{3 FOSDEM g zetia

ROS-Z

A Rust/Zenoh-native stack, fully ROS 2-compliant

Julien Enoch Yuyuan Yuan

mailto:julien.e@zettascale.tech
https://github.com/JEnoch
https://github.com/YuanYuYuan

From RMW Zenoh...

zetta
) scale

RMW Zenoh

User Applications

17 [sensors] (planning j (control)

ros_to_dds | [TCICPP (C++API) rclpy (Python API) rcljava (Java API)
- + Exec. with std::thread + Exec. with Thread + java.lang.Thread

+ Intra-Process Comms + Intra-Process Comms + Intra-Process Comms
+ Type Adaption + Type Adaption + Type Adaption

rcl (C APl / optional C++ Implementation)

e https://github.com/ros2/rmw zenoh
+ Actions + Time

+ Parameters + Console Logging
+ Names + Node Lifecycle

rmw (C API)
+ Pub/Sub with QoS + Services with QoS + Discovery

+ Graph Events

Cyclone DDS or Fast DDS or Connext DDS

i i

* Intra-Process Comms and Type Adaption could be implemented
in the client library, but may not currently exist.

https.//docs.ros.org/en/rolling/Concepts/Advanced/About-Internal-interfaces. html#internal-api-architecture-overview

zetta
) scale

RMW Zenoh - design

User Applications

ros_to_dds | |CI6PP (C++API) rclpy (Python API) rcljava (Java API)
- + Exec. with std::thread + Exec. with Thread + java.lang.Thread

+ Intra-Process Comms + Intra-Process Comms + Intra-Process Comms
+ Type Adaption + Type Adaption + Type Adaption

rcl (C API / optional C++ Implementation) htt Qe It h u b .com rosz rmw zeno h
+ Actions + Time

+ Parameters + Console Logging
+ Names + Node Lifecycle

rmw (C API)
+ Pub/Sub with QoS + Services with QoS + Discovery + Graph Events

Cyclone DDS Connext DDS

* Intra-Process Comms and Type Adaption could be implemented
in the client library, but may not currently exist.

https://docs.ros.org/en/rolling/Concepts/Advanced/About-Internal-Interfaces. htmi#internal-api-architecture-overview

ROS Zenoh

Topics, services names Key expression
O/chatter/std msgs::msg::dds ::String /RIHSO01 df668...

Graph declaration Liveliness Token key expression
@ros2 1v/0/123/0/11/MP/%/%/talker/%chatter/std msgs::msg::dds_::String /RIHSO01l df668..

Messages CDR-encoded payload
+ attachment (sequence number, attachment, GID)

... 10 ROS-Z

What about a pure-Rust stack ?

—

User Applications

ros_to_dds

rcicpp (C++ API)
+ Exec. with std::thread
+ Intra-Process Comms
+ Type Adaption

rclpy (Python API)

+ Exec. with Thread

+ Intra-Process Comms
+ Type Adaption

rcljava (Java API)

+ java.lang.Thread

+ Intra-Process Comms
+ Type Adaption

rcirs (Rust API)

+ Exec. with Thread

+ Intra-Process Comms
+ Type Adaptation

rcl (C API / optional C++ Implementation)

+ Actions
+ Parameters
+ Names

+ Time
+ Console Logging
+ Node Lifecycle

rmw (C API)
+ Pub/Sub with QoS

+ Services with QoS

+ Discovery

+ Graph Events

Cyclone DDS

!

or

Fast DDS

!

or

Connext DDS

* Intra-Process Comms and Type Adaption could be implemented
in the client library, but may not currently exist.

rmw_zenoh_cpp é

zenoh-c

7 zetta
~) scale

User Applications @

.))C)
ROS-Z @

+ Exec with Tokio

+ Type Adaptation
+ ...

+ Actions
+ ...

+ Pub/Sub with QoS
+ Services with QoS
+ Discovery

f?ﬁ interoperability

zetta
) scale

ROS-Z main goals

o 100% Rust

o Builder patterns for evolutivity with backward compatibility
o Cargo build

e Rust-native ROS 2 abstractions

o Pub/Sub, Services, Actions
o Graph discovery

e Battery include: Zero ROS 2 dependencies required
o Universal compatibility across Rust platforms

e Interoperability with RMW Zenoh

o But also supporting alternative encodings (protobuf...)

ROS-Z dive In

zetta
scale

Zenoh-Powered ROS 2:
Three Integration Paths

DIRECT ROS-Z

~ zetta
scale

Ergonomic API Design

ros-z provides flexible, idiomatic Rust APIs that adapt to your preferred programming style:

Flexible Builder Pattern:

let pub = node.create_pub::<Vector3>("vector")
// Quality of Service settings
.with_qgos(QosProfile {
reliability: QosReliability::Reliable,
. .Default::default()
})
// custom serialization
.with_serdes: :<ProtobufSerdes<Vector3>>()
build()?;

7 zetta
Async & Sync Patterns: scale

// Publishers: sync and async variants
zpub.publish(&msg) ?;
zpub.async_publish(&msg) .await?;

// Subscribers: sync and async receiving
let msg = zsub.recv()?;
let msg = zsub.async_recv().await?;

Callback or Polling Style for Subscribers:

// Callback style - process messages with a closure
let sub = node.create_sub::<RosString>("topic")
.build_with_callback(|msg| {
println! ("Received: {}", msg);

})zs

// Polling style - receive messages on demand
let sub = node.create_sub::<RosString>("topic").build()?;
while let Ok(msg) = sub.recv() {

println! ("Received: {}", msg);

}

Action Server:

let action_server = node

.create_action_server: :<Fibonacci>("/fibonacci")
.build()?;

loop {
let goal = action_server.accept_goal()?;

// Send periodic feedback
for 1 in 0..goal.order {
action_server.send_feedback(FeedbackMsg {
current: 1,
sequence: compute_partial(i)
})?;
}

// Send final result
action_server.send_result(ResultMsg {
sequence: compute_final(goal.order)

})?;

zetta
scale

Action Client:

let action_client = node

.create_action_client: :<Fibonacci>("/fibonacci")
build()?;

let goal_handle = action_client.send_goal(GoalMsg {
order: 10
}).await?;

while let Some(feedback) = goal_handle.feedback().await {
println! ("Progress: {}'", feedback.current);

}

let result = goal_handle.get_result().await?;
println! ("Final: {:?2}", result.sequence);

- Easy to use
- Compared to RCLCPP API

https://docs.ros.org/en/kilted/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html

ros_z
0.1.0

ZPubBuilder

Fields

_phantom_data
entity
session

with_attachment

Methods

with_attachment
with_backend
with_qos
with_serdes
with_shm_config
with_type_info

without_shm

Cargo Doc

v impl<T, S, B> ZPubBuilder<T, S, B>
pub fn with_qos(self, gqos: QosProfile) -> Self
pub fn with_attachment(self, with_attachment: bool) -> Self
v pub fn with_shm_config(self, config: ShmConfig) -> Self
Override SHM configuration for this publisher only.

This overrides any SHM configuration inherited from the node or context.

Example

use ros_z::shm::{ShmConfig, ShmProviderBuilder};
use ros_z::Builder;
use std::sync::Arc;

let provider = Arc::new(ShmProviderBuilder::new(20 *x 1024 * 1024).build()?);
let config = ShmConfig::new(provider) .with_threshold(5_000);

let pub = node.create_pub::<ros_z_msgs::std_msgs::String>("topic")
.with_shm_config(config)
Lbuild()?;

—7 zetta
L) scale

Source

Source
Source

Source

zetta
scale

Example: Running ROS 2 Nodes

Start a Zenoh router first, then run your nodes with the RMW implementation set:

Terminal 1: Start Zenoh router (required)
zenohd

Terminal 2: Talker

source ~/ros2_ws/install/setup.bash
export RMW_IMPLEMENTATION=rmw_zenoh_rs
ros2 run demo_nodes_cpp talker

Terminal 3: Listener

source ~/ros2_ws/install/setup.bash
export RMW_IMPLEMENTATION=rmw_zenoh_rs
ros2 run demo_nodes_cpp listener

Publisher (Talker)

def run_talker(ctx, topic: str, count: 1int, interval: float):

"""Run the talker (publisher).'""
node = ctx.create_node("talker").build()
pub = node.create_publisher(topic, std_msgs.String)

print(f"Talker started. Publishing to {topic}...")

i =20

while count == 0 or i < count:
message = f'"Hello from Python {i}"
msg = std_msgs.String(data=message)
pub.publish(msg)
print(f"PUB:{i}", flush=True)
i += 1
time.sleep(interval)

print("PUB:DONE", flush=True)

zetta

scale
Subscriber (Listener)
def run_Llistener(ctx, topic: str, timeout: float):
""M"Run the listener (subscriber)."""
node = ctx.create_node("listener").build()
sub = node.create_subscriber(topic, std_msgs.String)
print("SUB:READY", flush=True)
start = time.time()
received = 0
while timeout == 0 or (time.time() - start) < timeout:

msg = sub.recv(timeout=1.0)

if msg is not None:
print(f"SUB: {msg.data}", flush=True)
received += 1

print(f"SUB:TOTAL:{received}", flush=True)

Python API is supported

zetta

scale
Mixed memory message is possible
let point _step-=-12; // X, 'y, zZ as f32 (4 bytes each)
let data_size = num_points * point_step;
File: |[sensor_msgs/PointCloud2.msg //-Allocate SHM- buffer-for point -data
let mut shm_buf = provider
Raw Message Definition .alloc(data_size) |
.with_policy::<BlockOn<GarbageCollect>>()
wait()?-
This message holds a collection of N-dimensional points, which may -Wait()?;
contain additional information such as normals, intensity, etc. The
point data is stored as a binary blob, its layout described by the // Write point coordinates directly into SHM buffer
contents of the "fields" array.
Create ZBuf from SHM buffer (zero-copy conversion!)

(unordered). Point clouds organized as 2d images may be produced by let data_zbuf = ZBuf:: from(shm_buf);
camera depth sensors such as stereo or time-of-flight.

#
#
#
#
The point cloud data may be organized 2d (image-like) or 1d
#
#
#
#
H

' isd T ' Construct PointCloud2 with SHM-backed ZBuf
Time of sensor data acquisition, and the coordinate frame ID (for 3d ,'L{L e F % 24 : IM-Dackec 4
points). Ok(PointCloud2 1

eader header header: Header 1{

frame _id: "map".into(),

2D structure of the point cloud. If the cloud is unordered, height is Defapltardefault()

1 and width is the length of the point cloud.
uint32 height J
uint32 width height: 1,

width: num_points as u32,

1

Describes the channels and their layout in the binary data blob.

PointField[] fields fields: R
1s_bigendian: false,
bool is bigendian # Is this data bigendian? point_step: point_step as u32,

uint32 point step # Length of a point in bytes o, . : -
uint32 row step # Length of a row in bytes row_stepe - Luum_points:*“polnt_step) as=uses,

uint8[] data # Actual point data, size is (row step*height) data: data_zbuf, // SHM-backed data!

1s_dense: true,
bool is dense # True if there are no invalid points

zetta
scale

Support rmw_zenoh & zenoh-bridge-ros2dds

// Create context and node
let ctx = ZContextBuilder::default().build()?;
let node = ctx.create_node("my_node").build()?;

// Publisher with RmwZenoh backend (default)

let pub_rmw = node
.create_pub: :<RosString>("chatter")
.with_backend: : <RmwZenohBackend>() // Explicit backend

build()?;

// Subscriber with Ros2Dds backend

let sub_dds = node
.create_sub::<RosString>("chatter")
.with_backend: :<Ros2DdsBackend> () // DDS bridge compatibility

build()?;

ros-z-console

|
| ros-z-console | Domain: @ | Connected to tcp/127.0.0.1:7447
L

2:Services 3:Nodes 4:Measure

r Topics
|# /chatter

|# /parameter events
|# /rosout

1 r Detail

- ros2 run rmw_zenoh_cpp rmw_zenohd

| |Topic: /chatter
| |Type: std msgs::msg::dds ::String
|Rate: Not measured (press 'r')

[-] Publishers (1):

Publisher 1:

Node: /talker

Type: std msgs::msg::dds ::String
Reliability: Reliable

Durability: Volatile

History: Keep Last (7)

Liveliness: Automatic

[-]1 Subscribers (1):

Subscriber 1:
Node: /listener

Type: std msgs::msg::dds ::String (RIHSO1 d

Reliability: Reliable
Durability: Volatile
History: Keep Last (10)
Liveliness: Automatic

(RIHSO1 df

|9018e338a3b489014a962c400f

zetta
scale

|
|| & ¥ros-z-dev-jazzy-env J main [$!?] ros-z

|

|2026-01-29T721:36:11.562326Z INFO Threadld(02) zenoh::net::runtime: Using ZID: a89baa

2026-01-29T21:36:11.562983Z INFO ThreadId(02) zenoh::net::runtime::orchestrator: Zen
oh can be reached at: tcp/[fe80::2c31:291c:29b4:41a8]:7447
2026-01-29T21:36:11.563013Z INFO ThreadId(02) zenoh::net::runtime::orchestrator: Zen
oh can be reached at: tcp/192.168.0.109:7447

Started Zenoh router with id a89baa%9018e338a3b489014a902c400f

¥ ros-z-dev-jazzy-env ¥ main [$!?] ro| & R¥ros-z-dev-jazzy-env } main [$!?] ro

s-z
| » ros2 run demo_nodes cpp talker

|s-z
| » ros2 run demo_nodes_cpp listener

I

||ZO26—01-29T21:36:17.1127582 INFO ThreadId|2026-01-29T21:36:20.5028532 INFO ThreadId
|| (62) zenoh::net::runtime: Using ZID: 3877d|(02) zenoh::net::runtime: Using ZID: 5ac32
|
|

|6b13d42036ffcaff2ebfccca3s

|06910d55b54d9a429e362d60fd

|2026-01-29T21:36:17.114347Z INFO Threadld|2026-01-29T21:36:20.504117Z INFO ThreadId
|| (02) zenoh::net::runtime::orchestrator: Ze|(02) zenoh::net::runtime::orchestrator: Ze

|noh can be reached at: tcp/[::1]:45953
| [blishing: 'Hello World: 1°
|blishing: 'Hello World: 2'

| [blishing: 'Hello World: 3'

|blishing: 'Hello World: 4'
j

|j/k:nav l:detail Enter:drill-in /:filter r:rate m:measure | Tab:panel ?:help q:quit

NORMAL Jwd=liRyk

> 00:00

1
|
|

1

| [INFO] [1769722578.132652623] [talker]:
| | [INFO] [1769722579.132925979] [talker]:
| [INFO] [1769722580.132640627] [talker]:

| [INFO] [1769722581.133003020] [talker]:

Pu

Pu

Pu

Pu

noh can be reached at: tcp/[::1]:39837

[INFO] [1769722581.133597231] [listener]:
|I heard: [Hello World: 4]

1|

|

main Friday, 30 Jan 2026 05:36:21

https://asciinema.org/a/Dvk95niS9aBYqpC8

RTT (microseconds)

RTT (microseconds)

10 Hz, 64 bytes

.

il

.

=

aE

T

rclcppl/z

T

T
rcirsfz rosz
Middleware

200 Hz, 64 bytes

rclpy/z roszpy

[
N
o
o
1

=
o
o
o
1

5l I

rclcbp/z

T T

rclrs/z rosz
Middleware

T

roszpy

rclpy/z

RTT (microseconds)

RTT (microseconds)

10 Hz, 128KB

¥

T

]
rcirs/z rosz
Middleware

200 Hz, 128KB

rclcpp/z rclpy/z

T

roszpy

1

T T

rclrs/z rosz
Middleware

rcicpp/z

T

roszpy

RTT (microseconds)

RTT (microseconds)

10 Hz, 1MB

s

i

rclcpp/z

T

rcirs/z

T

roszpy

T

rosz rclpy/z
Middleware

200 Hz, 1MB

-—
o
o
o
I

T

I

rclcpp/z

T

rcirs/z

T

roszpy

T

rosz rclpy/z
Middleware

RTT {microseconds)

RTT (microseconds)

10 Hz, 8MB

==

T T v

rcleppl/z relrs/z rosz
Middleware

200 Hz, 8MB

rcipy/z

T

roszpy

160000 A

140000 -

120000 -

100000 A

&=

1] T
rclrs/z rosz rcipy/z

Middleware

rclcppl/z

T

roszpy

zetta
) scale

Wish List - looking for sponsors!

e Go API (already sponsored!)

e Native buffers for mixed-memories data (CUDA, Torch Tensor)
e Nostd feature. Run on embedded devices.

e Foxglove formats support

e Launching system

N 4 -p
{(EMPYREAN Als

EcoMobility

Trustworthy, Cognitive and Al-Driven Collaborative associations Intelligent, Safe & secure connected Electrical Mobility
of loT devices and edge resources for data processing solutions: Towards European Green Deal & Seamless Mobility
EMPYREAN research project has received funding from. the European EcoMobility has received funding from Chips Joint Undertaking (Chips JU)
Union's HORIZON Europe under the Grant Agreement n" 101136024, under Grant Agreement No 101096387. Co-funded by European Union.

N —

Enabling safe & secure modular UPdates, UPgrades and Decentralized Edge Intelligence: Advancing
DynAmic Task reallocation and Execution for Software- Trust, Safety, and Sustainability in Europe

Defined Vehicles
EMPYREAN research project has received funding from the European EdgeAI-Trgst Pecgntrahzeq Edge Intelllgenc_e : Advanc_lng ML Salety,
Union's HORIZON Europe under the Grant Agreement n™ No. 101203060 anc SustanabsiyivELrape. project hastacened IIEing o
' ' Chips Joint Undertaking (Chips JU) under Grant Agreement No 101139892-2.

O-CEI
O-CEIl Open CloudEdgeloT Platform Uptake in
Large Scale Cross-Domain Pilots

O-CEl project has received funding from the European Union's Horizon

Funded by Europe Framework Programme under the Grant Agreement N° 101189589.
the European Union

-
ROS-Z coscul)

Join our discord Star ros-z project Welcome to Taiwan

