
f8 manual

Philipp Klaus Krause

2026-01-29

2

Chapter 1

Architecture

1.1 Introduction
The f8 is an 8/16-bit architecture based on lessons learned from many years of
working with existing 8/16-bit architectures, their strengths and weaknesses, in
particular when targeted by a C compiler. It emphasizes efficient use of memory
(for both the program and data), and is meant for use cases where the power
of a 32-bit ARM or RISC-V is not needed. For the lower end, there is also the
f8l variant, which has a smaller instruction set, and can be implemented with
fewer gates / less silicon area.

At a high level, this means:

• An efficient stackpointer-relative addressing mode for efficient handling of
local variables

• A unified address space for efficient pointer access

• Having a few data / pointer registers for temporary storage

• Hardware multithreading and support for atomics to replace peripheral
hardware

1.2 Safety and Security
With a 16-bit logical address space, and the intended use, the f8 cannot afford
to use virtual memory, which would be necessary for guard pages. Instead we
use a simple mitigation for memory safety issues, that resets the f8 on three
error conditions:

• Attempts to write via null pointers reset the f8 (via an I/O register at
address 0x0000).

3

4 CHAPTER 1. ARCHITECTURE

• Attempts to execute 0-initialized memory reset the f8 (via the trap in-
struction that has opcode 0x00).

• A simple watchdog can reset the f8.

The f8 is little-endian. The stack grows downward. There is a 16-bit flat
address space. Memory reads have no side-effects. All instructions execute
atomically.

1.3 Memory Map
I/O is mapped starting from 0x0000 (as required by the safety / security feature
regarding null pointer reads). RAM is mapped up to 0x3fff. (P)ROM/Flash
from 0x4000. The idea is to allow for up to 48 KB of (P)ROM/Flash and up to
8 KB of RAM directly in the 16-bit address space.

1.4 Registers
There is an 8-bit flag register f, which contains the half-carry flag h, the carry
flag c, the negative flag n, the zero flag z, the overflow / parity flag o, and three
reserved bits. Unless otherwise noted, instructions leave the reserved flags in an
undefined state. The reserved bits should not be written by the user except via
the xch f, (n, sp) instruction.

After reset, pc has the value 0x4000 the value of the other registers mentioned
in this section after reset is unspecified.

0 7

h c n z o reserved

There are a 16-bit program counter pc and a 16-bit stack pointer sp.
0 15

pc

0 15

sp

There are three 16-bit general-purpose registers, each consisting of two 8.bit
registers.

0 7 8 15

x

xl xh
0 7 8 15

y

yl yh

1.5. INSTRUCTIONS 5

0 7 8 15

z

zl zh

1.5 Instructions
The lightweight f8 instruction subset f8l is meant for smaller cores. This sim-
plification comes at the cost of a reduction in performance and an increase in
code size.

Instructions have up to 3 source and up to 2 destination operands. At most
one source and one destination operand are in memory. All destination operands
in general-purpose registers need to be one 16-bit register or part of the same
16-bit general-purpose register.

Each instruction is encoded by 1 to 4 bytes: an optional prefix byte is
followed by the opcode byte and 0 to 2 operand bytes.

There are 8 prefix bytes:
Prefix semantics group
swapop swap operands 0
altacc1 alternative accumulator xh instead of xl 1
altacc2 alternative accumulator yl instead of xl, z instead of y 2
altacc4 alternative accumulator yh instead of xl, z instead of y 2
altacc3 alternative accumulator zl instead of xl, x instead of y 2
altacc5 alternative accumulator zh instead of xl 2

1.6 Addressing Modes
xl, xh, yl, yh, zl, zh, f 8-bit register
x, y, z, sp 16-bit register
#i 8-bit immediate
#ii 16-bit immediate
#d 8-bit immediate sign-extended to 16-bit
mm direct
(n, sp), (n, y) indexed with 8-bit offset
(nn, z) indexed with 16-bit offset
(x), (y), (z) indirect

6 CHAPTER 1. ARCHITECTURE

Chapter 2

Instructions

op8_2 Any of xh, yl, yh, zl, #i, mm, (n, sp), (nn, z).
op8_2ni Any of xh, yl, yh, zl, mm, (n, sp), (nn, z).
altacc8 Any of xh, yl, yh, zl, zh.
op16_2 Any of x, #ii, mm, (n, sp).
op16_2ni Any of x, mm, (n, sp).
altacc16 Any of x, z.
op8_1 Any of xl, mm, (n, sp), (n, y).
op16_1 Any of y, mm, (n, sp), (nn, z).

2.1 8-bit 2-operand instructions
Instructions where the same location is used for altacc8 and op8_2 operand
are not valid.

2.1.1 adc: 8-bit addition with carry
Assembler code Operation f8l
adc xl, op8_2 xl = xl + op8_2 + c Yes
adc altacc8, op8_2 altacc8 = altacc8 + op8_2 + c Yes
adc op8_2ni, xl op8_2ni = op8_2ni + xl + c Yes

Affected Flags

hcnzo

2.1.2 add: 8-bit addition
Assembler code Operation f8l
add xl, op8_2 xl = xl + op8_2 Yes
add altacc8, op8_2 altacc8 = altacc8 + op8_2 Yes
add op8_2ni, xl op8_2ni = op8_2ni + xl Yes

7

8 CHAPTER 2. INSTRUCTIONS

Affected Flags

hcnzo

2.1.3 and: 8-bit bitwise and
Assembler code Operation f8l
and xl, op8_2 xl = xl & op8_2 Yes
and altacc8, op8_2 altacc8 = altacc8 & op8_2 Yes
and op8_2ni, xl op8_2ni = op8_2ni & xl Yes

Affected Flags

nz

2.1.4 cp: 8-bit comparison
Subtraction where the result is used to update the flags only.

Assembler code Operation f8l
cp xl, op8_2 xl + ~op8_2 + 1 Yes
cp altacc8, op8_2 altacc8 + ~op8_2 + 1 Yes
cp op8_2, xl op8_2 + ~xl + 1 No

Affected Flags

hcnzo

2.1.5 or: 8-bit bitwise or
Assembler code Operation f8l
or xl, op8_2 xl = xl | op8_2 Yes
or altacc8, op8_2 altacc8 = altacc8 | op8_2 Yes
or op8_2ni, xl op8_2ni = op8_2ni | xl Yes

Affected Flags

nz

2.1.6 sbc: 8-bit subtraction with carry
Assembler code Operation f8l
sbc xl, op8_2ni xl = xl + ~op8_2ni + c Yes
sbc altacc8, op8_2ni altacc8 = altacc8 + ~op8_2ni + c Yes
sbc op8_2ni, xl op8_2ni = op8_2ni + ~xl + c No

Affected Flags

hcnzo

2.2. 16-BIT 2-OPERAND-INSTRUCTIONS 9

2.1.7 sub: 8-bit subtraction
Assembler code Operation f8l
sub xl, op8_2ni xl = xl + ~op8_2ni + 1 Yes
sub altacc8, op8_2ni altacc8 = altacc8 + ~op8_2ni + 1 Yes
sub op8_2ni, xl op8_2ni = op8_2ni + ~xl + 1 No

Affected Flags

hcnzo

2.1.8 xor: 8-bit bitwise exclusive or
Assembler code Operation f8l
xor xl, op8_2 xl = xl ^ op8_2 Yes
xor altacc8, op8_2 altacc8 = altacc8 ^ op8_2 Yes
xor op8_2ni, xl op8_2ni = op8_2ni ^ xl Yes

Affected Flags

nz

2.2 16-bit 2-operand-instructions
Todo: Document possible altacc prefixes.

2.2.1 adcw: 16-bit addition with carry
Assembler code Operation f8l
adcw y, op16_2 y = y + op16_2 + c No
adcw op16_2ni, y op16_2ni = op16_2ni + y + c No

Affected Flags

cnzo

2.2.2 addw: 16-bit addition
Assembler code Operation f8l
addw y, op16_2 y = y + op16_2 No
addw op16_2ni, y op16_2ni = op16_2ni + y No

Affected Flags

cnzo

10 CHAPTER 2. INSTRUCTIONS

2.2.3 orw: 16-bit bitwise or
todo: do we really want the effect on o here? If yes, why not on the 8-bit logic
ops?

Assembler code Operation f8l
orw y, op16_2 y = y | op16_2 No
orw op16_2ni, y op16_2ni = op16_2ni | y No

Affected Flags

nzo

2.2.4 sbcw: 16-bit subtraction with carry
Assembler code Operation f8l
sbcw y, op16_2ni y = y + ~op16_2ni + c No
sbcw op16_2ni, y op16_2 = ~op16_2ni + y + c No

Affected Flags

cnzo

2.2.5 subw: 16-bit subtraction
Assembler code Operation f8l
subw y, op16_2ni y = y + ~op16_2ni + 1 No
subw op16_2ni, y op16_2 = ~op16_2ni + y + 1 No

Affected Flags

cnzo

2.2.6 xorw: 16-bit bitwise exclusive or
todo: do we really want the effect on o here? If yes, why not on the 8-bit logic
ops?

Assembler code Operation f8l
xorw y, op16_2 y = y ^ op16_2 No
xorw op16_2ni, y op16_ni2 = op16_2ni ^ y No

Affected Flags

nzo

2.3. 8-BIT 1-OPERAND-INSTRUCTIONS 11

2.3 8-bit 1-operand-instructions
2.3.1 clr: 8-bit clear

Assembler code Operation f8l
clr op8_1 op8 = 0x00 Yes, except (n, y)
clr altacc8 altacc8 = 0x00 Yes

Affected Flags

none

Rationale

Initializing or setting an object, or parts thereof, to 0 is common, so having a
dedicated instruction is worth it vs. using ld.

2.3.2 dec: 8-bit decrement
Assembler code Operation f8l
dec op8_1 op8 = op8 + -1 Yes, except (n, y)
dec altacc8 altacc8 = altacc8 + -1 Yes

Affected Flags

hcnzo

2.3.3 inc: 8-bit increment
Assembler code Operation f8l
inc op8_1 op8 = op8 + 1 Yes, except (n, y)
inc altacc8 altacc8 = altacc8 + 1 Yes

Affected Flags

hcnzo

2.3.4 push: 8-bit push onto stack
Assembler code Operation f8l
push op8_1 (--sp) = op8 Yes, except (n, y)
push altacc8 (--sp) = altacc8 Yes

Affected Flags

none

12 CHAPTER 2. INSTRUCTIONS

Rationale

8-bit stack parameters can be passed easily via this instruction. Registers can
be saved temporarily (e.g. for the duration of a function call, or in the middle of
a complex computation). Not affecting flags makes the instruction more useful
for saving registers in the middle of a long addition/subtraction/comparison/
multiplication.

2.3.5 sll: 8-bit shift left logical
Assembler code Operation f8l
sll op8_1 c = (op8 & 0x80) >> 7

op8 = op8 << 1
Yes, except (n, y)

sll altacc8 c = (op8 & 0x80) >> 7
altacc8 = altacc8 << 1

Yes

Affected Flags

cnz

2.3.6 srl: 8-bit shift right logical
Assembler code Operation f8l
srl op8_1 c = op8 & 0x01

op8 = op8 >> 1
Yes, except (n, y)

srl altacc8 c = op8 & 0x01
altacc8 = altacc8 >> 1

Yes

Affected Flags

cnz

2.3.7 rlc: 8-bit rotate left through carry
Assembler code Operation f8l
rlc op8_1 tc = (op8 & 0x80) >> 7

op8 = (op8 << 1) | c
c = tc

Yes, except (n, y)

rlc altacc8 tc = (altacc8 & 0x80) >> 7
altacc8 = (altacc8 << 1) | c
c = tc

Yes

Affected Flags

cnz

2.4. 16-BIT 1-OPERAND INSTRUCTIONS 13

2.3.8 rrc: 8-bit rotate right through carry
Assembler code Operation f8l
rrc op8_1 tc = op8 & 0x01

op8 = (op8 >> 1) | (c << 7)
c = tc

Yes, except (n, y)

rrc altacc8 tc = altacc8 & 0x01
altacc8 = (altacc8 >> 1) | (c << 7)
c = tc

Yes

Affected Flags

cnz

2.3.9 tst: 8-bit test
Set n and z flags according to value of operand, o flag by parity, reset c.

Assembler code Operation f8l
tst op8_1 op8 Yes, except (n, y)
tst altacc8 altacc8 Yes

Affected Flags

cnzo

Rationale

Testing a variable for zero or being nonnegative is common. We also want a
way to check parity and reset the carry flag. Making that a side-effect in this
instructions saves opcodes for other uses.

2.4 16-bit 1-operand instructions
2.4.1 adcw: 16-bit addition with carry

Assembler code Operation f8l
adcw op16_1 op16 = op16 + c No
adcw altacc16 altacc16 = altacc16 + c No

Affected Flags

cnzo

Rationale

In additions, often one operand is a small integer. This instructions allows an
efficient implementation of the handling of the upper bits.

14 CHAPTER 2. INSTRUCTIONS

2.4.2 clrw: 16-bit clear
Assembler code Operation f8l
clrw op16_1 op16 = 0x0000 Yes
clrw altacc15 altacc16 = 0x0000 Yes

Affected Flags

none

Rationale

Initalizing or setting an object, or parts thereof, to 0 is common, so having a
dedicated instruction is worth it vs. using ldw.

2.4.3 incw: 16-bit increment
Assembler code Operation f8l
incw op16_1 op16 = op16 + 1 Yes
incw altacc16 altacc16 = altacc16 + 1 Yes

Affected Flags

cnzo

Rationale

Incrementing a variable is common, so having a dedicated instruction is worth
it vs. using addw. Affecting the carry flag makes this instruction less useful for
incrementing pointers in the middle of wider arithmetic operations, but makes
it more useful for incrementing wider variables.

2.4.4 pushw: 16-bit push onto stack
Assembler code Operation f8l
pushw op16_1 sp -= 2; (sp) = op16 Yes
pushw altacc16 sp -= 2; (sp) = altacc16 Yes

Affected Flags

none

Rationale

16-bit stack parameters can be passed easily via this instruction. Registers can
be saved temporarily for a function call, or in the middle of wider arithmetic
operations; for the latter use, it is important that this instruction does not affect
any flags.

2.4. 16-BIT 1-OPERAND INSTRUCTIONS 15

2.4.5 sbcw: 16-bit subtraction with carry

Assembler code Operation f8l
sbcw op16_1 op16 = op16 + 0xffff + c No
sbcw altacc16 altacc16 = altacc16 + 0xffff + c No

Affected Flags

cnzo

Rationale

In subtractions, often one operand is a small integer. This instructions allows
an efficient implementation of the handling of the upper bits.

2.4.6 tstw: 16-bit test

Set n and z flags according to value of operand, o flag by parity, set c.
Assembler code Operation f8l
tstw op16_1 op16 Yes
tstw altacc16 altacc16 Yes

Affected Flags

cnzo

Rationale

Testing a variable for zero or being nonnegative is common. We also want a
way to check parity and set the carry flag. Making that a side-effect in this
instructions saves opcodes for other uses.

16 CHAPTER 2. INSTRUCTIONS

2.5 8-bit loads

2.5.1 ld: 8-bit load from memory

Assembler code Operation f8l
ld xl, #i xl = #i Yes
ld altacc8, #i altacc8 = #i Yes
ld xl, mm xl = mm Yes
ld altacc8, mm altacc8 = mm Yes
ld xl, (n, sp) xl = (n, sp) Yes
ld altacc8, (n, sp) altacc8 = (n, sp) Yes
ld xl, (nn, z) xl = (nn, z) Yes
ld altacc8, (nn, z) altacc8 = (nn, z) Yes
ld xl, (y) xl = xh Yes
ld altacc8, (altacc16) altacc8 = (altacc16) Yes
ld xl, (n, y) xl = (n, y) No
ld altacc8, (n, y) altacc8 = (n, y) No

Affected Flags

nz

Rationale

To be able to handle 8-bit data efficiently, we need a variety of 8-bit load in-
structions. Often, data is being tested for being (non)zero or (non)negative after
being loaded from memory, so having ld update the n and z flags can save a
tst instruction.

2.5. 8-BIT LOADS 17

2.5.2 ld: 8-bit load from register
Assembler code Operation f8l
ld xl, xh xl = xh Yes
ld xh, xl xh = xl Yes
ld altacc8, xh altacc8 = xh Yes
ld xl, yl xl = yl Yes
ld yl, xl yl = xl Yes
ld altacc8, yl altacc8 = yl Yes
ld xl, yh xl = yh Yes
ld yh, xl yh = xl Yes
ld altacc8, yh altacc8 = yh Yes
ld xl, zl xl = zl Yes
ld zl, xl zl = xl Yes
ld altacc8, zl altacc8 = zl Yes
ld xl, zh xl = zh Yes
ld zh, xl zh = xl Yes
ld altacc8, zh altacc8 = zh Yes
ld mm, xl mm = xl Yes
ld mm, altacc8 mm = altacc8 Yes
ld (n, sp), xl (n, sp) = xl Yes
ld (n, sp), altacc8 (n, sp) = altacc8 Yes
ld (nn, z), xl (nn, z) = altacc8 Yes
ld (nn, z), altacc8 (nn, z) = altacc8 Yes
ld (y), xl (y) = xl Yes
ld (altacc16), altacc8 (altacc16) = altacc8 Yes
ld (n, y), xl (n, y) = xl No
ld (n, y), altacc8 (n, y) = altacc8 No

Affected Flags

none

Rationale

To be able to handle 8-bit data efficiently, we need a variety of 8-bit load in-
structions.

2.5.3 ldi: 8-bit load with increment
Flags according to old (z).

Assembler code Operation f8l
ldi (n, y), (z) (n, y) = (z); z += 1; No

Affected Flags

nz

18 CHAPTER 2. INSTRUCTIONS

Rationale

Copying larger blocks of data is a very common operation, both explicitly via
memcpy, and when assigning larger variables. While ldwi has higher throughput,
this instruction can be used for the first or last byte when copying an odd
number of bytes. Due to its effect on the z flag, it is also useful, when the value
of the individual copied byte matters, in particular for implementing strlen
and strnlen.

2.6 16-bit loads

2.6.1 ldw: 16-bit load from memory

Assembler code Operation f8l
ldw y, #ii y = #ii Yes
ldw altacc16, #ii altacc16 = #ii Yes
ldw y, mm y = mm Yes
ldw altacc16, mm altacc16 = mm Yes
ldw y, (n, sp) y = (n, sp) Yes
ldw altacc16, (n, sp) altacc16 = (n, sp) Yes
ldw y, (nn, z) y = (nn, z) Yes
ldw altacc16, (nn, z) altacc16 = (nn, z) Yes
ldw y, (n, y) y = (n, y) No
ldw altacc16, (n, y) altacc16 = (n, y) No
ldw y, (y) y = (y) Yes
ldw altacc16, (altacc16) altacc16 = (altacc16) Yes
ldw y, #d y = #d Yes
ldw altacc16, #d altacc16 = #d Yes
ldw x, (y) x = (y) Yes
ldw y, (z) y = (z) Yes
ldw z, (x) z = (x) Yes
ldw z, (y) z = (y) Yes

Affected Flags

nz

Rationale

To be able to handle 16-bit data efficiently, we need a variety of 16-bit load
instructions. Often, data is being tested for being (non)zero or (non)negative
after being loaded from memory, so having ldw update the n and z flags can
save a tstw instruction.

2.6. 16-BIT LOADS 19

2.6.2 ldw 16-bit load from register
Assembler code Operation f8l
ldw y, x y = x Yes
ldw y, z y = z Yes
ldw z, x z = x Yes
ldw x, z x = z Yes
ldw x, y x = y Yes
ldw z, y z = y Yes
ldw mm, y mm = y Yes
ldw mm, altacc16 mm = altacc16 Yes
ldw (n, sp), y (n, sp) = y Yes
ldw (n, sp), altacc16 (n, sp) = altacc16 Yes
ldw (nn, z), y (nn, z) = y Yes
ldw (nn, z), altacc16 (nn, z) = altacc16 Yes
ldw (y), x (y) = x Yes
ldw (z), y (z) = y Yes
ldw (x), z (x) = z Yes
ldw (y), z (y) = z Yes
ldw (n, y), x (n, y) = x No
ldw y, sp y = sp Yes
ldw sp, y sp = y Yes
ldw altacc16, sp altacc16 = sp Yes
ldw ((d, sp)), y (d, sp) = y No
ldw ((d, sp)), altacc16 (d, sp) = altacc16 No

Affected Flags

none

Rationale

To be able to handle 16-bit data efficiently, we need a variety of 16-bit load
instructions.

2.6.3 ldwi: 16-bit load with increment
Flags according to old (z).

Assembler code Operation f8l
ldwi (n, y), (z) (n, y) = (z); z += 2; No

Affected Flags

nz

20 CHAPTER 2. INSTRUCTIONS

Rationale

Copying larger blocks of data is a very common operation, both explicitly via
memcpy, and when assigning larger variables. This instruction substantially
increases throughput vs. using individual loads and stores. The effect on the z
flag makes it suitable for copying zero-terminated UTF-16 strings.

2.6.4 sex: sign-extend
Assembler code Operation f8l
sex y, xl y = (int8_t)xl No
sex altacc16, altacc8 altacc16 = (int8_t)altacc8 No

Affected Flags

nz

Rationale

When aiming for memory efficiency, it is important to be able to chose the small-
est type that can hold the data without incurring a code size or performance
penalty. This instruction allows efficient up-casts of signed numbers.

2.6.5 zex: zero-extend
Assembler code Operation f8l
zex y, xl y = xl No
zex altacc16, altacc8 altacc16 = altacc8 No

Affected Flags

z

Rationale

When aiming for memory efficiency, it is important to be able to chose the
smallest type that can hold the data without incurring a code size or perfor-
mance penalty. This instruction help implement efficient up-casts of unsigned
numbers. Its benefits are not as big as those of sex per individual upcast, but
on the other hand, unsigned numbers are used more commonly, thus unsigned
upcasts are more common.

2.7 Other 8-bit instructions
2.7.1 bool: 8-bit cast to bool
Todo: Remove from f8l subset?

2.7. OTHER 8-BIT INSTRUCTIONS 21

Assembler code Operation f8l
bool xl xl = (bool)xl Yes
bool altacc8 altacc8 = (bool)altacc8 Yes

Affected Flags

z

Rationale

This instruction allows the efficient implementation of explicit casts of 8-bit
numbers to bool and, together with the xor instruction, of the negation operator
for 8-bit numbers.

2.7.2 cax: 8-bit compare and exchange
z is set according to the old value of (y) - zl.

Assembler code Operation f8l
cax (y), zl, xl if ((y) == zl) (y) = xl; else zl = (y); Yes
cax (y), zl, xh if ((y) == zl) (y) = xh; else zl = (y); Yes
cax (y), zl, zh if ((y) == zl) (y) = zh; else zl = (y); Yes

Affected Flags

z

Rationale

This instruction is essential for the implementation of 8-bit lock-free atomics.

2.7.3 da: decimal adjust
Decimal adjust for addition / subtraction - binary coded decimal semantics.

todo: describe details!
Assembler code Operation f8l
da xl Yes
da altacc8 Yes

Rationale

While the binary-coded-decimal (BCD) representation of numbers is mostly
obsolete today, this instruction still has a use: it allows efficient conversion from
binary to BCD, and thus to ASCII. This can substantially speed up the printing
of numbers, considering that the f8 does not have division or modulo hardware.

Affected Flags

hcnzo

22 CHAPTER 2. INSTRUCTIONS

2.7.4 mad: multiply and add
Assembler code Operation f8l
mad x, mm, yl x = mm * yl + xh + c No
mad x, (n, sp), yl x = (n, sp) * yl + xh + c No
mad x, (nn, z), yl x = (nn, z) * yl + xh + c No
mad x, (z), yl x = (z) * yl + xh + c No

Affected Flags

nz

Rationale

Multiplication hardware is expensive. We need it for the mul instruction. How-
ever, on multiplications of larger numbers, if we only had mul, we’d spend a
lot of cycles moving and adding, and the multiplication hardware would be idle
for many cycles. This instruction speeds up multiplications of large numbers
substantially, so that every other instruction actually uses the multiplication
hardware.

2.7.5 msk: mask
z flag set according to old value of (y) & #i.

Assembler code Operation f8l
msk (y), xl, #i (y) = xl & #i | (y) & ~#i Yes
msk (altacc16), altacc8, #i (altacc16) = altacc8 & #i | (altacc16) & ~#i Yes

Affected Flags

z

Rationale

Bit-fields are an important tool to reduce data memory usage. This instruction
allows for substantially better code for writing bit-fields, and for writing parts
of I/O registers. Due to its effect on the z flag, it also can be used as a single
bit exchange instruction, which can be useful on memory-mapped I/O.

2.7.6 pop: 8-bit pop from stack
Assembler code Operation f8l
pop xl xl = (sp++) Yes
pop altacc8 altacc8 = (sp++) Yes

Affected Flags

none

2.7. OTHER 8-BIT INSTRUCTIONS 23

Rationale

Registers that were saved temporarily via a push can be restored by this in-
struction. Not affecting flags makes the instruction more useful for restoring
registers after a comparison before a conditional jump, or in the middle of a
long addition/subtraction/multiplication.

2.7.7 push: 8-bit push onto stack
Ignores all flags, changes no flags, not even the reserved ones.

Assembler code Operation f8l
push #i (--sp) = #i Yes

Affected Flags

none

Rationale

8-bit stack parameters can be passed easily via this instruction. Not affecting
any flags makes this instruction, together with xch f, (n,sp), suitable for
saving the flags at the beginning of an interrupt handler.

2.7.8 rot: 8-bit rotate
Assembler code Operation f8l
rot xl, #i xl = (xl << #i) | (xl >> (8 - #i)) No
rot altacc8, #i altacc8 = (altacc8 << #i) | (altacc8 >> (8 - #i)) No

Affected Flags

nz

Rationale

8-bit rotations happen in code. Together with and, this instruction can be used
to efficiently do shifts by more than 2. Another important use is shuffling bits
around for bit-field reads and writes (and bit-fields are an important tool to
reduce data memory usage).

2.7.9 sra: 8-bit shift right arithmetic
Assembler code Operation f8l
sra xl c = op8 & 0x01

xl = (xl >> 1) | xl & 0x80
Yes

sra altacc8 c = op8 & 0x01
altacc8 = (altacc8 >> 1) | altacc & 0x80

Yes

24 CHAPTER 2. INSTRUCTIONS

Affected Flags

cnz

Rationale

This instruction is used for right-shift of signed integers, which is also relevant
to implementing signed division by powers of two.

2.7.10 thrd
Get current hardware thread number.

Assembler code Operation f8l
thrd xl xl = current hardware thread number Yes
thrd altacc8 altacc8 = current hardware thread number Yes

Affected Flags

z

Rationale

Getting the hardware thread number efficiently is useful for implementing thread-
local storage. While thrd will not be a common instruction is typical programs,
the alternative is doing a search for the current value of sp in a list of stack
pointer ranges, which would be quite inefficient.

2.7.11 xch: 8-bit exchange
Assembler code Operation f8l
xch yl, yh t = yl; yl = yh; yh = t No
xch xl, xh t = xl; xl = xh; xh = t No
xch zl, zh t = zl; zl = zh; zh = t No
xch xl, (n, sp) t = (n, sp); (n, sp) = xl; xl = t No
xch altacc8, (n, sp) t = (n, sp); (n, sp) = altacc8; altacc8 = t No
xch xl, (y) t = (y); (y) = xl; xl = t Yes
xch altacc8, (altacc16) t = (altacc16); (altacc16) = altacc8; altacc8 = t Yes
xch f, (n, sp) t = (n, sp); (n, sp) = f; f = t Yes

Affected Flags

All, including reserved ones (xch f, (n, sp)) or none (all others).

Rationale

The instruction with register and stack parameters is useful for shuffling data
in registers and on the stack around, allowing for substantially more efficient
register and stack allocation. The xch xl, (y) instruction and its variant xch

2.8. OTHER 16-BIT INSTRUCTIONS 25

altacc8, (altacc16) are useful for implementing 8-bit atomics. xch f, (n,
sp) together with push #i and addw sp, #d is suitable for saving and restoring
the flags for interrupt handlers.

2.8 Other 16-bit instructions
2.8.1 addw: 16-bit addition
addw sp, #d ignores all flags, changes no flags, not even the reserved ones.

Assembler code Operation f8l
addw sp, #d sp = sp + #d Yes
addw y, #d y = y + #d Yes
addw altacc16, #d altacc16 = altacc16 + #d Yes

Affected Flags

none (addw sp, #d) or cnzo (all others).

Rationale

This instruction allows to efficiently adjust the stack pointer, which is useful for
the setup of the stack at the beginning of functions and stack cleanup at the
end of a function or after a function call.

2.8.2 boolw: 16-bit cast to bool
Assembler code Operation f8l
boolw y y = (bool)y No
boolw altacc16 altacc16 = (bool)altacc16 No

Affected Flags

z

Rationale

This instruction allows the efficient implementation of explicit casts of 16-bit
numbers to bool and, together with the xor instruction, of the negation operator
for 16-bit numbers.

2.8.3 caxw: 16-bit compare and exchange
z is set according to the old value of (y) - z.

Assembler code Operation f8l
caxw (y), z, x if ((y) == z) (y) = x; else z = (y); Yes

26 CHAPTER 2. INSTRUCTIONS

Affected Flags

z

Rationale

This instruction is essential for the implementation of 16-bit lock-free atomics.

2.8.4 cpw: 16-bit comparison
Subtraction where the result is used to update the flags only.

Assembler code Operation f8l
cpw y, #ii y + ~#ii + 1 No
cpw #ii, y #ii + ~y + 1 No
cpw altacc16, #ii altacc16 + ~#ii + 1 No

Affected Flags

cnzo

Rationale

This instruction allows the efficient implementation of sparse switch statements,
and of some if-else chains with a 16-bit or wider condition.

2.8.5 decw: 16-bit decrement
Assembler code Operation f8l
decw (n, sp) (n, sp) = (n, sp) + -1 No

Affected Flags

cnzo

Rationale

Decrement is a common special case of subtraction, though not as common as
increment as a special case of addition.

2.8.6 incnw: 16-bit increment without carry update
Ignores all flags, changes no flags (except possibly the reserved ones).

Assembler code Operation f8l
incnw y y = y + 1 No
incnw altacc16 altacc16 = altacc16 + 1 No

Affected Flags

none

2.8. OTHER 16-BIT INSTRUCTIONS 27

Rationale

Incrementing pointers is common. When needing to do so in the middle of wider
or arbitrary-width arithmetic operations, the carry flag needs to be preserved
across the increment.

2.8.7 negw: 16-bit negation
Assembler code Operation f8l
negw y y = ~y + 1 No
negw altacc16 altacc16 = ~altacc16 + 1 No

Affected Flags

cnzo

Rationale

Negation is a common special case of subtraction.

2.8.8 mul: multiplication
Clears carry.

Assembler code Operation f8l
mul y y = yl * yh No
mul x x = xl * xh No
mul z z = zl * zh No

Affected Flags

cnz

Rationale

Multiplications are common, both explicitly and in array indexing. For efficient
use of data memory, structs should not be padded, thus accessing arrays of
structs often requires multiplications with factors that are not a power of two.
This instruction allows to do these multiplications efficiently. The effect on the
carry flag is motivated by the use of this instruction together with mad for wider
multiplications.

2.8.9 popw: 16-bit pop from stack
Assembler code Operation f8l
popw y y = (sp); sp += 2 Yes
popw altacc16 altacc16 = (sp); sp += 2 Yes

28 CHAPTER 2. INSTRUCTIONS

Affected Flags

none

Rationale

This instruction is useful to restore 16-bit registers that were saved temporarily
via pushw. It is also a code-size efficient way of adjusting the stack pointer by
2 (but does a memory read).

2.8.10 pushw: 16-bit push onto stack
Assembler code Operation f8l
pushw #ii sp -= 2; (sp) = #ii Yes

Affected Flags

none

Rationale

16-bit stack parameters can be passed easily via this instruction. This is com-
mon enough to make it worth having this instruction. Compared to using ldw
followed by a pushw with a register operand, we save one byte of code size, some
execution time, and do not need a free 16-bit register (which might not be easily
available at calls to functions that also have register parameters).

2.8.11 rlcw: 16-bit rotate left through carry
Assembler code Operation f8l
rlcw y tc = (y & 0x8000) >> 15

y = (y >> 1) | (c << 15)
c = tc

No

rlcw (n, sp) tc = ((n, sp) & 0x8000) >> 15
(n, sp) = ((n, sp) >> 1) | (c << 15)
c = tc

No

rlcw altacc16 tc = (altacc16 & 0x8000) >> 15
altacc16 = (altacc16 >> 1) | (c << 15)
c = tc

No

Affected Flags

cnz

Rationale

This instruction is useful to implement wider shifts.

2.8. OTHER 16-BIT INSTRUCTIONS 29

2.8.12 rrcw: 16-bit rotate right through carry
Assembler code Operation f8l
rrcw y tc = y & 0x0001

y = (y >> 1) | c
c = tc

No

rrcw (n, sp) tc = (n, sp) & 0x0001
(n, sp) = ((n, sp) << 1) | c
c = tc

No

rrcw altacc16 tc = altacc16 & 0x0001
altacc16 = (altacc16 << 1) | c
c = tc

No

Affected Flags

cnz

Rationale

This instruction is useful to implement wider shifts.

2.8.13 sllw: 16-bit shift left logical
Assembler code Operation f8l
sllw y c = y & (0x8000 >> 15); y = y << 1 No
sllw altacc16 c = altacc16 & (0x8000 >> 15); altacc16 = altacc16 << 1 No
sllw y, xl y = y << xl No
sllw altacc16, altacc8 altacc16 = altacc16 << altacc8 No

Affected Flags

cnz (sllw y and sllw altacc16) or nz (others).

Rationale

This instruction is useful to implement shifts of 16 or more bits.

2.8.14 sraw: 16-bit shift right arithmetic
Assembler code Operation f8l
sraw y c = y & 0x0001; y = y >> 1 | y & 0x8000 No
sraw altacc16 c = y & 0x0001; altacc16 = altacc16 >> 1 | altacc16 & 0x8000 No

Affected Flags

cnz

30 CHAPTER 2. INSTRUCTIONS

Rationale

This instruction is useful to implement shifts of 16 or more bits.

2.8.15 srlw: 16-bit shift right logical
Assembler code Operation f8l
srlw y c = y & 0x0001; y = y >> 1 No
srlw altacc16 c = y & 0x0001; altacc16 = altacc16 >> 1 No

Affected Flags

cnz

Rationale

This instruction is useful to implement shifts of 16 or more bits.

2.8.16 xchw: 16-bit exchange
Assembler code Operation f8l
xchw x, (y) t = x; x = (y); (y) = t Yes
xchw y, (z) t = y; y = (z); (z) = t Yes
xchw z, (x) t = z; z = (x); (x) = t Yes
xchw z, (y) t = z; z = (y); (y) = t Yes
xchw y, (n, sp) t = y; y = (n, sp); (n, sp) = t No
xchw altacc16, (n, sp) t = altacc16; altacc16 = (n, sp); (n, sp) = t No

Affected Flags

none

Rationale

This instruction is useful to shuffle data around, and to implement 16-bit atomic
exchange.

Affected Flags

z

2.9 Jumps
2.9.1 call
call #ii ignores all flags, changes no flags, not even reserved ones.

2.9. JUMPS 31

Assembler code Operation f8l
call #ii sp -= 2; (sp) = pc; pc = #ii Yes
call y sp -= 2; (sp) = pc; pc = y Yes
call altacc16 sp -= 2; (sp) = pc; pc = altacc16 Yes

Affected Flags

none

Rationale

Calling and returning from functions using a return address on the stack is
common. This instruction helps implement it efficiently. Not affecting flags,
not even reserved ones, makes call #ii suitable for as a software interrupt.

2.9.2 dnjnz: decrement without carry update amd jump
if not zero

Assembler code Operation f8l
dnjnz yh, #d if(--yh) pc += #d No
dnjnz xh, #d if(--xh) pc += #d No
dnjnz zh, #d if(--zh) pc += #d No

Affected Flags

none

Rationale

This instruction can be used to implement while loops instead of using dec fol-
lowed by jr nz. Not affecting flags makes it suitable for implementing arbitrary-
length arithmetic (dec would not preserve the carry flag, thus complicating its
use). The choice of operands is motivated by the use-case of arbitrary-length
multiplications via mad.

2.9.3 jp: jump
jp #ii ignores all flags, changes no flags, not even reserved ones.

Assembler code Operation f8l
jp #ii pc = #ii Yes
jp y pc = y Yes
jp altacc16 pc = altacc16 Yes

Affected Flags

none

32 CHAPTER 2. INSTRUCTIONS

Rationale

A jump instruction that can reach any target is very useful to implement control-
flow. Not affecting flags, not even reserved ones, makes jp #ii instruction
suitable for use at the interrupt vector.

2.9.4 jr: jump
jr #d ignores all flags, changes no flags, not even reserved ones.

Assembler code Operation f8l
jr #d pc += #d Yes

Affected Flags

none

Rationale

Having a jump instruction is very useful to implement control-flow. Jumps are
common, and most of them have a nearby target, making it worth having a
relative jump instruction.

2.9.5 jrc: jump on carry
Assembler code Operation f8l
jr #d if (c) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the carry flag are useful for implementing com-
mon unsigned comparisons, and control-flow depending thereon. Since most
jump targets are nearby, it makes sense to only have the relative conditional
jump, as further jumps can still be implemented by inverting the condition and
using an unconditional jump.

2.9.6 jrgt: jump on greater
Assembler code Operation f8l
jrgt #d if (c && !z) pc += #d; Yes

Affected Flags

none

2.9. JUMPS 33

Rationale

See jrle.

2.9.7 jrle: jump on less or equal
Assembler code Operation f8l
jrle #d if (!c || z) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the carry flag together with the z flag are useful
for implementing common unsigned comparisons, and control-flow depending
thereon. Since most jump targets are nearby, it makes sense to only have the
relative conditional jump, as further jumps can still be implemented by inverting
the condition and using an unconditional jump.

2.9.8 jrn: jump on negative
Assembler code Operation f8l
jrn #d if (n) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the n flag are useful for implementing com-
mon unsigned comparisons with 0, some bit tests, and control-flow depending
thereon. Since most jump targets are nearby, it makes sense to only have the
relative conditional jump, as further jumps can still be implemented by inverting
the condition and using an unconditional jump.

2.9.9 jrnc: jump on no carry
Assembler code Operation f8l
jrnc #d if (!c) pc += #d; Yes

Affected Flags

none

34 CHAPTER 2. INSTRUCTIONS

Rationale

See jrc.

2.9.10 jrnn: jump on nonnegative
Assembler code Operation f8l
jrnn #d if (!n) pc += #d; Yes

Affected Flags

none

Rationale

See jrn.

2.9.11 jrno: jump on no overflow
Assembler code Operation f8l
jrno #d if (!o) pc += #d; Yes

Affected Flags

none

Rationale

See jro.

2.9.12 jrnz: jump on nonzero
Assembler code Operation f8l
jrnz #d if (!n) pc += #d; Yes

Affected Flags

none

Rationale

See jrz.

2.9.13 jro: jump on overflow
Assembler code Operation f8l
jro #d if (o) pc += #d; Yes

2.9. JUMPS 35

Affected Flags

none

Rationale

Conditional jumps depending on the n flag are useful for implementing signed
comparisons wider than the operands of the available compare and subtraction
instructions, and control-flow depending thereon. Since most jump targets are
nearby, it makes sense to only have the relative conditional jump, as further
jumps can still be implemented by inverting the condition and using an uncon-
ditional jump.

2.9.14 jrsge: jump on signed greater or equal
Assembler code Operation f8l
jrsge #d if (!(n ^ o)) pc += #d; Yes

Affected Flags

none

Rationale

See jrslt.

2.9.15 jrsgt: jump on signed greater
Assembler code Operation f8l
jrsgt #d if (!z && !(n ^ o)) pc += #d; Yes

Affected Flags

none

Rationale

See jrsle.

2.9.16 jrsle: jump on signed less or equal
Assembler code Operation f8l
jrsle #d if (z || (n ^ o)) pc += #d; Yes

36 CHAPTER 2. INSTRUCTIONS

Affected Flags

Rationale

Conditional jumps depending on the z, n and o flags are useful for implement-
ing signed comparisons, and control-flow depending thereon. Since most jump
targets are nearby, it makes sense to only have the relative conditional jump,
as further jumps can still be implemented by inverting the condition and using
an unconditional jump.

2.9.17 jrslt: jump on signed less
Assembler code Operation f8l
jrslt #d if (n ^ o) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the n and o flags are useful for implementing
signed comparisons, and control-flow depending thereon. Since most jump tar-
gets are nearby, it makes sense to only have the relative conditional jump, as
further jumps can still be implemented by inverting the condition and using an
unconditional jump.

2.9.18 jrz: jump on zero
Assembler code Operation f8l
jrz #d if (z) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the zero flag are useful for implementing com-
mon tests for 0, and control-flow depending thereon. Since most jump targets
are nearby, it makes sense to only have the relative conditional jump, as fur-
ther jumps can still be implemented by inverting the condition and using an
unconditional jump.

2.9.19 ret: return
Assembler code Operation f8l
ret pc = (sp); sp += 2 Yes

2.10. NON-INSTRUCTIONS 37

Affected Flags

none

Rationale

Calling and returning from functions using a return address on the stack is
common. This instruction helps implement it efficiently.

2.9.20 reti: return from interrupt
Ignores all flags, changes no flags, not even reserved ones.

Assembler code Operation f8l
reti pc = (sp); sp += 2 Yes

Affected Flags

none

Rationale

When returning from an interrupt handler, interrupts should be reenabled at
the same time. This instruction is necessary to return and enable atomically.
To ensure that all flags get restored to their state from before the interrupt
handler, it may not affect any flags, not even reserved ones.

2.9.21 trap
Opcode 0x00. Trap reset.

Assembler code Operation f8l
trap Trap reset Yes

Rationale

Some bugs, including many security-relevant ones can lead to the execution of
code from memory used for data. Many exploits actually rely on data commonly
being zero, and nop having opcode 0. By making opcode 0 a trap instruction,
we can mitigate the impact of such bugs, and make them easier to debug.

2.10 Non-instructions
A 16-bit bitwise and andw would not be as useful as orw and xorw: known 0x00
or 0xff bytes are more common for bitwise and, so the compiler will often use
ld, ldw, clr and clrw, and handle the rest with 8-bit and.

Hardware multiplication is costly, so there are no instructions requiring a
multiplier wider than 8 times 8 to 16. Instead, the mad instruction is provided
for efficient use of the 8 times 8 to 16 multiplier when implementing wider

38 CHAPTER 2. INSTRUCTIONS

multiplications. Division is less common than multiplication, but complex or
costly to implement in hardware.

A cpijz acc8, (z), #d instruction could speed up strlen, strnlen, memchr
and memcmp, but the gain is not as big as for ldi and ldwi. Furthermore, com-
pilers would be unlikely to use cpijz in code generation, unlike ldi and ldwi.
So cpijz would only be useful for the mentioned standard library functions.

An atomic bit-swap instruction xchb would not be used often enough to
justify having it in addition to msk.

Chapter 3

Opcode Map

todo - see opcodemap.ods for now. This is still preliminary, and subject to
ongoing optimization.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x trap sub xl, mm sub xl (n, sp) sub xl (nn, z) sub xl, xh sub xl, zl sub xl, yl sub xl, yh sbc xl, mm sbc xl (n, sp) sbc xl (nn, z) sbc xl, xh sbc xl, zl sbc xl, yl sbc xl, yh
1x add xl, mm add xl, #i add xl (n, sp) add xl (nn, z) add xl, xh add xl, yl add xl, zl add xl, yh adc xl, mm adc xl, #i adc xl (n, sp) adc xl (nn, z) adc xl, xh adc xl, zl adc xl, yl adc xl, yh
2x cp xl, mm cp xl, #i cp xl (n, sp) cp xl (nn, z) cp xl, xh cp xl, zl cp xl, yl cp xl, yh or xl, mm or xl, #i or xl (n, sp) or xl (nn, z) or xl, xh or xl, zl or xl, yl or xl, yh
3x subw y, mm ldw y, sp subw y, (n, sp) subw y, x sbcw y, mm ldw ((n,sp)), y sbcw y, (n, sp) sbcw y, x addw y, mm inc (n, sp) addw y, (n, sp) addw y, x adcw y, mm adcw y, #ii adcw y, (n, sp) adcw y, x
4x sllw y rrcw y altacc3 sllw y, xl sraw y rrcw (n, sp) rlcw (n, sp) jrno #d altacc5 jrsge #d jrslt #d jrsle #d ldw x, (y) jrle #d
5x addw y, #ii inc mm inc xl inc (n, y) dec (n, sp) dec mm dec xl dec (n, y) rrc (n, sp) rrc mm rrc xl rrc (n, y) rlc (n, sp) rlc mm rlc xl rlc (n, y)
6x push (n, sp) push mm push xl push (n, y) jp y jp #ii call #ii call y srlw y ldw y, z
7x and xl, mm xor xl, #i and xl (n, sp) and xl (nn, z) xor xl, xh and xl, zl and xl, yl and xl, yh xor xl, mm and xl, #i xor xl (n, sp) xor xl (nn, z) and xl, xh xor xl, zl xor xl, yl xor xl, yh
8x pushw (n, sp) pushw mm pushw (nn, z) pushw y tstw (n, sp) tstw mm tstw (nn, z) tstw y ldw (n, y), x pushw #ii addw sp, #d addw y, #d ldi (n, y), (z) ldwi (n, y), (z) sex y, xl zex y, xl
9x cpw y, #ii jr #d jrc #d jrnz #d jrnc #d jrz #d jrn #d jrnn #d mul y msk (y), xl, #i ret reti negw y mad x, mm, yl mad x, (nn, z), yl mad x, (z), yl
ax xch xl, (n, sp) push #i xch xl, (y) xch yl, yh incw (n, sp) incw mm sbcw (nn, z) incw y adcw (n, sp) adcw mm adcw (nn, z) adcw y sbcw (n, sp) sbcw mm incw (nn, z) sbcw y
bx ldw y, mm ldw y, #ii ldw y, (n, sp) ldw y, (nn, z) ldw y, (y) ldw y, (n, y) ldw y, x ldw y, #d ldw (n, sp), y swapop ldw (nn, z), y ldw x, y ldw (y), x ldw z, y popw y xch f, (n, sp)
cx ld xl, mm bool xl ld xl, (n, sp) ld xl, (nn, z) ld xl, (n, y) ld xl, (y) ld xl, xh ld xl, yl ld xl, zl ld xl, yh ld xl, zh ld mm, xl ld (nn, z), xl ld (n, sp), xl ld (y), xl ld (n, y), xl
dx clrw (n, sp) clrw mm clrw (nn, z) clrw y rot xl, #i altacc4 sra xl da xl caxw (y), z, x thrd xl mad x, (n, sp), yl boolw y xorw y, mm xorw y, #ii xorw y, (n, sp) xorw y, x
ex orw y, mm orw y, #ii orw y, (n, sp) orw y, x xchw y, (n, sp) xchw x, (y) incnw y decw (n, sp) pop xl ld xl, #i dnjnz yh, #d cax (y), zl, xl altacc1 ldw mm, y altacc2 rlcw y
fx srl (n, sp) srl mm srl xl srl (n, y) sll (n, sp) sll mm sll xl sll (n, y) crl (n, sp) crl mm crl xl crl (n, y) tst (n, sp) tst mm tst xl tst (n, y)

39

40 CHAPTER 3. OPCODE MAP

Chapter 4

Peripherals

Unless otherwise noted, the value of I/O registers on reset is unspecified.

4.1 Watchdog and Reset
The watchdog has an 8-bit configuration register and a 16-bit counter register.

When the watchdog is active, the system clock is divided by 16, and then
used to increment the counter register.

The system is reset when a power-on reset happens, the watchdog counter
register reaches 0xffff, the trap instruction is executed, or the byte at memory
address 0x0000 is written.

Configuration Register
0 1 2 3 4 7

dog active dog reset trap reset null reset reserved

The lowest bit of the configuration register decides if the watchdog is active.
It is 0 on reset. The following three bits give the reason of the latest reset. On
a power-on-reset they are all 0.

4.2 Interrupt Controller
The interrupt controller has a 16-bit enable register, and a 16-bit active register.

0 1 15

t0ov t0cp reserved

When an interrupt happens and the corresponding bit in the enable register
is set, the corresponding bit in the active register is set. When a bit in the
active register is set, and no interrupt routine is currently executing, the program

41

42 CHAPTER 4. PERIPHERALS

counter is put onto the stack and then set to 0x4004. From then on, an interrupt
routine is considered to be executing until the reti instruction is executed.

Bit 0 of the enable register indicates that timer 0 overflow interrupts are
enabled. Bit 0 of the active register indicates that a timer0 overflow interrupt is
active. Bit 1 of the enable register indicates that timer 0 compare interrupts are
enabled. Bit 1 of the active register indicates that a timer 0 compare interrupt
is active. These bits are 0 on reset. All other bits are reserved.

4.3 Timer
The timer has an 8-bit configuration register and 16-bit counter, reload and
comparison registers.

0 3 4 5 6 7

input clock prescaler reserved
The lowest 4 bits of the configuration register select the clock source (0 none,

1 system clock, 2 to 15 for other inputs), the next 2 select the prescaler factor
(0 for 1, 1 for 4, 2 for 16, 3 for 64). All 6 bits are 0 on reset.

The timer increments the 16-bit counter register. When incrementing from
0xffff, a timer overflow interrupt happens, and the value from the reload register
gets loaded into the counter register instead. When the timer register gets
incremented to the value of the compare register, a timer compare interrupt
happens.

4.4 GPIO
The GPIO has (up to 16-bit) data direction, output data, input data, pull-up
registers.

	Architecture
	Introduction
	Safety and Security
	Memory Map
	Registers
	Instructions
	Addressing Modes

	Instructions
	8-bit 2-operand instructions
	adc: 8-bit addition with carry
	add: 8-bit addition
	and: 8-bit bitwise and
	cp: 8-bit comparison
	or: 8-bit bitwise or
	sbc: 8-bit subtraction with carry
	sub: 8-bit subtraction
	xor: 8-bit bitwise exclusive or

	16-bit 2-operand-instructions
	adcw: 16-bit addition with carry
	addw: 16-bit addition
	orw: 16-bit bitwise or
	sbcw: 16-bit subtraction with carry
	subw: 16-bit subtraction
	xorw: 16-bit bitwise exclusive or

	8-bit 1-operand-instructions
	clr: 8-bit clear
	dec: 8-bit decrement
	inc: 8-bit increment
	push: 8-bit push onto stack
	sll: 8-bit shift left logical
	srl: 8-bit shift right logical
	rlc: 8-bit rotate left through carry
	rrc: 8-bit rotate right through carry
	tst: 8-bit test

	16-bit 1-operand instructions
	adcw: 16-bit addition with carry
	clrw: 16-bit clear
	incw: 16-bit increment
	pushw: 16-bit push onto stack
	sbcw: 16-bit subtraction with carry
	tstw: 16-bit test

	8-bit loads
	ld: 8-bit load from memory
	ld: 8-bit load from register
	ldi: 8-bit load with increment

	16-bit loads
	ldw: 16-bit load from memory
	ldw 16-bit load from register
	ldwi: 16-bit load with increment
	sex: sign-extend
	zex: zero-extend

	Other 8-bit instructions
	bool: 8-bit cast to bool
	cax: 8-bit compare and exchange
	da: decimal adjust
	mad: multiply and add
	msk: mask
	pop: 8-bit pop from stack
	push: 8-bit push onto stack
	rot: 8-bit rotate
	sra: 8-bit shift right arithmetic
	thrd
	xch: 8-bit exchange

	Other 16-bit instructions
	addw: 16-bit addition
	boolw: 16-bit cast to bool
	caxw: 16-bit compare and exchange
	cpw: 16-bit comparison
	decw: 16-bit decrement
	incnw: 16-bit increment without carry update
	negw: 16-bit negation
	mul: multiplication
	popw: 16-bit pop from stack
	pushw: 16-bit push onto stack
	rlcw: 16-bit rotate left through carry
	rrcw: 16-bit rotate right through carry
	sllw: 16-bit shift left logical
	sraw: 16-bit shift right arithmetic
	srlw: 16-bit shift right logical
	xchw: 16-bit exchange

	Jumps
	call
	dnjnz: decrement without carry update amd jump if not zero
	jp: jump
	jr: jump
	jrc: jump on carry
	jrgt: jump on greater
	jrle: jump on less or equal
	jrn: jump on negative
	jrnc: jump on no carry
	jrnn: jump on nonnegative
	jrno: jump on no overflow
	jrnz: jump on nonzero
	jro: jump on overflow
	jrsge: jump on signed greater or equal
	jrsgt: jump on signed greater
	jrsle: jump on signed less or equal
	jrslt: jump on signed less
	jrz: jump on zero
	ret: return
	reti: return from interrupt
	trap

	Non-instructions

	Opcode Map
	Peripherals
	Watchdog and Reset
	Interrupt Controller
	Timer
	GPIO

