Implementing Block-Max Pruning in Rust
Faster Learned Sparse Retrieval for Modern Search

= Seltz

1 February 2026
FOSDEM

https://www.seltz.ai/

® Team

About us

seltz.ai

Antonio Mallia
Founder, CEO

linkedin.com/in/antoniomallia
antonio@seltz.ai

Ferdinand Schlatt

Research Engineer
linkedin.com/in/ferdinand-schlatt

ferdi@seltz.ai

https://www.seltz.ai/
https://www.linkedin.com/in/antoniomallia/
https://www.linkedin.com/in/ferdinand-schlatt

® About

Who we are

seltz.ai

- Seltz

Seltz makes Web knowledge instantly usable for Al.

Founded in 2025, Seltz is designed from the ground up to serve Al as the primary consumer
of the Web, providing reliable, efficient, and machine-ready access to web knowledge.

Rather than wrapping third-party services, Seltz owns and operates the entire knowledge
pipeline, enabling precise retrieval, clear operational control, and predictable system
behavior.

The platform is grounded in research and academia, drawing on advances in information
retrieval and systems engineering, and treats efficiency and cost as first-class
constraints—delivering scalable, sustainable performance for real-world Al systems.

https://www.seltz.ai/

® Context

Ad-Hoc Search

Q Open Source Search Framework

[
Lucene is a great option ... Lucene is a great option ...
X . AN .
With Solr you can .. f_\ With Solr you can ..
X . AN .
OpenSearch provides ... OpenSearch provides ...
X .
Geckos eat insects and ... Processor Index
Q
[

seltz.ai

https://www.seltz.ai/

® Context

Lexical Retrieval Models

Processor

X . . .

Lucene is a great option ... [lucene: 10, is: 15, a: 35, great: 2, ...]
X . .

With Solr you can ... [with: 5,s0lr:12,you: 2, can: 6, ...]
X .

OpenSearch provides ... [..]
X .

Geckos eat insects and ... [..]

[

seltz.ai

https://www.seltz.ai/

® Context

Lexical Retrieval Models

Index
[lucene: 10, is: 15, a: 35, great: 2, ...] lucene: [(Doc_1, 10), (Doc_17, 2), ..]

. is: [(Doc_1, 15), (Doc_2, 27), ..]
[with: 5,s0lr:12,you: 2, can: 6, ...]

(] %
@ Fastindexing & retrieval

[..]
@ Fairly Effective

© Only lexical matches

© Heuristic scores

seltz.ai

https://www.seltz.ai/

® Context

History of (Learned) Sparse Models

SPLADE [Zhuang and Zuccon] [Lassance et al.]
[Formal et ol [SPLADE++ SPLADE v3
EPIC [Formal et al.] [Lassance et al.]
DocT5Query [MacAvaney et al.] osv
L Nogueira and Lin 1 WWCOLL TILDE v2 [Yu et al.] Lion
. [Zeng et al.]
DeepCT L Lin and Ma] [Zl““‘"‘ﬂ and Z.uccon] SPGDE
L Dai and Callan 1 DeepImpac‘t [CL\ i et al
BMmas L Mallia et al.] SPLADE v2 oi et al.]
L Robertson et al.] L Formal et al.]
—o=— ... —0—0—O0———=0—000 o—0-
Oct 2019 Apr 2021 s Jul 2022 Jan 2024
el Dec 2019 May 2020 e e 2031 0y 2022 Oct 2023 .. apae” 2025

Jun 2021 5| 2021

seltz.ai

https://www.seltz.ai/

® Context

Sparse Neural Models

| Lucene is a great option ...

seltz.ai

%

g
+
#\

Processor

[lucene: 13.5, #5608, =610,

great: 01, option: 0.2, ..,search: 6.5,

framework: 4.51]

@ Learnable impact scores
4 Semantic term expansion
@ Slow and expensive indexing

? Fast retrieval?

https://www.seltz.ai/

® Context

“Wacky Weights”

Can we reuse the index structures developed for term statistics?

No. At least the optimizations developed for term frequency distributions do not work well with LSR models.

Method [V Avg. Terms/Doc Average Terms/Query Latency* (ms)
BM25 2 660 824 30.1 5.8 8.3
Deeplmpact 3514 102 711 4.2 19.4
uniCOIL 27 678 66.4 6.6 36.9
SPLADE 28 131 229.4 25.0 220.3

Term distributions in the MS MARCO passage corpus with different processors
*Using the PISA retrieval engine.

Joel Mackenzie et al.,, Wacky Weights in Learned Sparse Representations and the Revenge of Score-at-a-Time Query Evaluation, ArXiv 2021

seltz.ai

https://www.seltz.ai/

® Context

Early Exiting and Approximate Scoring

seltz.ai

How can we improve the retrieval efficiency for LSR models?

LI IS

Do Not Score Everything

Max:

Max:

Max:

Max:

Max:

10 Score:
5 Score:
8 Score:
4 Score:
3 Score:

9iS

4.8

6.2

Score Everything Approximately

o Ld LI LIS

Score:

Score:

Score:

Score:

Score:

9.5 Approx: 9.2

6

3

.8

.2

.2

A

Approx:

Approx:

Approx:

Approx:

)8

)

5.4

3.4

1

1

)

10

https://www.seltz.ai/

® Solution

Block Max Pruning

seltz.ai

LEXICON

cool

hpe

NYC

I

Pinecone

too

short

is

[ove_

Life is
too

S“I!”lololo _‘"0]
ol w I

(?" o ololo .J:I-"_*.‘ 00]
[¥) W

—
9.1
0
0
0]
€.q
0
0
2.3
0

9

(ol

11

https://www.seltz.ai/

<

)

O

H RS

: o

(Y
e OIIIT11D =
% !
OO I D ——2 OIIIIITD :
g (I T 111D
QI ITD =
LD e I 111D =
(T T &
EI Tl D *
| (@elel [o] [ololg ~——= (Jelo[T 1T 1 o) *
e @I TIel 1101 =

@ [Tofof T T [)

>
(4
w
=)
g

® Solution

12

seltz.ai

https://www.seltz.ai/

® Solution

Quantization

° Map float32 values to int8 values

° Map minimum value to O and
maximum value to 255

° Faster scoring with minimal precision loss

seltz.ai

13

https://www.seltz.ai/

® Solution

Traditional Sort vs. Bucket Sort

Traditional Sort Bucket Sort
upper_bounds: buckets[255.| 255: [1
145 | 78 | 201 | 33 [145 88 | 192 201: [2] 0(n)
no compares!
[e] [1] [2] 3] [4] [5] [6] 192: [6]
145: [@, 4]
145 vs 78 x 0(n log n)
201 vs 145 x 88: [5]
many branches!
sorted: 78: [1]
33: 3
201|192 | 145 | 145 | 88 | 78 | 33 VS L
21 (6] (0] 1[4 (5] (1] [3] -
- o]

¢ .rev().flat_map()

result orden 2 | 6 | @ | 4|5]| 1] 3

range _ids in descending score order

Key Insight: Since scores are bounded [0, 255], we use the score as a direct array index
Result: Zero comparisons, zero branch mispredictions, perfect for CPU pipeline!

seltz.ai 14

https://www.seltz.ai/

® Solution

Zero-Comparison Sorting with Bucket Sort

® @ sort.rs

1. Bucketing: Place each range_id into bucket indexed by its
upper bound score

2. Reverse lteration: Traverse buckets from 255->0, naturally
yielding sorted order let mut buckets: Vec<Vec<u32>> = vec![Vec::new(); 2usize.pow(16)];

3. Lazy Evaluation: flat_map produces ranges on-demand, no

Lo buckets.iter_mut().for_each(Vec::clear);
need to materialize sorted array

4. Memory Reuse: Clear and reuse buckets across queries to “""ePt"°;”Sséiﬁzgﬁgi3”:”‘epateO -for_each(| (range_id, &ub)| {
1T U
avoid allocations buckets[ub as usizel.push(range_id as u32);

Real-World Impact:

- Zero branch mispredictions from comparisons " Ulziite'“ = buckets
<1Cter
. i . .enumerate()
- Better cache locality (sequential bucket writes) .rev()

.flat_map(| (score, ranges)| {
- Allocation-free in query hot path (reuse buckets) b ranges drerQ)mep(nove |rangetd| (score, range-id))

seltz.ai

https://www.seltz.ai/

® Solution

Clustering of Documents

Random BP
100 100
+
50 + + ® é 50
+ o % . 1
— 20 %] X .20 ¥ 0
S : X X X2 10 * [}
E 10 >, £
« ® X X « 5 F L 3
S 5 e ¥ L b | X X
S <
[5) 2 X) 2 ‘ i 7T
= X > X -
= = X
05 0.5 x
X
X
0.1 0.1
32 64 128 256 1172 1024 32 64 128 256 512 1024
Block size o ” Block size
@) I Real I Estimated X 10 ® 1,000 + 10,000
] [0] [O]
0 O]
] [0 O
ol | [O R O MAXIMIZE SPARSITY
10 @ 0
O] t: T O
U © U ©
D Dda b3 bYX

seltz.ai

https://www.seltz.ai/

® Results

Comparison to Baselines

MaxScore 120.6 152.8 193.8
BMW 614.2 658.7 686.7
BMP 11.0 15.9 37.8

seltz.ai 17

https://www.seltz.ai/

® Results

Comparison to Baselines

seltz.ai

MaxScore 120.6 152.8 193.8
BMW 614.2 658.7 686.7
loQP 79.1 80.2 80.8
Anytime 80.6 114.0 163.1
Clipping 245.9 358.8 504.1
BMP 11.0 15.9 37.8

18

https://www.seltz.ai/

® Context o0 &) heaprs

p ct TopKHeap<$
heap: BinaryHeap

TO p_ k H eap i

+

* % H %% impl<S: Default + Copy + PartialOrd> TopKHeap<S> {
The Insight: B = B :

pub fn would_enter(&self, score: S) — bool {
score > self.threshold

- The **root of a min-heap** contains the **smallest** b
element in the heap

insert(&mnut self, doc_id: DocId, score: S) — Option<S> {

Iself.would_enter(score) {

- For top-kK, this root is the **k-th best score** tones

(threshold)
self.heap.push(Entry { doc_id, score });

- Any new score < threshold can be **rejected in L) & Co L

O(1)** without touching the heap it

.threshold = self.heap.peek().unwrap().score;

Some (self.threshold)
el 1f.heap.len() = self.k {

- Any neW SCOI‘e > threshold **replaces** the .threshold = self.heap.peek().unwrap().score;
minimum (evicts the worst) P A

None

3
// Storing all documents

let mut all_docs = Vec::new(); // Size: O(n) - millions B N o SAC
of entries!

other.score.partial_cmp(&self.score)
.unwrap_or_else(|| other.doc_id.cmp(&self.doc_id))

Iy

all_docs.sort(); // Time: O(n log n) .

sel1tletatop_k = &all_docs[.k]; 19

https://www.seltz.ai/

® Usage

Using BMP

o0 & bmp.py

from bmp import search, Searcher

° Rust and Python interface ‘
results = search(

index="/path/to/index",

° Batch and single query interface queries="/path/to/queries",
k=10,
alpha=1.0,

° Easy index creation using CIFF DetaE g

searcher = Searcher("/path/to/index")
results = searcher.search(

(A EORANE VSRR £)2 =B R]

k=10,

alpha=1.0,

beta=1.0,

seltz.ai

https://www.seltz.ai/

® Usage
g [X) > ciff.proto

C”:F message Header {

e Common Index File Format

message Posting {
e cloeiie = ile
int32 tf = 2;

° Defined as part of the Open-Source IR
Replicability Challenge (OSIRRC)

e We built tools to convert between different
formats
message PostingslList {
o CIFF <> PISA string term = 1;
inté4 df = 2;
e ©F =2 H8
repeated Posting postings = 4;

o JSONL - CIFF

o CIFF > BMP

message DocRecord {

Jimmy Lin et al. Supporting Interoperability Between Open-Source
Search Engines with the Common Index File Format. SIGIR 2020.

seltz.ai

https://www.seltz.ai/

CIFF

° Common Index File Format

° Defined as part of the Open-Source IR
Replicability Challenge (OSIRRC)

° We built tools to convert between different
formats

o CIFF <> PISA
o JSONL - CIFF

o CIFF > BMP

Jimmy Lin et al. Supporting Interoperability Between Open-Source
Search Engines with the Common Index File Format. SIGIR 2020.

seltz.ai

S ciff2bmp -c index.ciff -o index.bmp

22

https://www.seltz.ai/

CIFF Hub

° Repository of CIFF indexes (and queries) for
several popular models and corpora

° Download an index and easily compare
different retrieval engines

0 pisa-engine/ciff-hub

seltz.ai

23

https://www.seltz.ai/

® Wrap-Up

Further Reading

seltz.ai

Mallia, Antonio, et al. Faster learned sparse
retrieval with block-max pruning, SIGIR 2024

Parker Carlson, et al. Dynamic Superblock
Pruning for Fast Learned Sparse Retrieval,
SIGIR 2025

Yifan Qiao, et al. Threshold-driven Pruning
with Segmented Maximum Term Weights for
Approximate Cluster-based Sparse Retrieval,
EMNLP 2024

Joel Mackenzie, et al. Efficient In-Memory
Inverted Indexes Theory and Practice,
SIGIR 2025

24

https://www.seltz.ai/

Demo

https://www.seltz.ai/

seltz.ai

Thanks!

0 pisa-engine/BMP

eeeee ted By

- Seltz

https://www.seltz.ai/

