
f8
an architecture for small embedded systems

Philipp Klaus Krause

2026-01-31



8/16-Bit architectures

In between low-end (4-bit) and high-end (32- and 64-bit
microcontrollers).
Typically programmed in C
Devices cost about 1¢ to 1 €
Data memory typically in the range of a few B to a few KB
Program memory typically a few KB
Market dominated by proprietary architectures, and ancient
architectures implemented by many vendors



The Small Device C Compiler

Free C compiler (ANSI C89, ISO C99, ISO C11, ISO C23)
Freestanding implementation or part of a hosted
implementation
Supporting tools (assembler, linker, simulator, ...)
Works on many host systems (GNU/Linux, Windows, macOS,
Hurd, OpenBSD, FreeBSD, ...)
Targets various 8-bit architectures (MCS-51, DS80C390, Z80,
Z180, eZ80, Rabbit, SM83, TLCS-90, HC08, S08, STM8,
pdk14, pdk15, pdk13, MOS 6502, WDC 65C02)
Has some unusual optimizations that make sense for these
targets (in particular in register allocation)
Users: µC programmers, and retrocomputing/-gaming
developers



Lessons learned - big picture

An efficient stackpointer-relative addressing is essential for
reentrant functions
A unified address space is essential for efficient pointer access
Registers help
Hardware multithreading can replace peripheral hardware, but
it needs good support for atomics, and thread-local storage
Irregular architectures can be very efficient with
tree-decomposition-based register allocation
A good mixture of 8-bit and 16-bit operations helps
Pointers should be 16 bits



Lessons learned - details

Zero-page, etc addressing isn’t useful if we have efficient
stackpointer-relative addressing
A index-pointer-relative read instruction for both 8 and 16 bits
is important
Prefix bytes can be a good way to allow more operands (e.g.
registers)
Hardware 8× 8 → 16 multiplication helps
Division is rare
Multiply-and-add helps speeds up wider multiplications
BCD support provides cheap printf without need for hardware
division
Good shift and rotate support helps



Where do we get - big picture

8/16 bit
Irregular CISC
The core becomes bigger than for RISC, but we save so much
on code memory that it is worth it
f8l instruction subset for smaller core



Register set

0 7

h c n z o reserved
0 15

pc
0 15

sp

0 7 8 15

x

xl xh
0 7 8 15

y

yl yh

0 7 8 15

z

zl zh



Example 8-bit 2-operand instruction

adc: 8-bit addition with carry

Assembler code Operation f8l
adc xl, op8_2 xl = xl + op8_2 + c Yes
adc altacc8, op8_2 altacc8 = altacc8 + op8_2 + c Yes
adc op8_2ni, xl op8_2ni = op8_2ni + xl + c Yes

where
op8_2 Any of xh, yl, yh, zl, #i, mm, (n, sp), (nn, z).
op8_2ni Any of xh, yl, yh, zl, mm, (n, sp), (nn, z).
altacc8 Any of xh, yl, yh, zl, zh.



Rough instruction set overview

Instruction classes: 8-bit 2-operand, 8-bit 1-operand, 16-bit
2-operand, 16-bit 1-operand, 8-bit loads, 16-bit loads, other
8-bit, other 16-bit, jumps.
Most operate on an “accumulator” (which is both the
destination and a source operand, can be changed by prefix),
order of operands can be swapped by prefix.
All instructions write at most one 16-bit register and a 16-bit
memory location.



Basic safety and security features

Watchdog
Reads from 0x0000 trap
Instruction 0x00 traps



Current state

f8 port in SDCC (compiler, assembler, simulator, passes
regression tests
f8 and f8l Verilog implementations
https://github.com/f8-arch
https://sdcc.sourceforge.net/
Still doing a few last optimizations on the opcode map


