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Chapter 1

Architecture

1.1 Introduction

The {8 is an 8/16-bit architecture based on lessons learned from many years of
working with existing 8/16-bit architectures, their strengths and weaknesses, in
particular when targeted by a C compiler. It emphasizes efficient use of memory
(for both the program and data), and is meant for use cases where the power
of a 32-bit ARM or RISC-V is not needed. For the lower end, there is also the
{81 variant, which has a smaller instruction set, and can be implemented with
fewer gates / less silicon area.
At a high level, this means:

o An efficient stackpointer-relative addressing mode for efficient handling of
local variables

e A unified address space for efficient pointer access
o Having a few data / pointer registers for temporary storage

e Hardware multithreading and support for atomics to replace peripheral
hardware

1.2 Safety and Security

With a 16-bit logical address space, and the intended use, the {8 cannot afford
to use virtual memory, which would be necessary for guard pages. Instead we
use a simple mitigation for memory safety issues, that resets the f8 on three
error conditions:

o Attempts to write via null pointers reset the 8 (via an I/O register at
address 0x0000).



4 CHAPTER 1. ARCHITECTURE

o Attempts to execute O-initialized memory reset the f8 (via the
-tructio

that has opcode 0x00).

e A simple can reset the f8.

The {8 is little-endian. The stack grows downward. There is a 16-bit flat
address space. Memory reads have no side-effects. All instructions execute
atomically.

1.3 Memory Map

I/0 is mapped starting from 0x0000 (as required by the safety / security feature
regarding null pointer reads). RAM is mapped up to 0x3fff. (P)ROM/Flash
from 0x4000. The idea is to allow for up to 48 KB of (P)ROM/Flash and up to
8 KB of RAM directly in the 16-bit address space.

1.4 Registers

There is an 8-bit flag register £, which contains the half-carry flag h, the carry
flag ¢, the negative flag n, the zero flag z, the overflow / parity flag o, and three
reserved bits. Unless otherwise noted, instructions leave the reserved flags in an
undefined state. The reserved bits should not be written by the user except via
the xch £, (n, sp) instruction.

After reset, pc has the value 0x4000 the value of the other registers mentioned
in this section after reset is unspecified.

0 7

’h|c|n|z|0|reserved‘

There are a 16-bit program counter pc and a 16-bit stack pointer sp.

| pe |
0 15
| o |
There are three 16-bit general-purpose registers, each consisting of two 8.bit
registers.
0 7 8 15
X
x1 | xh
0 7 8 15
y
yl | yh
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1.5 Instructions

The lightweight {8 instruction subset 81 is meant for smaller cores. This sim-
plification comes at the cost of a reduction in performance and an increase in

code size.

Instructions have up to 3 source and up to 2 destination operands. At most
one source and one destination operand are in memory. All destination operands
in general-purpose registers need to be one 16-bit register or part of the same
16-bit general-purpose register.

Each instruction is encoded by 1 to 4 bytes: an optional prefix byte is
followed by the opcode byte and 0 to 2 operand bytes.

There are 8 prefix bytes:

Prefix
swapop
altaccl
altacc?2
altaccd
altacc3
altacch

semantics

swap operands

alternative accumulator xh instead of x1

alternative accumulator yl instead of x1, z instead of y
alternative accumulator yh instead of x1, z instead of y
alternative accumulator z1 instead of x1, x instead of y
alternative accumulator zh instead of x1

1.6 Addressing Modes

x1, xh, y1, yh, 21, zh, £ 8-bit register

X, ¥, Z, Sp 16-bit register

#i 8-bit immediate

#ii 16-bit immediate

#d 8-bit immediate sign-extended to 16-bit
mm direct

(n, sp), (n, y) indexed with 8-bit offset

(nn, z) indexed with 16-bit offset

x), (y), (2)

indirect

a9
=
o
=
ie)

NN = O
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Chapter 2
Instructions

op8_2 Any of xh, y1, yh, z1, #i, mm, (n, sp), (an, z).
op8_2ni Any of xh, y1, yh, z1, mm, (n, sp), (nn, z).
altacc8  Any of xh, y1, yh, z1, zh.

opl6_2 Any of x, #ii, mm, (n, sp).

opl6_2ni Any of x, mm, (n, sp).

altaccl6 Any of x, z.

op8_1 Any of x1, mm, (n, sp), (n, y).

opl6_1 Any of y, mm, (n, sp), (nn, z).

2.1 8-bit 2-operand instructions

Instructions where the same location is used for altacc8 and op8_2 operand
are not valid.

2.1.1 adc: 8-bit addition with carry

Assembler code Operation 181
adc x1, op8_2 x1 = x1 + op8_2 + ¢ Yes
adc altacc8, op8_2 altacc8 = altacc8 + op8_2 + ¢ Yes
adc op8_2ni, x1 op8_2ni = op8_2ni + x1 + ¢ Yes
Affected Flags

hcnzo

2.1.2 add: 8-bit addition

Assembler code Operation {81

add x1, op8_2 x1 = x1 + op8_2 Yes
add altacc8, op8_2 altacc8 = altacc8 + op8_2 Yes
add op8_2ni, x1 op8_2ni = op8_2ni + x1 Yes

7
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Affected Flags

hcnzo

2.1.3 and: 8-bit bitwise and

Assembler code Operation 81
and x1, op8_2 x1 = x1 & op8_2 Yes
and altacc8, op8_2 altacc8 = altacc8 & op8_2 Yes
and op8_2ni, x1 op8_2ni = op8_2ni & x1 Yes

Affected Flags

nz

2.1.4 cp: 8-bit comparison

Subtraction where the result is used to update the flags only.

Assembler code Operation f81
cp x1, op8_2 x1 + ~op8_2 + 1 Yes
cp altacc8, op8_2 altacc8 + ~op8_2 + 1 Yes
cp op8_2, x1 op8_2 + ~x1 + 1 No

Affected Flags

hcnzo

2.1.5 or: 8-bit bitwise or

Assembler code Operation f81
or x1, op8_2 x1 = x1 | op8_2 Yes
or altacc8, op8_2 altacc8 = altacc8 | op8_2 Yes
or op8_2ni, x1 op8_2ni = op8_2ni | x1 Yes

Affected Flags

nz

2.1.6 sbc: 8-bit subtraction with carry

Assembler code Operation f81
sbc x1, op8_2ni xl = x1 + ~op8_2ni + c Yes
sbc altacc8, op8_2ni altacc8 = altacc8 + ~op8_2ni + ¢ Yes
sbc op8_2ni, x1 op8_2ni = op8_2ni + ~x1 + c No

Affected Flags

hcnzo
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2.1.7 sub: 8-bit subtraction

Assembler code Operation
sub x1, op8_2ni xl = x1 + ~op8_2ni + 1

sub altacc8, op8_2ni altacc8 = altacc8 + ~op8_2ni + 1

sub op8_2ni, x1 op8_2ni = op8_2ni + ~x1 + 1

Affected Flags

hcnzo

2.1.8 xor: 8-bit bitwise exclusive or

Assembler code Operation f8l
xor x1, op8_2 x1 = x1 ~ op8_2 Yes
xor altacc8, op8_2 altacc8 = altacc8 ~ op8_2 Yes
xor op8_2ni, x1 op8_2ni = op8_2ni ~ x1 Yes

Affected Flags

nz

2.2 16-bit 2-operand-instructions

Todo: Document possible altacc prefixes.

2.2.1 adcw: 16-bit addition with carry
Assembler code Operation {81
adcw y, opl6_2 y =y + opl6_2 + c No
adcw opl6_2ni, y opl6_2ni = opl6_2ni + y + ¢ No

Affected Flags

cnzo

2.2.2 addw: 16-bit addition
Assembler code Operation f81

addw y, opl6_2 y =y + opl6_2 No
addw opl6_2ni, y opl6_2ni = opl6_2ni + y No
Affected Flags

cnzo

81
Yes
Yes
No
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2.2.3 orw: 16-bit bitwise or

todo: do we really want the effect on o here? If yes, why not on the 8-bit logic
ops?

Assembler code Operation £81

orw y, opl6_2 y =y | opl6_2 No

orw opl6_2ni, y opl6_2ni = opl16_2ni | y No
Affected Flags

nzo

2.2.4 sbcw: 16-bit subtraction with carry

Assembler code Operation £81

sbcw y, opl6_2ni y =y + ~opl6_2ni + c No

sbcw opl6_2ni, y opl6_2 = ~opl6_2ni + y + ¢ No
Affected Flags

cnzo

2.2.5 subw: 16-bit subtraction
Assembler code Operation £81

subw y, opl6_2ni y =y + ~opl6_2ni + 1 No
subw opl6_2ni, y opl6_2 = ~op16_2ni + y + 1 No
Affected Flags

cnzo

2.2.6 xorw: 16-bit bitwise exclusive or

todo: do we really want the effect on o here? If yes, why not on the 8-bit logic
ops?

Assembler code Operation £81

xorw y, opl6_2 y =y ~ opl6_2 No

xorw opl6_2ni, y opl6_ni2 = opl6_2ni =~y No

Affected Flags

nzo
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2.3 8-bit 1-operand-instructions

2.3.1 clr: 8-bit clear
Assembler code  Operation £81

clr op8_1 op8 = 0x00 Yes, except (n, y)
clr altacc8 altacc8 = 0x00 Yes
Affected Flags

none

Rationale
Initializing or setting an object, or parts thereof, to 0 is common, so having a

dedicated instruction is worth it vs. using 1d.

2.3.2 dec: 8-bit decrement

Assembler code  Operation 81
dec op8_1 op8 = op8 + -1 Yes, except (n, y)
dec altacc8 altacc8 = altacc8 + -1 Yes

Affected Flags

hcnzo

2.3.3 inc: 8-bit increment

Assembler code  Operation f81
inc op8_1 op8 = op8 + 1 Yes, except (n, y)
inc altacc8 altacc8 = altacc8 + 1 Yes

Affected Flags

hcnzo

2.3.4 push: 8-bit push onto stack

Assembler code  Operation £81
push op8_1 (--sp) = op8 Yes, except (n, y)
push altacc8  (--sp) = altacc8 Yes

Affected Flags

none
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Rationale

8-bit stack parameters can be passed easily via this instruction. Registers can
be saved temporarily (e.g. for the duration of a function call, or in the middle of
a complex computation). Not affecting flags makes the instruction more useful
for saving registers in the middle of a long addition/subtraction/comparison/
multiplication.

2.3.5 sll: 8-bit shift left logical

Assembler code Operation £81

sll op8_1 c = (op8 & 0x80) >> 7  Yes, except (n, y)
op8 = op8 << 1

s1l altacc8 c = (op8 & 0x80) >> 7  Yes
altacc8 = altacc8 << 1

Affected Flags

cnz

2.3.6 srl: 8-bit shift right logical

Assembler code Operation £81

srl op8_1 c = op8 & 0x01 Yes, except (n, y)
op8 = op8 >> 1

srl altacc8 c = op8 & 0x01 Yes

altacc8 = altacc8 >> 1

Affected Flags

cnz

2.3.7 rlc: 8-bit rotate left through carry

Assembler code Operation f81

rlc op8_1 tc = (op8 & 0x80) >> 7 Yes, except (n, y)
op8 = (op8 << 1) | ¢
c = tc

rlc altacc8 tc = (altacc8 & 0x80) >> 7 Yes
altacc8 = (altacc8 << 1) | ¢
c = tc

Affected Flags

cnz
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2.3.8 rrc: 8-bit rotate right through carry

Assembler code  Operation £81
rrc op8_1 tc = op8 & 0x01 Yes, except (n, y)
op8 = (op8 >> 1) | (c << 7)
c = tc
rrc altacc8 tc = altacc8 & 0x01 Yes
altacc8 = (altacc8 >> 1) | (c << 7)
c = tc

Affected Flags

cnz

2.3.9 tst: 8-bit test

Set n and z flags according to value of operand, o flag by parity, reset c.
Assembler code  Operation {81
tst op8_1 op8 Yes, except (n, y)
tst altacc8 altacc8 Yes

Affected Flags

cnzo

Rationale

Testing a variable for zero or being nonnegative is common. We also want a
way to check parity and reset the carry flag. Making that a side-effect in this
instructions saves opcodes for other uses.

2.4 16-bit 1-operand instructions

2.4.1 adcw: 16-bit addition with carry

Assembler code  Operation £81
adcw opl6_1 opl6 = opl6 + c No
adcw altaccl6 altaccl6 = altacclé + ¢ No

Affected Flags

cnzo

Rationale

In additions, often one operand is a small integer. This instructions allows an
efficient implementation of the handling of the upper bits.
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2.4.2 clrw: 16-bit clear
Assembler code  Operation £81

clrw opl6_1 opl6 = 0x0000 Yes
clrw altaccl5 altaccl6 = 0x0000 Yes
Affected Flags

none

Rationale

Initalizing or setting an object, or parts thereof, to 0 is common, so having a
dedicated instruction is worth it vs. using 1dw.

2.4.3 incw: 16-bit increment

Assembler code  Operation £81
incw opl16_1 opl6 = opl6 + 1 Yes
incw altaccl6 altaccl6 = altaccl6 + 1 Yes

Affected Flags

cnzo

Rationale

Incrementing a variable is common, so having a dedicated instruction is worth
it vs. using addw. Affecting the carry flag makes this instruction less useful for
incrementing pointers in the middle of wider arithmetic operations, but makes
it more useful for incrementing wider variables.

2.4.4 pushw: 16-bit push onto stack

Assembler code Operation £81
pushw opl6_1 sp —-= 2; (sp) = opl6 Yes
pushw altaccl6 sp -= 2; (sp) = altaccl6 Yes

Affected Flags

none

Rationale

16-bit stack parameters can be passed easily via this instruction. Registers can
be saved temporarily for a function call, or in the middle of wider arithmetic
operations; for the latter use, it is important that this instruction does not affect
any flags.
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2.4.5 sbcw: 16-bit subtraction with carry

Assembler code  Operation f81
sbcw opl6_1 opl6 = opl6 + Oxffff + ¢ No
sbcw altaccl6é altaccl6é = altaccl6 + Oxffff + ¢ No

Affected Flags

cnzo

Rationale

In subtractions, often one operand is a small integer. This instructions allows
an efficient implementation of the handling of the upper bits.

2.4.6 tstw: 16-bit test
Set n and z flags according to value of operand, o flag by parity, set c.
Assembler code  Operation {81

tstw opl6_1 opl6 Yes
tstw altaccl6 altaccl6  Yes

Affected Flags

cnzo

Rationale

Testing a variable for zero or being nonnegative is common. We also want a
way to check parity and set the carry flag. Making that a side-effect in this
instructions saves opcodes for other uses.
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2.5 8-bit loads

2.5.1 1d: 8-bit load from memory

Assembler code Operation £81
1d x1, #i x1 = #i Yes
1d altacc8, #i altacc8 = #i Yes
1d x1, mm x1 = mm Yes
1d altacc8, mm altacc8 = mm Yes
1d x1, (n, sp) x1 = (n, sp) Yes
1d altacc8, (n, sp) altacc8 = (n, sp) Yes
1d x1, (an, =z) x1l = (nn, z) Yes
1d altacc8, (nn, z) altacc8 = (nn, z) Yes
1d x1, (y) x1 = xh Yes
1d altacc8, (altaccl6) altacc8 = (altaccl6) Yes
1d x1, (n, y) x1 = (o, y) No
1d altacc8, (n, y) altacc8 = (n, y) No

Affected Flags

nz

Rationale

To be able to handle 8-bit data efficiently, we need a variety of 8-bit load in-
structions. Often, data is being tested for being (non)zero or (non)negative after
being loaded from memory, so having 1d update the n and z flags can save a
tst instruction.
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2.5.2 1d: 8-bit load from register

Assembler code

1d x1, xh

1d xh, x1

1d altacc8, xh

1d x1, yl

1d y1, x1

1d altacc8, yl

1d x1, yh

1d yh, x1

1d altacc8, yh

1d x1, zl

1d =z1, x1

1d altacc8, zl

1d x1, zh

1d zh, x1

1d altacc8, zh

1d mm, x1

1d mm, altacc8

1d (n, sp), x1

1d (n, sp), altacc8
1d (an, z), x1

1d (nn, z), altacc8
1d (y), x1

1d (altaccl6), altacc8
1d (n, y), x1

1d (n, y), altacc8

Affected Flags

none

Rationale

Operation

x1 = xh

xh = x1
altacc8 = xh
x1 =yl

yl =x1
altacc8 = yl
x1 = yh

yh = x1
altacc8 = yh
x1 = zl

zl = x1
altacc8 = zl
x1 = zh

zh = x1
altacc8 = zh
mm = x1

mm = altacc8
(n, sp) = x1

(n, sp) = altacc8
(nn, z) = altacc8
(nn, z) altacc8
(y) = x1

(altacc16) = altacc8
(n, y) = x1

(n, y) = altacc8

81

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

No

17

To be able to handle 8-bit data efficiently, we need a variety of 8-bit load in-

structions.

2.5.3 1di: 8-bit load with increment

Flags according to old (z).

Assembler code Operation
1di (n, y), () (n, y) = (2); z += 1;

Affected Flags

nz

f81
No
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Rationale

Copying larger blocks of data is a very common operation, both explicitly via
memcpy, and when assigning larger variables. While 1dwi has higher throughput,
this instruction can be used for the first or last byte when copying an odd
number of bytes. Due to its effect on the z flag, it is also useful, when the value
of the individual copied byte matters, in particular for implementing strlen
and strnlen.

2.6 16-bit loads

2.6.1 Idw: 16-bit load from memory
Assembler code Operation £81
ldw y, #ii y = #ii Yes
1dw altaccl6, #ii altaccl6 = #ii Yes
ldw y, mm y = mm Yes
ldw altaccl6, mm altaccl6 = mm Yes
ldw y, (n, sp) y = (n, sp) Yes
ldw altaccl6, (n, sp) altaccl6 = (n, sp) Yes
ldw y, (nn, z) y = (nn, z) Yes
ldw altacc16, (an, z) altaccl6 = (nn, z) Yes
ldw y, (n, y) y = (n, y) No
ldw altaccl6, (n, y) altaccl6 = (n, y) No
ldw y, (y) y = (y) Yes
ldw altaccl16, (altaccl6) altaccl6 = (altaccl6) Yes
ldw y, #d y = #d Yes
ldw altaccl6, #d altaccl6 = #d Yes
ldw x, (y) x = (y) Yes
law y, (2) y = (2) Yes
ldw z, (x) z = (x) Yes
ldw z, (y) z = (y) Yes

Affected Flags

nz

Rationale

To be able to handle 16-bit data efficiently, we need a variety of 16-bit load
instructions. Often, data is being tested for being (non)zero or (non)negative
after being loaded from memory, so having 1dw update the n and z flags can
save a tstw instruction.
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2.6.2
Assembler code
ldw y, x
ldw y, z
ldw z, x
ldw x, z
ldw x, y
ldw z, y
ldw mm, y
1ldw mm, altaccl6
ldw (n, sp), y
ldw (n, sp), altaccl6
ldw (nn, z), y
ldw (nn, z), altaccl6
ldw (y), x
ldw (2), y
ldw (%), =z
law (y), z
ldw (n, y), x
ldw y, sp
ldw sp, y
ldw altaccl6, sp

ldw 16-bit load from register

Operation

N M X N<<
]

mm =Yy

mm = altaccl6

(n, sp)
(n, sp)
(nn, z)
(nn, z)
(y) = x
(z) =y
(x) =z

(y) =z

=Yy
= altaccl6

y
altaccl6

(n, y) = x
y = sp

Sp =Y
altaccl6 = sp

ldw ((d, sp)), ¥y

ldw ((d, sp)), altaccl6

Affected Flags

none

Rationale

(d, sp)
(d, sp)

=Yy
= altaccl6

19

To be able to handle 16-bit data efficiently, we need a variety of 16-bit load

instructions.

2.6.3 1ldwi: 16-bit load with increment

Flags according to old (z).
Operation
(n, y) = (2); z += 2;

Assembler code

ldwi (n, y), (2)

Affected Flags

nz

f8l
No
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Rationale

Copying larger blocks of data is a very common operation, both explicitly via
memcpy, and when assigning larger variables. This instruction substantially
increases throughput vs. using individual loads and stores. The effect on the z
flag makes it suitable for copying zero-terminated UTF-16 strings.

2.6.4 sex: sign-extend

Assembler code Operation f8l

sex y, x1 y = (int8_t)x1l No

sex altaccl16, altacc8 altaccl6 = (int8_t)altacc8 No
Affected Flags

nz

Rationale

When aiming for memory efficiency, it is important to be able to chose the small-
est type that can hold the data without incurring a code size or performance
penalty. This instruction allows efficient up-casts of signed numbers.

2.6.5 zex: zero-extend

Assembler code Operation {81
zex y, x1 y =x1 No
zex altaccl16, altacc8 altaccl6 = altacc8 No
Affected Flags

Z

Rationale

When aiming for memory efficiency, it is important to be able to chose the
smallest type that can hold the data without incurring a code size or perfor-
mance penalty. This instruction help implement efficient up-casts of unsigned
numbers. Its benefits are not as big as those of sex per individual upcast, but
on the other hand, unsigned numbers are used more commonly, thus unsigned
upcasts are more common.

2.7 Other 8-bit instructions

2.7.1 bool: 8-bit cast to bool

Todo: Remove from {81 subset?
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Assembler code Operation 81
bool x1 x1 = (bool)xl Yes
bool altacc8 altacc8 = (bool)altacc8 Yes

Affected Flags

z

Rationale

This instruction allows the efficient implementation of explicit casts of 8-bit
numbers to bool and, together with the xor instruction, of the negation operator
for 8-bit numbers.

2.7.2 cax: 8-bit compare and exchange

z is set according to the old value of (y) - zl.
Assembler code Operation {81
cax (y), zl, x1 if ((y) == zl1) (y) = x1; else zl = (y); Yes
cax (y), zl, xh if ((y) == z1) (y) = xh; else zl (y); Yes
cax (y), zl, zh 1if ((y) == z1) (y) = zh; else zl (y); Yes

Affected Flags

z

Rationale

This instruction is essential for the implementation of 8-bit lock-free atomics.

2.7.3 da: decimal adjust

Decimal adjust for addition / subtraction - binary coded decimal semantics.

todo: describe details!
Assembler code  Operation {81

da x1 Yes
da altacc8 Yes
Rationale

While the binary-coded-decimal (BCD) representation of numbers is mostly
obsolete today, this instruction still has a use: it allows efficient conversion from
binary to BCD, and thus to ASCII. This can substantially speed up the printing
of numbers, considering that the f8 does not have division or modulo hardware.

Affected Flags

hcnzo
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2.7.4 mad: multiply and add

Assembler code Operation 81
mad x, mm, yl x =mm * yl + xh + ¢ No
mad x, (n, sp), yl x (n, sp) * yL + xh + ¢ No
mad x, (nn, z), yl x (nn, z) * y1 + xh + ¢ No
mad x, (z), yl x=(2) * yL + xh + ¢ No

Affected Flags

nz

Rationale

Multiplication hardware is expensive. We need it for the mul instruction. How-
ever, on multiplications of larger numbers, if we only had mul, we’d spend a
lot of cycles moving and adding, and the multiplication hardware would be idle
for many cycles. This instruction speeds up multiplications of large numbers
substantially, so that every other instruction actually uses the multiplication
hardware.

2.7.5 msk: mask

z flag set according to old value of (y) & #i.
Assembler code Operation f81
msk (y), x1, #i (y) = x1 & #i | (y) & ~#i Yes
msk (altaccl6), altacc8, #i (altaccl6) = altacc8 & #i | (altaccl6) & ~#i Yes
Affected Flags

Z

Rationale

Bit-fields are an important tool to reduce data memory usage. This instruction
allows for substantially better code for writing bit-fields, and for writing parts
of 1/O registers. Due to its effect on the z flag, it also can be used as a single
bit exchange instruction, which can be useful on memory-mapped I/0.

2.7.6 pop: 8-bit pop from stack
Assembler code Operation £81
pop x1 x1 = (spt++) Yes
pop altacc8 altacc8 = (sp++) Yes

Affected Flags

none
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Rationale

Registers that were saved temporarily via a push can be restored by this in-
struction. Not affecting flags makes the instruction more useful for restoring
registers after a comparison before a conditional jump, or in the middle of a
long addition/subtraction/multiplication.

2.7.7 push: 8-bit push onto stack

Ignores all flags, changes no flags, not even the reserved ones.
Assembler code  Operation f81
push #i (--sp) = #i Yes

Affected Flags

none

Rationale

8-bit stack parameters can be passed easily via this instruction. Not affecting
any flags makes this instruction, together with xch f, (n,sp), suitable for
saving the flags at the beginning of an interrupt handler.

2.7.8 rot: 8-bit rotate

Assembler code Operation

rot x1, #i x1 = (x1 << #i) | (x1 >> (8 - #i))

rot altacc8, #i altacc8 = (altacc8 << #i) | (altacc8 >> (8 - #i))
Affected Flags

nz

Rationale

8-bit rotations happen in code. Together with and, this instruction can be used
to efficiently do shifts by more than 2. Another important use is shuffling bits
around for bit-field reads and writes (and bit-fields are an important tool to
reduce data memory usage).

2.7.9 sra: 8-bit shift right arithmetic

Assembler code  Operation £81

sra x1 c = op8 & 0x01 Yes
x1 = (x1 > 1) | x1 & 0x80

sra altacc8 c = op8 & 0x01 Yes

altacc8 = (altacc8 >> 1) | altacc & 0x80

81
No
No
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Affected Flags

cnz

Rationale

This instruction is used for right-shift of signed integers, which is also relevant
to implementing signed division by powers of two.

2.7.10 thrd

Get current hardware thread number.
Assembler code  Operation f81
thrd x1 x1 = current hardware thread number Yes

thrd altacc8 altacc8 = current hardware thread number Yes

Affected Flags

Z

Rationale

Getting the hardware thread number efficiently is useful for implementing thread-
local storage. While thrd will not be a common instruction is typical programs,
the alternative is doing a search for the current value of sp in a list of stack
pointer ranges, which would be quite inefficient.

2.7.11 xch: 8-bit exchange

Assembler code Operation

xch yl, yh t =yl; yl1 = yh; yh =t
xch x1, xh t =x1; x1 = xh; xh =t
xch zl, zh =2zl; z1 = zh; zh = t

t
xch x1, (n, sp) t = (n, sp); (n, sp) = x1; x1 =t
xch altacc8, (n, sp) t = (n, sp); (n, sp) = altacc8; altacc8 =t
xch x1, (y) t=(y); (y) =x1; x1 =t
xch altacc8, (altaccl6) t
xch £, (n, sp) t = (n, sp); (u, sp) =£f; £ =1t

Affected Flags

All, including reserved ones (xch £, (n, sp)) or none (all others).

Rationale

The instruction with register and stack parameters is useful for shuffling data
in registers and on the stack around, allowing for substantially more efficient
register and stack allocation. The xch x1, (y) instruction and its variant xch

= (altacc16); (altaccl16) = altacc8; altacc8 =
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altacc8, (altacc16) are useful for implementing 8-bit atomics. xch £, (n,
sp) together with push #i and addw sp, #d is suitable for saving and restoring
the flags for interrupt handlers.

2.8 Other 16-bit instructions

2.8.1 addw: 16-bit addition

addw sp, #d ignores all flags, changes no flags, not even the reserved ones.

Assembler code Operation f81
addw sp, #d sp = sp + #d Yes
addw y, #d y =y + #d Yes

addw altaccl6, #d altaccl6 = altaccl6 + #d Yes

Affected Flags

none (addw sp, #d) or cnzo (all others).

Rationale

This instruction allows to efficiently adjust the stack pointer, which is useful for
the setup of the stack at the beginning of functions and stack cleanup at the
end of a function or after a function call.

2.8.2 boolw: 16-bit cast to bool

Assembler code Operation {81
boolw y y = (bool)y No
boolw altaccl6 altaccl6 = (bool)altaccl6é No

Affected Flags

z

Rationale

This instruction allows the efficient implementation of explicit casts of 16-bit
numbers to bool and, together with the xor instruction, of the negation operator
for 16-bit numbers.

2.8.3 caxw: 16-bit compare and exchange

z is set according to the old value of (y) - z.
Assembler code Operation {81
caxw (y), z, x if ((y) == 2) (y) = x; else z = (y); Yes
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Affected Flags

z

Rationale

This instruction is essential for the implementation of 16-bit lock-free atomics.

2.8.4 cpw: 16-bit comparison

Subtraction where the result is used to update the flags only.

Assembler code Operation {81
cpw y, #ii y + ~#ii + 1 No
cpw #ii, y #ii + ~y + 1 No

cpw altaccl6, #ii altaccl6 + ~#ii + 1 No

Affected Flags

cnzo

Rationale

This instruction allows the efficient implementation of sparse switch statements,
and of some if-else chains with a 16-bit or wider condition.

2.8.5 decw: 16-bit decrement
Assembler code  Operation {81

decw (n, sp) (n, sp) = (n, sp) + -1 No
Affected Flags

cnzo

Rationale

Decrement is a common special case of subtraction, though not as common as
increment as a special case of addition.

2.8.6 incnw: 16-bit increment without carry update

Ignores all flags, changes no flags (except possibly the reserved ones).
Assembler code Operation {81
incanw y y=y +1 No
incnw altaccl6 altaccl6 = altacclé + 1 No

Affected Flags

none
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Rationale

Incrementing pointers is common. When needing to do so in the middle of wider
or arbitrary-width arithmetic operations, the carry flag needs to be preserved
across the increment.

2.8.7 negw: 16-bit negation

Assembler code  Operation £81
negw y y=-~y+1 No
negw altaccl6 altaccl6 = ~altaccl6 + 1 No

Affected Flags

cnzo

Rationale

Negation is a common special case of subtraction.

2.8.8 mul: multiplication

Clears carry.

Assembler code Operation f81
mul y y =yl * yh No
mul x x = x1 * xh No
mul z z =2z1 * zh No

Affected Flags

cnz

Rationale

Multiplications are common, both explicitly and in array indexing. For efficient
use of data memory, structs should not be padded, thus accessing arrays of
structs often requires multiplications with factors that are not a power of two.
This instruction allows to do these multiplications efficiently. The effect on the
carry flag is motivated by the use of this instruction together with mad for wider
multiplications.

2.8.9 popw: 16-bit pop from stack

Assembler code  Operation £81
popw y y = (sp); sp += 2 Yes
popw altaccl6 altaccl6 = (sp); sp += 2 Yes
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Affected Flags

none

Rationale

This instruction is useful to restore 16-bit registers that were saved temporarily
via pushw. It is also a code-size efficient way of adjusting the stack pointer by
2 (but does a memory read).

2.8.10 pushw: 16-bit push onto stack
Assembler code Operation f81
pushw #ii sp —= 2; (sp) = #ii Yes

Affected Flags

none

Rationale

16-bit stack parameters can be passed easily via this instruction. This is com-
mon enough to make it worth having this instruction. Compared to using 1dw
followed by a pushw with a register operand, we save one byte of code size, some
execution time, and do not need a free 16-bit register (which might not be easily
available at calls to functions that also have register parameters).

2.8.11 rlcw: 16-bit rotate left through carry

Assembler code  Operation £81
rlcw y tc = (y & 0x8000) >> 15 No
y=(y > 1) | (c << 15)
c = tc
rlcw (n, sp) tc = ((n, sp) & 0x8000) >> 15 No
(n, sp) = ((n, sp) > 1) | (c << 15)
c = tc
rlcw altaccl6 tc = (altaccl6é & 0x8000) >> 15 No
altaccl6 = (altacci6 >> 1) | (c << 15)
c = tc

Affected Flags

cnz

Rationale

This instruction is useful to implement wider shifts.
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2.8.12 rrcw: 16-bit rotate right through carry

Assembler code  Operation 81
rrew y tc = y & 0x0001 No
y=(Gg>1)|c
c = tc
rrcw (n, sp) tc = (n, sp) & 0x0001 No
(n, sp) = ((n, sp) << 1) | ¢
c = tc
rrcw altaccl6é tc = altaccl6 & 0x0001 No
altaccl6 = (altaccl6 << 1) | ¢
c = tc

Affected Flags

cnz

Rationale

This instruction is useful to implement wider shifts.

2.8.13 sllw: 16-bit shift left logical

Assembler code Operation

sllw y c =7y & (0x8000 > 15); y =y << 1

sllw altaccl6 ¢ = altaccl16 & (0x8000 >> 15); altaccl6 = altaccl6 << 1
sllw y, x1 y =y <<xl

sllw altaccl6, altacc8 altaccl6 = altaccl6 << altacc8

Affected Flags

cnz (sllw y and sllw altaccl6) or nz (others).

Rationale

This instruction is useful to implement shifts of 16 or more bits.

2.8.14 sraw: 16-bit shift right arithmetic

Assembler code  Operation £81

sraw y c =y & 0x0001; y =y > 1 | y & 0x8000 No

sraw altaccl6 ¢ =y & 0x0001; altaccl6 = altaccl6 >> 1 | altaccl6 & 0x8000 No
Affected Flags

cnz
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Rationale

This instruction is useful to implement shifts of 16 or more bits.

2.8.15 srlw: 16-bit shift right logical

Assembler code  Operation f81
srlw y c =1y & 0x0001; y =y > 1 No
srlw altaccl6 ¢ =y & 0x0001; altaccl6é = altaccl6 >> 1 No

Affected Flags

cnz

Rationale

This instruction is useful to implement shifts of 16 or more bits.

2.8.16 xchw: 16-bit exchange

Assembler code Operation

xchw x, (y) t=x;x=(y; (y) =t

xchw y, (2) t=y; y=1(2); (2) =t

xchw z, (x) t=2z;z=(); x) =t

xchw z, (y) t=2z;z=(W; (y) =t

xchw y, (n, sp) t=y;y=(n, sp); (n, sp) =t

xchw altaccl6, (n, sp) t = altaccl6; altacclé = (n, sp); (n, sp) =

Affected Flags

none

Rationale

This instruction is useful to shuffle data around, and to implement 16-bit atomic
exchange.

Affected Flags

V4
2.9 Jumps
2.9.1 call

call #ii ignores all flags, changes no flags, not even reserved ones.

f8l

Yes
Yes
Yes
Yes

No
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Assembler code  Operation {81
call #ii sp -= 2; (sp) = pc; pc = #ii Yes
call y sp —= 2; (sp) = pc; pc =y Yes

call altaccl6 sp -= 2; (sp) = pc; pc = altaccl6é Yes

Affected Flags

none

Rationale

Calling and returning from functions using a return address on the stack is
common. This instruction helps implement it efficiently. Not affecting flags,
not even reserved ones, makes call #ii suitable for as a software interrupt.

2.9.2 dnjnz: decrement without carry update amd jump
if not zero

Assembler code  Operation £81
dnjnz yh, #d  if(--yh) pc += #d No
dnjnz xh, #d  if(--xh) pc += #d No
dnjnz zh, #d  if(--zh) pc += #d No

Affected Flags

none

Rationale

This instruction can be used to implement while loops instead of using dec fol-
lowed by jr nz. Not affecting flags makes it suitable for implementing arbitrary-
length arithmetic (dec would not preserve the carry flag, thus complicating its
use). The choice of operands is motivated by the use-case of arbitrary-length
multiplications via mad.

2.9.3 jp: jump

jp #ii ignores all flags, changes no flags, not even reserved ones.

Assembler code  Operation 81
jp #ii pc = #ii Yes
py pc =y Yes

altaccl6 Yes

jp altaccl6 pc

Affected Flags

none
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Rationale

A jump instruction that can reach any target is very useful to implement control-
flow. Not affecting flags, not even reserved ones, makes jp #ii instruction
suitable for use at the interrupt vector.

2.9.4 jr: jump

jr #d ignores all flags, changes no flags, not even reserved ones.
Assembler code Operation {81
jr #d pc += #d  Yes

Affected Flags

none

Rationale

Having a jump instruction is very useful to implement control-flow. Jumps are
common, and most of them have a nearby target, making it worth having a
relative jump instruction.

2.9.5 jrc: jump on carry
Assembler code  Operation £81
jr #d if (c) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the carry flag are useful for implementing com-
mon unsigned comparisons, and control-flow depending thereon. Since most
jump targets are nearby, it makes sense to only have the relative conditional
jump, as further jumps can still be implemented by inverting the condition and
using an unconditional jump.

2.9.6 jrgt: jump on greater
Assembler code  Operation 81
jrgt #d if (c && !'2z) pc += #d; Yes

Affected Flags

none
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Rationale

See jrle.

2.9.7 jrle: jump on less or equal
Assembler code  Operation 81
jrle #d if ('c || 2z) pc += #d; Yes
Affected Flags

none

Rationale

Conditional jumps depending on the carry flag together with the z flag are useful
for implementing common unsigned comparisons, and control-flow depending
thereon. Since most jump targets are nearby, it makes sense to only have the
relative conditional jump, as further jumps can still be implemented by inverting
the condition and using an unconditional jump.

2.9.8 jrn: jump on negative
Assembler code Operation f81
jrn #d if (n) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the n flag are useful for implementing com-
mon unsigned comparisons with 0, some bit tests, and control-flow depending
thereon. Since most jump targets are nearby, it makes sense to only have the
relative conditional jump, as further jumps can still be implemented by inverting
the condition and using an unconditional jump.

2.9.9 jrnc: jump on no carry

Assembler code  Operation 81
jrnc #d if ('c) pc += #d; Yes

Affected Flags

none
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Rationale

See jrc.

2.9.10 jrnn: jump on nonnegative
Assembler code  Operation 81
jronn #d if (!n) pc += #d; Yes

Affected Flags

none

Rationale

See jrn.

2.9.11 jrno: jump on no overflow
Assembler code  Operation 81
jrno #d if (lo) pc += #d; Yes

Affected Flags

none

Rationale

See jro.

2.9.12 jrnz: jump on nonzero
Assembler code Operation f81
jrnz #d if (!n) pc += #d; Yes

Affected Flags

none

Rationale

See jrz.

2.9.13 jro: jump on overflow

Assembler code Operation f8l
jro #d if (o) pc += #d; Yes



2.9. JUMPS 35

Affected Flags

none

Rationale

Conditional jumps depending on the n flag are useful for implementing signed
comparisons wider than the operands of the available compare and subtraction
instructions, and control-flow depending thereon. Since most jump targets are
nearby, it makes sense to only have the relative conditional jump, as further
jumps can still be implemented by inverting the condition and using an uncon-
ditional jump.

2.9.14 jrsge: jump on signed greater or equal
Assembler code  Operation £81
jrsge #d if (!(n ~ o)) pc += #d; Yes

Affected Flags

none

Rationale

See jrslt.

2.9.15 jrsgt: jump on signed greater
Assembler code Operation f81
jrsgt #d if ('z & !'(n ~ o)) pc += #d; Yes

Affected Flags

none

Rationale

See jrsle.

2.9.16 jrsle: jump on signed less or equal

Assembler code  Operation {81
jrsle #d if (z Il (m ~ o)) pc += #d; Yes
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Affected Flags
Rationale

Conditional jumps depending on the z, n and o flags are useful for implement-
ing signed comparisons, and control-flow depending thereon. Since most jump
targets are nearby, it makes sense to only have the relative conditional jump,
as further jumps can still be implemented by inverting the condition and using
an unconditional jump.

2.9.17 jrslt: jump on signed less
Assembler code Operation f81
jrslt #d if (n ~ o) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the n and o flags are useful for implementing
signed comparisons, and control-flow depending thereon. Since most jump tar-
gets are nearby, it makes sense to only have the relative conditional jump, as
further jumps can still be implemented by inverting the condition and using an
unconditional jump.

2.9.18 jrz: jump on zero
Assembler code Operation £81
jrz #d if (z) pc += #d; Yes

Affected Flags

none

Rationale

Conditional jumps depending on the zero flag are useful for implementing com-
mon tests for 0, and control-flow depending thereon. Since most jump targets
are nearby, it makes sense to only have the relative conditional jump, as fur-
ther jumps can still be implemented by inverting the condition and using an
unconditional jump.

2.9.19 ret: return

Assembler code Operation {81
ret pc = (sp); sp += 2 Yes
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Affected Flags

none

Rationale

Calling and returning from functions using a return address on the stack is
common. This instruction helps implement it efficiently.

2.9.20 reti: return from interrupt

Ignores all flags, changes no flags, not even reserved ones.
Assembler code  Operation 81
reti pc = (sp); sp += 2 Yes

Affected Flags

none

Rationale

When returning from an interrupt handler, interrupts should be reenabled at
the same time. This instruction is necessary to return and enable atomically.
To ensure that all flags get restored to their state from before the interrupt
handler, it may not affect any flags, not even reserved ones.

2.9.21 trap

Opcode 0x00. Trap reset.
Assembler code  Operation 81
trap Trap reset  Yes

Rationale

Some bugs, including many security-relevant ones can lead to the execution of
code from memory used for data. Many exploits actually rely on data commonly
being zero, and nop having opcode 0. By making opcode 0 a trap instruction,
we can mitigate the impact of such bugs, and make them easier to debug.

2.10 Non-instructions

A 16-bit bitwise and andw would not be as useful as orw and xorw: known 0x00
or 0xff bytes are more common for bitwise and, so the compiler will often use
1d, 1dw, clr and clrw, and handle the rest with 8-bit and.

Hardware multiplication is costly, so there are no instructions requiring a
multiplier wider than 8 times 8 to 16. Instead, the mad instruction is provided
for efficient use of the 8 times 8 to 16 multiplier when implementing wider



38 CHAPTER 2. INSTRUCTIONS

multiplications. Division is less common than multiplication, but complex or
costly to implement in hardware.

A cpijz acc8, (z), #dinstruction could speed up strlen, strnlen, memchr
and memcmp, but the gain is not as big as for 1di and 1dwi. Furthermore, com-
pilers would be unlikely to use cpijz in code generation, unlike 1di and ldwi.
So cpijz would only be useful for the mentioned standard library functions.

An atomic bit-swap instruction xchb would not be used often enough to
justify having it in addition to msk.
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Opcode Map

todo - see opcodemap.ods for now. This is still preliminary, and subject to
ongoing optimization.
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Chapter 4

Peripherals

Unless otherwise noted, the value of 1/O registers on reset is unspecified.

4.1 Watchdog and Reset

The watchdog has an 8-bit configuration register and a 16-bit counter register.
When the watchdog is active, the system clock is divided by 16, and then
used to increment the counter register.

The system is reset when a power-on reset happens, the watchdog counter
register reaches Oxffff, the is executed, or the byte at memory

address 0x0000 is written.

Configuration Register

0 1 2 3 4 7

’dog active| dog reset |trap reset|nu11 reset| reserved

The lowest bit of the configuration register decides if the watchdog is active.
It is 0 on reset. The following three bits give the reason of the latest reset. On
a power-on-reset they are all 0.

4.2 Interrupt Controller

The interrupt controller has a 16-bit enable register, and a 16-bit active register.

0 1 15

’tOov|tUCp| reserved

When an interrupt happens and the corresponding bit in the enable register
is set, the corresponding bit in the active register is set. When a bit in the
active register is set, and no interrupt routine is currently executing, the program

41
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counter is put onto the stack and then set to 0x4004. From then on, an interrupt
routine is considered to be executing until the reti instruction is executed.

Bit 0 of the enable register indicates that timer 0 overflow interrupts are
enabled. Bit 0 of the active register indicates that a timer0 overflow interrupt is
active. Bit 1 of the enable register indicates that timer 0 compare interrupts are
enabled. Bit 1 of the active register indicates that a timer 0 compare interrupt
is active. These bits are 0 on reset. All other bits are reserved.

4.3 Timer

The timer has an 8-bit configuration register and 16-bit counter, reload and
comparison registers.

0 3 4 5 6

7

’ input clock | prescaler | reserved

The lowest 4 bits of the configuration register select the clock source (0 none,
1 system clock, 2 to 15 for other inputs), the next 2 select the prescaler factor
(0 for 1, 1 for 4, 2 for 16, 3 for 64). All 6 bits are 0 on reset.

The timer increments the 16-bit counter register. When incrementing from
Oxffff, a timer overflow interrupt happens, and the value from the reload register
gets loaded into the counter register instead. When the timer register gets
incremented to the value of the compare register, a timer compare interrupt
happens.

4.4 GPIO

The GPIO has (up to 16-bit) data direction, output data, input data, pull-up
registers.
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