Ariel OS — The Embedded Rust Software Stack for Microcontroller-
based Internet of Things
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... part of Ariel OS contributors:

Ariel OS: A library operating system for secure, memory-safe, low-power Internet of
Things, written in Rust



Outline

. Context

. Rust embedded and the Ecosystem

. Ariel OS

. Getting started: From Hello World to Networking
. Wrapping up

O &~ W DN B



Context: Microcontroller hardware

Restrictions

« Limited processing power

« Low memory

« Single memory: no user- vs kernel-space, no MMU, but probably an MPU



Context: Microcontroller hardware

Restrictions

« Limited processing power
« Low memory
« Single memory: no user- vs kernel-space, no MMU, but probably an MPU

Firmware

« Baremetal: no underlying OS with threads, networking, heap allocation...
 No alloc: deterministic behaviour, avoid panic and memory fragmentation
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Rust: Language

Memory safety!



Rust: Language

Memory safety!

But we know that by now.



Rust: Language

Crates:
Shared code on crates.io, integrated in the Cargo build system.

Traits:
Interfaces that allow for interoperability between crates.

no_std:
No use of the standard library and dynamic memory allocations

Async
Provide asynchronous cooperative multitasking implementations with minimal
memory usage

Fosters collaboration across projects



Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits
Provide good generic interfaces for common peripherals across architectures
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Rust Embedded: Ecosystem

What the ecosystem provides:

embedded-hal traits
Provide good generic interfaces for common peripherals across architectures

Driver crates
Sensor and peripheral drivers as separate crate, make use of the embedded-hal traits

Async framework: Embassy

« Implements hardware abstractions for STM32, nRF and Pi Pico
« Provides a low memory async scheduler

The ecosystem of crates around embedded Rust is huge and growing fast!
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Collecting everything

Hardware
abstractions

Real Time
requirements?

Multitasking

Storage

Networking
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Sensor driver

Curating and integrating crates for everything is time consuming
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Ariel OS

Embassy-
executor

N
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PN

sequential- Sensor
coapcore :
storage Abstractions

embedded-hal SmolTCP

Ariel OS integrates crates into a coherent operating system



Ariel OS: Concurrency

Threading

« Preemptive scheduler
« Priority-based scheduling
« Separate stacks

Async
« Based on the Embassy executor
« Canruninside a thread

Support both preemptive scheduling
and low memory async scheduling

99

Embassy
Executor

Embassy
Executor

Thread 0

|

Thread 1

lll

Thread 2

|

Scheduler

|




Ariel OS: To the Ecosystem

Provide high level functionality
Sensor abstractions

« Enumerate available sensors on a board
« Read out available sensors

 Provides a generic interface to sensors and measurements.



Ariel OS: To the Ecosystem

Provide high level functionality

Sensor abstractions

« Enumerate available sensors on a board

« Read out available sensors

 Provides a generic interface to sensors and measurements.

Structured Board Descriptions

Provide machine-readable descriptions of boards
« Microcontroller information

 Peripherals

 Supported features



Ariel OS: Build system

The configuration space is huge
 Enable features

« Features can conflict

o Catch issues before compilation



Ariel OS: Build system

The configuration space is huge
 Enable features

« Features can conflict

o Catch issues before compilation

Laze

yaml-based declarative build configuration.
o Select required modules

 Abstract away board specifics

« Steers cargo builds

 Runs tasks to flash and inspect builds
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Goal

Minimal setup
with blinking LED

Blinky | ——

Sensor Data Networked .
: — E— Port it!
Printer Sensor
Connect the
Connect a Port the example
sensor to
sensor to another board

the internet



Hardware

Hello World




Hello World: Steps

Goal
Show a basic blinking LED

Hardware:
Nordic nRF52840 development kit

Steps

1. Generate the basic project from the template
2. Define LED (GPIO) pin

3. Toggle the led pinin aloop



Hello World: Steps

$ cargo generate --git https://github.com/ariel-os/ariel-os-
template --name hello-fosdem (#Shell

Project content

Cargo.toml

laze-project.yml
— sre/
L~ main.rs



Hello World: Code

© 00 NN O U1 A~ W N =

=
o

11
12

Boilerplate

#![no_main] }

#![no _std]

use ariel os::debug::
{ExitCode, exit, log::*};

#[ariel os::task(autostart)]
async fn main() {

info! ("Hello World!");

exit (ExitCode: :SUCCESS);

w
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# laze-project.yml

apps:
- name: hello-fosdem

# Cargo.toml
[package]

name = "hello-fosdem"
version = "0.1.0"
edition = "2024"
[dependencies]

ariel-os = { path = "..

)

ariel-os-boards = { path = "...



Hello World: Running

1 $ laze build -b nrf52840dk run [(#Shell)
2 [...] (compiling & flashing)
[INFO ] Hello World! (hello fosdem hello-fosdem/src/ } Printed

main.rs:8) by hardware

4 Firmware exited successfully



Hello World: Add the LED

1 define peripherals!(Peripherals { led0: PO 13 });
2

3 #[ariel os::task(autostart, peripherals)]

4 async fn main(peripherals: Peripherals) {

5 let mut ledO® = Output::new(peripherals.ledO, Level::Low);

6

7 loop {

8 Timer::after millis(1000).await;

9 led0.toggle();



Hello World: Add the LED

1 [dependencies] [TITOML
2 # add "time" feature

3 ariel-os = { path = "...", features = ["time"] }



Hello World: it blinks
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Sensor Data Printer: Steps

Goal
Add an 12C temperature and humidity sensor

Hardware
SHT31 Temperature & Humidity sensor

Steps

1. Add SHT3x sensor driver crate
2. Definel2C busin pins.rs

3. Read & print out sensor data



Sensor Data Printer: add sensor driver crate

[dependencies] [TITOML
# ..
embedded-sht3x = { git = "https://gitlab.com/ghislainmary/embedded-sht3x",

features = |
"async”

N OO o B WN R



Sensor Data Printer: define 12C bus/pins

mod board {

use ariel os::hal::{peripherals, define peripherals};

[pub type SensorI2c = ariel_os::hal::iZc::controller::TWISPIO;]

define peripherals!(Peripherals {
ledO: PO 13,

'i2c_sda: PO 26,

oo N oo o A W N =

9 [iZc_scl: P0_27,}

10 }) s
11 }




Sensor Data Printer: initialize 12C bus

1 #[ariel os::task(autostart, peripherals)]
2 async fn main(peripherals: board::Peripherals) {
3 Llet mut led0® = Qutput::new(peripherals.led0, Level::Low);
4
5 let mut i2c _config = Config::default();
§) i2c _config.frequency = const
7 { highest freq in(Kilohertz::kHz(100)..=Kilohertz::kHz(400)) };
8 N
9 let 1i2c bus = board::SensorI2c::new(peripherals.i2c sda,
> I12C setup
10 peripherals.i2c scl,
11 i2c _config) /




Sensor Data Printer: perform measurement

13
14
15
16
17
18
19
20
21
22
23
24
25

// set up sht3x driver
let mut sensor = Sht3x::new(i2c bus, DEFAULT I2C ADDRESS, Delay);

loop {
// Perform a temperature and humidity measurement
Llet measurement = sensor.single measurement().await.unwrap();
let temp = measurement.temperature.celcius();
Llet hum = measurement.relative humidity;

info!("temp: {} °C, rel. hum.: {} %\n", temp, hum);

Timer::after millis(1000).await;

\

Retrieve
Measurement



Sensor Data Printer: that’s it

-

¢ laze build -b nrf52840dk run (#Shell

2 [...] (compiling)

Running “probe-rs run --protocol=swd --chip nrf52840 xxAA --preverify build/
bin/nrf52840dk/cargo/thumbv7em-none-eabihf/release/hello-fosdem’

4 Verifying v 100% [####################]  20.00 KiB @ 30.90 KiB/s (took 1s)
5 Finished in 0.65s

6 [INFO ] temp: 19.165329 °C, rel. hum.: 39.252308
7

8

9

o°

(hello fosdem hello-fosdem-2026/src/main.rs:49)
[INFO ] temp: 19.17868 °C, rel. hum.: 39.33318 %
(hello fosdem hello-fosdem-2026/src/main.rs:49)
10 [INFO ] temp: 19.151978 °C, rel. hum.: 39.261463
11 (hello fosdem hello-fosdem-2026/src/main.rs:49)
12 [INFO ] temp: 19.151978 °C, rel. hum.: 39.223316
13 (hello fosdem hello-fosdem-2026/src/main.rs:49)
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Networked Sensor: Steps

Goal
Provide the sensor measurements over a TCP socket

Steps

1. Add TCP send function

2. Call from our main loop

3. Add dependencies

4. Select networkingin laze.yml



Networked Sensor: TCP send

10
11
12

async fn report(s: &str) -> Result<(), &'static str> {

let host addr = Ipv4Address::from_str("[192.168.1.131}").unwrap();

let stack = net::network stack().await.unwrap();

Llet mut rx buffer = [0; 2560];

let mut tx buffer = [0; 256];

stack.wait config up().await;

let mut socket = TcpSocket::new(stack, &mut rx buffer, &mut

tx _buffer);

socket.connect((host addr, 4242)).await.map err(| | "connect")?;
socket.write all(s.as bytes()).await.map err(| | "write all")?;
socket.flush().await.map err(| | "“flush")?;

Ok(())

J/

> Boilerplate

Create
Socket,
connect,
send



Networked Sensor: Add to the loop

1 loop |
2 /] ..

3 let mut s: String<64> = String::new(); Format
4 write!(s, "temp: {temp:.1} °C, rel. hum.: {hum:.1l} %\n").unwrap(); } String
5

6 if let Err(e) = [report(s.as_str())].await { Call

7 info!("reporting failed: {}", e); } rep&:)rt
8 }

9 }



Networked Sensor: Add dependencies

1

[dependencies]

ariel-os
features

Ilizcll ,

”time" ,
1}
/]

{ path = "...

[

[embedded—io-async =

"0.6.1"

[heapless

"9.9.2"

1 apps:

2 - name: hello-fosdem
3 [selects:}

4 [- network]




Networked Sensor: output

$ socat -u TCP-LISTEN:4242,fork STDOUT (#Shell

1

2 temp: 20.1 °C, rel. hum.: 45.3 %
3 temp: 20.1 °C, rel. hum.: 45.2 %
4 temp: 20.1 °C, rel. hum.: 45.3 %



Port it: Steps

Goal
Run the networked sensor on different hardware

Steps
1. define 12C and LED pins for the next board



Port it: defining 12C and LED pins

1 [#[cfg(context = "nrf52840dk")]}
2 mod board { /* ... previous version ... */ }

3

4 [#[cfg(context = "rpi-pico")]]

5 mod board {

6 pub type SensorI2c = ariel os::hal::i2c::controller: :;
7 define peripherals!(Peripherals {

8 ledo: (PIN 25,

9 i2c_sda: ,

10 i2c_scl: ,

11 1)

12}
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What’s up next

release 0.3.0 landing next week
Adding Bluetooth Low Energy, native “board”, Structured Board Descriptions, ...

release after that
secure software updates, better power management, ...



Wrapping up

« Ariel OS curates and integrates the embedded Rust ecosystem
« Embedded Rust has never been that easy

You’re now thinking:
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Wrapping up

« Ariel OS curates and integrates the embedded Rust ecosystem
« Embedded Rust has never been that easy

You’re now thinking:

« “Why did they use IPv4 in 20267”
« “This looks so approachable, I’ll try it!”



Thanks!

Join the action:

https://ariel-o0s.org


https://ariel-os.org
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