 20267”

Wrapping up

« Ariel OS curates and integrates the embedded Rust ecosystem
« Embedded Rust has never been that easy

You’re now thinking:

« “Why did they use IPv4 in 20267”
« “This looks so approachable, I’ll try it!”

Thanks!

Join the action:

https://ariel-o0s.org

https://ariel-os.org

	Ariel OS — The Embedded Rust Software Stack for Microcontroller-based Internet of Things
	About us
	Outline
	Context: Microcontroller hardware
	Restrictions
	Firmware
	Restrictions
	Firmware

	Outline
	Rust: Language
	Rust: Language
	Crates:
	Traits:
	no_std:
	Async

	Rust Embedded: Ecosystem
	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	What the ecosystem provides:
	embedded-hal traits
	Driver crates
	Async framework: Embassy

	Collecting everything
	Outline
	Ariel OS
	Ariel OS: Concurrency
	Threading
	Async

	Ariel OS: To the Ecosystem
	Provide high level functionality
	Structured Board Descriptions
	Provide high level functionality
	Structured Board Descriptions

	Ariel OS: Build system
	The configuration space is huge
	Laze
	The configuration space is huge
	Laze

	Outline
	Goal
	Hello World: Hardware
	Hello World: Steps
	Goal
	Hardware:
	Steps

	Hello World: Steps
	Project content

	Hello World: Code
	Hello World: Running
	Hello World: Add the LED
	Hello World: Add the LED
	Hello World: it blinks
	Hello World: it blinks
	Sensor Data Printer: Steps
	Goal
	Hardware
	Steps

	Sensor Data Printer: add sensor driver crate
	Sensor Data Printer: define I2C bus/pins
	Sensor Data Printer: initialize I2C bus
	Sensor Data Printer: perform measurement
	Sensor Data Printer: that's it
	Networked Sensor: Steps
	Goal
	Steps

	Networked Sensor: TCP send
	Networked Sensor: Add to the loop
	Networked Sensor: Add dependencies
	Networked Sensor: output
	Port it: Steps
	Goal
	Steps

	Port it: defining I2C and LED pins
	Port it: that's it
	What's up next
	release 0.3.0 landing next week
	release after that

	Wrapping up
	Thanks!

