
Project
HyperEvade

Invisible Hypervisors: Stealthy Malware Analysis with HyperDbg

Björn Ruytenberg, Sina Karvandi

FOSDEM 2026 - Brussels, Belgium
January 31, 2026

Who We Are

Björn Ruytenberg
@0Xiphorus@infosec.exchange

Sina Karvandi
@rayanfam@infosec.exchange

● PhD Candidate @ Vrije Universiteit
Amsterdam

● Security Researcher, HyperDbg
developer

● x86-64 UEFI, hypervisor and PCI Express
security

● Previous work: Intel Thunderbolt
vulnerability research (thunderspy.io)

● More info: bjornweb.nl

● PhD Candidate @ Vrije Universiteit
Amsterdam

● System Programmer, HyperDbg
developer

● Windows internals, hypervisor, digital
hardware design

● Blog: rayanfam.com

2

https://thunderspy.io
https://bjornweb.nl
http://rayanfam.com

HyperDbg at FOSDEM ’26

3

● Invisible Hypervisors: Stealthy Malware Analysis with HyperDbg
Security track, 13:00, UB5.132 (this talk)

● MBEC, SLAT, and HyperDbg: Hypervisor-Based Kernel- and User-
Mode Debugging
Virtualization and Cloud Infrastructure track, 18:30, H.2213

Introduction
Introducing hypervisor-assisted debugging and
transparency

01

4

HyperDbg Debugger

5

Get the source code:
github.com/HyperDbg/HyperDbg

● FOSS (GPLv3) hypervisor-assisted debugger

● Leverages hardware virtualization controls to deliver
advanced debugging capabilities (e.g., EPT-based memory
monitoring, system call interception, PMIO/MMIO debugging)

● Operates independently of OS-level debugging APIs,
providing higher transparency than traditional debuggers

● First released for Windows (2022), actively maintained since
● UEFI-based, OS-agnostic hypervisor agent scheduled on roadmap

http://github.com/HyperDbg/HyperDbg

Background

6

● x86-64 CPUs offer privilege levels
through protection rings

● Debuggers are typically implemented
in ring 3 (user) or ring 0 (kernel)

● Increased privilege level ⇔ increased
debugging capabilities and
transparency

Background

7

ptrace,
uprobes
(perf trace)

strace

kprobes
(perf trace)

● x86-64 CPUs offer privilege levels
through protection rings

● Debuggers are typically implemented
in ring 3 (user) or ring 0 (kernel)

● Increased privilege level ⇔ increased
debugging capabilities and
transparency

Background

8

ptrace,
uprobes
(perf trace)

kprobes
(perf trace)

WinDbg
(though, not cross-domain)

● x86-64 CPUs offer privilege levels
through protection rings

● Debuggers are typically implemented
in ring 3 (user) or ring 0 (kernel)

● Increased privilege level ⇔ increased
debugging capabilities and
transparency

strace

Background

● x86-64 CPUs offer privilege levels
through protection rings

● Debuggers are typically implemented
in ring 3 (user) or ring 0 (kernel)

● Increased privilege level ⇔ increased
debugging capabilities and
transparency

HyperDbg

9

ptrace,
uprobes
(perf trace)

kprobes
(perf trace)

WinDbg
(though, not cross-domain)

strace

Debugging and Analyzing Malware

Anti-Debugging
Techniques

Malware typically implements
numerous anti-debugging

and anti-hypervisor
techniques

Deviating
Dynamic Behavior

If malware detects the
presence of a debugger,
sandbox, or hypervisor, it

typically conceals its
internal behavior

Need for
Mitigations
Bypassing these

protections allows a
debugger to analyze
and reverse engineer

the malware

10

Approach
HyperEvade’s anti-hypervisor and anti-debugging
techniques

02

11

Hypervisor-Based Transparency
Roadmap (1/2)

2022
Present (WIP)

2027

● No OS debugging
APIs are used

● User mode and OS
unaware about
debugging
environment

● Minimize HyperDbg
artifacts (e.g. user
mode process and
modules, kernel mode
drivers, file handles)

● Hardening hypervisor
against tampering
attacks (e.g. host IDT)

● Reduce top-level hypervisor
footprint, e.g. via HV-specific
PCIe devices and drivers,
processes (“guest tools”), file
system and registry

● Address subset of
architectural side-channels
(e.g. timing, MSRs, PMCs,
XSETBV, SIDT, SGDT)

12

Hypervisor-Based Transparency
Roadmap (2/2)

13

● Implemented
● Mostly finished
● To be scheduled

Hypervisor-Based Transparency
Implementation showcase: virtual PCIe devices

14

Hypervisor-Based Transparency
Implementation showcase: virtual PCIe devices

15

Hypervisor-Based Transparency
Implementation showcase: virtual PCIe devices

16

Hypervisor-Based Transparency
Implementation showcase: virtual PCIe devices

17

Hypervisor-Based Transparency
Implementation showcase: syscall hooking

18

RFLAGS.TF=1

Hypervisor-Based Transparency
Side track: Windows debugging crash course

19

typedef struct _PEB {
BYTE Reserved1[2];
BYTE BeingDebugged;
...
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];
PVOID AtlThunkSListPtr;
...
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
...
ULONG SessionId;

} PEB, *PPEB;
Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency
Side track: Windows debugging crash course

20

typedef struct _PEB {
BYTE Reserved1[2];
BYTE BeingDebugged;
...
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];
PVOID AtlThunkSListPtr;
...
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
...
ULONG SessionId;

} PEB, *PPEB;

Signals
debugger
presence

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency
Side track: Windows debugging crash course

21

typedef struct _PEB {
BYTE Reserved1[2];
BYTE BeingDebugged;
...
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];
PVOID AtlThunkSListPtr;
...
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
...
ULONG SessionId;

} PEB, *PPEB;

Enumerates PE-
loaded modules
(malware hides

injected modules)

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency
Side track: Windows debugging crash course

22

typedef struct _PEB {
BYTE Reserved1[2];
BYTE BeingDebugged;
...
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];
PVOID AtlThunkSListPtr;
...
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
...
ULONG SessionId;

} PEB, *PPEB;

Undocumented NtGlobalFlag
(offsets 0x68 , 0xbc) reveals

debugger presence

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency
Side track: Windows debugging crash course

23

… and what about TEB (Thread Environment Block), and all the other
fields?

Hardware Debug Registers are not enough for monitoring them all -
x86 limits us to four breakpoint registers

Hypervisor-Based Transparency
Side track: Windows debugging crash course

24

… and what about TEB (Thread Environment Block), and all the other
fields?

Hardware Debug Registers are not enough for monitoring them all -
x86 limits us to four breakpoint registers

“EPT Monitor Hooks” to the Rescue!

Hypervisor-Based Transparency
Implementation showcase: Win32 API / PE struct monitoring

25

Runtime Field / Structure Description Typical Use

PEB.BeingDebugged Flag set if debugger is present Direct debugger detection

PEB.NtGlobalFlag Contains special flags when debugged Heap validation flags

HeapFlags in ProcessHeap Indicates debugging heap Detected via PEB traversal

IMAGE_DEBUG_DIRECTORY Debug info in PE header Used to detect debug builds

IMAGE_TLS_DIRECTORY TLS callback execution Pre-main debugger evasion

NtQueryInformationProcess Queries debug port or flags Kernel-level detection

HyperEvade is capable of intercepting any user and kernel mode attempts to access
these fields

Demo
Transparent hypervisor-assisted debugging in
action

03

26

27

Conclusion

● Although 100% transparency is not yet feasible, HyperEvade significantly raises the
bar for transparent debugging

● HyperEvade extends HyperDbg to provide system-wide visibility and transparency

● As malware techniques evolve, new countermeasures will be required to address
emerging threats

● HyperEvade is FOSS (GPLv3), under active development, and available for the
community to contribute to and enhance

28

29

Thanks
Björn Ruytenberg Mohammad Sina Karvandi

@0Xiphorus@infosec.exchange
https://bjornweb.nl

@rayanfam@infosec.exchange
https://rayanfam.com

Get the source code:
github.com/HyperDbg/HyperDbg

https://infosec.exchange/@0Xiphorus
https://bjornweb.nl
https://infosec.exchange/@rayanfam
https://rayanfam.com

Additional
Slides

30

Evaluation
Comparing HyperEvade with state of the art

04

31

32

33

Hypervisor-Based Transparency
Implementation showcase: Kernel struct monitoring

34

Structure / Field Description Check

EPROCESS->DebugPort Non-null when a debugger is attached Detect debugger on any process

KdDebuggerEnabled /
KdDebuggerNotPresent

Global kernel flags Detect kernel debugging

IDT Table Hooks to interrupts Look for handlers outside kernel

DR7 (Debug Register) HW breakpoints Check if debugger set one

CR4 VMX/Debug trap flag Detect hypervisor presence

PsLoadedModuleList Loaded drivers Detect debugger-related modules

DbgPrint Hook Output redirection Check if hooked by tools

Challenges in Malware Analysis

Malware Analysis

Static Dynamic

Monitoring outside VMs
System infection

Monitoring inside a VM
Anti-Debugging/HV

Disassembly & Decompilation
Obfuscation techniques

Extensive code inspection
Heavily packed/protected

35

