f8

an architecture for small embedded systems

Philipp Klaus Krause

2025-02-02

8/16-Bit architectures

m In between low-end (4-bit) and high-end (32- and 64-bit
microcontrollers).

Typically programmed in C
Devices cost about 1¢ to 1 €
Data memory typically in the range of a few B to a few KB

Program memory typically a few KB

Market dominated by proprietary architectures, and ancient
architectures implemented by many vendors

The Small Device C Compiler

m Free C compiler (ANSI C89, ISO €99, ISO C11, ISO C23)

m Freestanding implementation or part of a hosted
implementation

m Supporting tools (assembler, linker, simulator, ...)

m Works on many host systems (GNU/Linux, Windows, macOS,
Hurd, OpenBSD, FreeBSD, ...)

m Targets various 8-bit architectures (MCS-51, DS80C390, Z80,
7180, €Z80, Rabbit, SM83, TLCS-90, HC08, S08, STMS,
pdk14, pdk15, pdk13, MOS 6502, WDC 65C02)

m Has some unusual optimizations that make sense for these
targets (in particular in register allocation)

m Users: pC programmers, and retrocomputing/-gaming
developers

Lessons learned - big picture

m An efficient stackpointer-relative addressing is essential for
reentrant functions

m A unified address space is essential for efficient pointer access
m Registers help

m Hardware multithreading can replace peripheral hardware, but
it needs good support for atomics, and thread-local storage

m Irregular architectures can be very efficient with
tree-decomposition-based register allocation

m A good mixture of 8-bit and 16-bit operations helps
m Pointers should be 16 bits

Lessons learned - details

Zero-page, etc addressing isn't useful if we have efficient
stackpointer-relative addressing

A index-pointer-relative read instruction for both 8 and 16 bits
is important

Prefix bytes can be a good way to allow more operands (e.g.
registers)

Hardware 8 x 8 — 16 multiplication helps

Division is rare

Multiply-and-add helps speeds up wider multiplications

BCD support provides cheap printf without need for hardware
division

Good shift and rotate support helps

Where do we get - big picture

m 8/16 bit
m Irregular CISC

m The core becomes bigger than for RISC, but we save so much
on code memory that it is worth it

m f8l instruction subset for smaller core

register set

7

h|jc|n|z reserved
0 15 15
pc sp
0 7 8 15
X
x1 xh
0 7 8 15 7 8 15
y z
yi yh z1 zh

example 8-bit 2-operand instruction

adc: 8-bit addition with carry

Assembler code Operation f8l
adc x1, op8_2 x1 = x1 + op8_2 + ¢ Yes
adc altacc8, op8_2 altacc8 = altacc8 + op8_2 + ¢ Yes
adc op8_2ni, x1 op8_2ni = op8_2ni + x1 + ¢ Yes
where

op8_2 Any of xh, y1, yh, z1, #i, mm, (n, sp), (an, z).
op8_2ni Any of xh, y1, yh, z1, mm, (n, sp), (an, 2z).
altacc8 Any of xh, y1, yh, z1, zh.

rough instruction set overview

m Instruction classes: 8-bit 2-operand, 8-bit 1-operand, 16-bit
2-operand, 16-bit 1-operand, 8-bit loads, 16-bit loads, other
8-bit, other 16-bit, jumps.

m Most operate on an “accumulator” (which is both the
destination and a source operand, can be changed by prefix),
order of operands can be swapped by prefix.

m All instructions write at most one 16-bit register and a 16-bit
memory location.

Current state

m f8 port in SDCC (compiler, assembler, simulator, passes
regression tests

m f8 and f8l Verilog implementations
m https://github.com/f8-arch
m https://sdcc.sourceforge.net/

m Still doing a few last optimizations on the opcode map

