Project
HyperEvade

Invisible Hypervisors: Stealthy Malware Analysis with HyperDbg

Bjorn Ruytenberg, Sina Karvandi

FOSDEM 2026 - Brussels, Belgium
January 31, 2026

{3 FOSDEM

Who We Are

Bjoérn Ruytenberg Sina Karvandi
@OXiphorus@infosec.exchange @rayanfam@infosec.exchange

e PhD Candidate @ Vrije Universiteit e PhD Candidate @ Vrije Universiteit
Amsterdam Amsterdam

e Security Researcher, HyperDbg e System Programmer, HyperDbg
developer developer

e Xx86-64 UEFI, hypervisor and PCI Express e Windows internals, hypervisor, digital
security hardware design

e Previous work: Intel Thunderbolt e Blog: rayanfam.com

vulnerability research (thunderspy.io)
e More info: bjornweb.nl

“VUSec
B2

https://thunderspy.io
https://bjornweb.nl
http://rayanfam.com

HyperDbg at FOSDEM 26

¢ Invisible Hypervisors: Stealthy Malware Analysis with HyperDbg
Security track, 13:00, UB5.132 (this talk)

e MBEC, SLAT, and HyperDbg: Hypervisor-Based Kernel- and User-
Mode Debugging
Virtualization and Cloud Infrastructure track, 18:30, H.2213

Ol

Introduction

Introducing hypervisor-assisted debugging and
transparency

HyperDbg Debugger

FOSS (GPLv3) hypervisor-assisted debugger

Leverages hardware virtualization controls to deliver
advanced debugging capabilities (e.g., EPT-based memory
monitoring, system call interception, PMIO/MMIO debugging)

Operates independently of OS-level debugging APIs,
providing higher transparency than traditional debuggers

First released for Windows (2022), actively maintained since

e UEFI-based, OS-agnostic hypervisor agent scheduled on roadmap

Get the source code:
github.com/HyperDbg/HyperDbg

http://github.com/HyperDbg/HyperDbg

Background

x86-64 CPUs offer privilege levels
through protection rings

Debuggers are typically implemented
in ring 3 (user) or ring O (kernel)
Increased privilege level & increased
debugging capabilities and
transparency

Ring 3
Ring 1&2

Device drivers
Applications

Background

Ring 3

e Xx86-64 CPUs offer privilege levels Ring 162

through protection rings

e Debuggers are typically implemented
in ring 3 (user) or ring O (kernel)

e Increased privilege level & increased
debugging capabilities and
transparency

kprobes
(perf trace) | : .
Device drivers strace
Prrace, —» Application
uprobes pplications

(perf trace)

Background

Ring 3

e X86-64 CPUs offer privilege levels g2

through protection rings

e Debuggers are typically implemented
in ring 3 (user) or ring O (kernel)

e Increased privilege level & increased
debugging capabilities and
transparency

kprobes
(perf trace) : .
Device drivers strace
orom. —> Application
uprobes pplications
(perf trace)

WinDbg

(though, not cross-domain)

Background

Ring 3

e X86-64 CPUs offer privilege levels g2

through protection rings

e Debuggers are typically implemented
in ring 3 (user) or ring O (kernel)

e Increased privilege level & increased
debugging capabilities and

tra nsparency
HyperDbg
kprobes
(perf trace) : :
Device drivers strace
ptrace, — :]
Uprobes Applications
(perf trace)

WinDbg

(though, not cross-domain)

Debugging and Analyzing Malware

=

Anti-Debugging Deviating

Techniques Dynamic Behavior
If malware detects the
presence of a debugger,
sandbox, or hypervisor, it
typically conceals its
internal behavior

Malware typically implements
numerous anti-debugging
and anti-hypervisor
techniques

G

Need for

Mitigations
Bypassing these
protections allows a
debugger to analyze
and reverse engineer
the malware

02

Approach

HyperEvade's anti-hypervisor and anti-debugging
techniques

1

Hypervisor-Based Transparency
Roadmap (1/2)

2027
Present (WIP)

e Reduce top-level hypervisor
footprint, e.g. via HV-specific
PCle devices and drivers,
processes (“guest tools”), file
system and registry

e Minimize HyperDbg

e No OS debugging artifacts (e.g. user

APls are used mode process and
modules, kernel mode
drivers, file handles) e Address subset of
architectural side-channels
(e.g.timing, MSRs, PMCs,
XSETBYVY, SIDT, SGDT)

e User mode and OS
unaware about
debugging
environment

e Hardening hypervisor
against tampering
attacks (e.g. host IDT)

Hypervisor-Based Transparency
Roadmap (2/2)

Z VA . . 4 N\
. CPU %86 ISA Behavior Timing Side- Sensor Metrics UEFI
Fingerprinting OSXSAVE SIDT SGDT, Channels Temperature (CPU, HV-identifying strings in
CPUID, HV bit, uCode, SUDT behavior deviating Perf Counters/ T5C GPU, HDD/SSD), fan SMBIOS, DMI, ACPI
C/T count, fronybare metal (RDTSC RDTSCP)/PNIC, speeds
HV-specific MSRs HPET,/APIC _ y,

Filesystem and i Memory Probing\

HV-specific 1/0 Virtual Device Windows-specific
Process Analysis

Detection detection
VMware backdoor PCle lextended) confi Win32 APls, WM,

channel (/0O ports)
space,/ HDD/SSD model, 7
SMART values eRsly

Probing memory regions
for HV signatures

\ J

Presence ot XNIware
Tools/SPICE NBox GA

e Implemented
e Mostly finished
o To be scheduled

Hypervisor-Based Transparency

Implementation showcase: virtual PCle devices

Yirtual Device
Detection

DBDF

space, HDD/S5D mode

SMART values 0000:

OO0 Ul hWOOOPFRPRONOOOOOOOO®

HyperDbg> !pcitree

| VID:DID

Vendor Name

Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation
Corporation

Device Name

N/A

PCle fextended) confi 0000:

Raptor Lake-U [Intel Graphics]

Raptor Lake Dynamic Platform and Thermal F
Raptor Lake PCIe 4.0 Graphics Port

GNA Scoring Accelerator module

Raptor Lake-P Thunderbolt 4 USB Controlle:

Alder
Alder
Alder
Alder
Alder
Alder

Lake
Lake
Lake
Lake
Lake
Lake

PCH USB 3.2 xHCI Host Controlle
PCH Shared SRAM

PCH Serial IO I2C Controller i
PCH Serial IO I2C Controller #:
PCH HECI Controller

PCH-P PCI Express Root Port #9

Raptor Lake LPC/eSPI Controller

Raptor Lake-P/U/H cAVS

Alder Lake PCH-P SMBus Host Controller
Alder Lake-P PCH SPI Controller

KIOXIA Corporation | NVMe SSD Controller BG5 (DRAM-less)
Realtek Semiconductor Co.,

Ltd.

| RTL8852BE PCIe 802.11ax Wire

Hypervisor-Based Transparency

Implementation showcase: virtual PCle devices

£ # 0: kHyperDbg> !pcitree
V'g:tagceieovl‘:ce DBDF | VID:DID | Vendor Name | Device Name
;:;E;“?ﬂ?g}gg% ;ﬁ;}' 0000:00:00: 8086:7190 | Intel Corporation | 440BX/ZX/DX - 82443BX/ZX/DX Host bridge
SMIART values 0000:00:01: 8086:7191 | Intel Corporation | 440BX/ZX/DX - 82443BX/ZX/DX AGP bridge
0000:00: 07 8086:7110 | Intel Corporation | 82371AB/EB/MB PIIX4 ISA
8086:7111 | Intel Corporation | 82371AB/EB/MB PIIX4 IDE

(o]
(o]
(o]
(o]
(o]
o
(o]
~
P OONWEFEOOoOOo

| [I
| [I
| I I
| [[
| 8086:7113 | Intel Corporation | 82371AB/EB/MB PIIX4 ACPI
I I I
I I I
I I I
I I I

0000:00:07 15ad:0740 VMware Virtual Machine Communication Interface
0000:00:0f 15ad:0405 | VMware SVGA II Adapter
0000:00:11 15ad:0790 | VMware PCI bridge
0000:00:15 15ad:07a0 | VMware PCI Express Root Port
0000:00:18:7 | 15ad:07a@ | VMware | PCI Express Root Port
0000:02:00:0 | 15ad:0774 | VMware | USB1.1 UHCI Controller
0000:02:01:0 | 15ad:1977 | VMware | HD Audio Controller
0000:02:02:0 | 15ad:0770 | VMware | USB2 EHCI Controller

: 0 5 VMware | SATA AHCI controller

HO) Intel Corporation | 82574L Gigabit Network Connection
0000:0b:00:0 | 15ad:077a | VMware | N/A
0000:13:00:0 | 15ad:07f0 | VMware | NVMe SSD Controller

Hypervisor-Based Transparency

Implementation showcase: virtual PCle devices

& # 6: kHyperDbg> !pcicam 3 0 0
V'rtua| Dev'ce PCI configuration space (CAM) for device 0000:03:00:0

Detection

Common Header:

PCle fextended) confi

VID:DID: 8086:10d3
spaceSN'?E'?T/igﬁj?SOd Vendor Name: Intel Corporation

Device Name: 82574L Gigabit Network Connection
Command: 0007
Memory Space: 1
I/0 Space: 1
Status: 0010
Revision ID: 00
Class Code: 70eeacOb
CachelLineSize: 10
PrimarylLatencyTimer: 00
HeadexType: Endpoint (00)
Multi-function Device: False
Bist: 00

Device Header:

BARO

BAR Type: MMIO

BAR: fea00000

BAR (actual): feaf0OOO
Prefetchable: False
Addressable range: 0-00000000
BAR1

Hypervisor-Based Transparency

Implementation showcase: virtual PCle devices

6: kHyperDbg> !pcicam 3 0 0

4 > 6: kH Dbg> !pci 300
Vlrtua' DEVICe o czz::irguiatixlzzr:ce (cAl PCI configuration space (CAM) for device 0000:03:00:0

Detection _
Common Header: SR GG
PCle fextended) confi VID:DID: 8086:1521
VID:DID: 8086:10d3
Space; HDD/SSD mode VendoriNane: Intellc t: Vendor Name: Intel Corporation
SIMIART values oy oi-or oy Device Name: Ethernet S Adapter I350-T2v2
Device Name: 82574L Gigabit DeVice Name: e
Command: 0007 Command: 0007
Memory Space 1 Memory Space: 1

I/0 Space: 1
Status: 0010
Revision ID: 00

Class Code: 70eeac Class Code: 70eeacOb
CachelLineSize: 10 CachelLineSize: 10
PrimarylLatencyTimer: 00 PrimaryLatencyTimer: 00

HeaderType: Endpoint (00) HeaderType: Endpoint (00)
Multi-function Device: Fa] Multi-function Device: False

Bist: 00 Bist: 00

Device Header: Device Header:

BARO BARO

BAR Type: MMIO BAR Type: MMIO

BAR: fea00000 BAR: fea00000

BAR (actual): fea®0000 BAR (actual): fea®poO®
Prefetchable: False Prefetchable: False

Addressable range: 0-00000(Addressable range: 0-00000000
BAR1 BARL

Hypervisor-Based Transparency

Implementation showcase: syscall hooking

SYSCALL number) (: 1 (# VM-exit
P SYSCALL might be | _
4[and Pa;zrc:c';ers areJ‘ L igriorediimedifisd J‘ L RFLAGS.TF=1

swapgs
mov rl@, rcx mov qword ptr gs:[0x10], rsp
mov eax, 0x0123 IA32_LSTAR mov rsp, qword ptr gs:[0x1A8]
N syscall push 0x2B
—1 ret push gqword ptr gs:[0x10]
push rll
RFLAGS.TF == 1 —> #VM-exit (Retum values ?ndw _ L &8 ¢
»{ buffers are modified » Next instruction + ¢
L if needed. J e

Hypervisor-Based Transparency

Side track: Windows debugging crash course

typedef struct PEB {

BYTE Reservedl[2];

BYTE BeingDebugged;
PPEB LDR_DATA Ldr;

PRTL USER PROCESS PARAMETERS ProcessParameters;
PVOID Reserved4 [3];
PVOID At1ThunkSListPtr;

PPS POST PROCESS INIT ROUTINE PostProcessInitRoutine;

ULONG SessionId;
} PEB, *PPEB;

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency

Side track: Windows debugging crash course

typedef struct PEB {
BYTE
BYTE

PPEB_LDR DATA

PRTL_USER PROCESS PARAMETERS
PVOID

PVOID

PPS POST PROCESS INIT ROUTINE
ULONG

} PEB, *PPEB;

Signals
debugger

Reservedl[2]; presence

BeingDebugged;

Ldr;
ProcessParameters;
Reserved4 [3];
AtlThunkSListPtr;

PostProcessInitRoutine;

SessionId;

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency

Side track: Windows debugging crash course

typedef struct PEB {
BYTE Reservedl [2];
BYTE BeingDebugged;

Enumerates PE-
loaded modules
(malware hides
injected modules)

PPEB_LDR DATA Ldr;

PRTL USER PROCESS PARAMETERS ProcessParameters;
PVOID Reserved4 [3];
PVOID At1ThunkSListPtr;

PPS POST PROCESS INIT ROUTINE PostProcessInitRoutine;

ULONG SessionId;
} PEB, *PPEB;

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency

Side track: Windows debugging crash course

typedef struct PEB {

BYTE Reservedl [2];
BYTE BeingDebugged;
PPEB LDR DATA Ldr;

Undocumented NtGlobalFlag
(offsets 0x68, 0xbc) reveals

debugger presence

PRTL USER PROCESS PARAMETERS Pro
PVOID
PVOID

PPS POST PROCESS INIT ROUTINE PostProcessInitRoutine;

ULONG SessionId;
} PEB, *PPEB;

Source: https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

Hypervisor-Based Transparency

Side track: Windows debugging crash course

..and what about TEB (Thread Environment Block), and all the other
fields?

Hardware Debug Registers are not enough for monitoring them all -
x86 limits us to four breakpoint registers

Hypervisor-Based Transparency

Side track: Windows debugging crash course

..and what about TEB (Thread Environment Block), and all the other
fields?

Hardware Debug Registers are not enough for monitoring them all -
x86 limits us to four breakpoint registers

“EPT Monitor Hooks” to the Rescue!

Hypervisor-Based Transparency

Implementation showcase: Win32 API / PE struct monitoring

Runtime Field / Structure Description Typical Use
PEB.BeingDebugged Flag set if debugger is present Direct debugger detection
PEB.NtGlobalFlag Contains special flags when debugged Heap validation flags
HeapFlags in ProcessHeap Indicates debugging heap Detected via PEB traversal
IMAGE _DEBUG_DIRECTORY Debug info in PE header Used to detect debug builds
IMAGE_TLS_DIRECTORY TLS callback execution Pre-main debugger evasion
NtQueryInformationProcess Queries debug port or flags Kernel-level detection

HyperEvade is capable of intercepting any user and kernel mode attempts to access
these fields

3

Demo

Transparent hypervisor-assisted debugging in
action

26

” File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help AP Search ~ DirectSyscall R Sign in -] X

© -~ T-1- =1 X @ v - Debug v x64 ~ P Local Windows Debugger ~ [> - Auto - : : : & GitHub Copilot 122 &’
DirectSyscall.cpp + X v & Solution Explorer v 2 Xx
[DirectSyscall ~ (Global Scope) ~ (7 wmain(int argc, wehar_t * argvl) ¥ mo-sA@ o ;.
16 N E if (arge !=2) { Search Solution Explorer (Ctrl+;) o
17 i E wpr:i.nt-F(L“Usage: %s <ﬂi1e-path>\n", argv[o]); af® Solution ‘DirectSyscall' (1 of 1 project)
18 E : return -1; 4 <[DirectSyscall
19 E } o D o0 References
20 : == b External Dependencies
21 E // Get handle to ntdll.dll and cast it to HMODULE E? Header Files
22 : HMODULE hNtdll = (HMODULE)GetModuleHandleA("ntdll.dl1l"); B Resource Files
23 E r “ Vfour(feFiles
24 i // Get syscall numbers bza:\z:;‘;ys;tﬁ:sm
25 | UINT_PTR pNtOpenFile = (UINT_PTR)GetProcAddress(hNtdll, "NtOpenFile"); bal oo
26 v ! if (!pNtOpenFile) { M 8 [syscalls_direct.asm
27 E i printf("Failed to get address of NtOpenFile\n");
28 i | return -1;
29 E
30 | wNtOpenFile = ((unsigned char*)(pNtOpenFile + 4))[e];
zhil i
32 | UINT_PTR pNtClose = (UINT_PTR)GetProcAddress(hNtdll, "NtClose");
33 v | if (!pNtClose) {
34 i i printf("Failed to get address of NtClose\n");
35 i ; return -1;
36 by
37 ! wNtClose = ((unsigned char*)(pNtClose + u4))[0];
38 i
39 | HANDLE fileHandle;
ue E OBJECT_ATTRIBUTES objAttr; -
134 % ."fp QDo : A2 R ;TA,;IT. é"vn’-“q ZoftotesnRoote » Ln:17 Ch:31 SPC CRLF Solution Explorer ~ Git Changes

] Ready 1L0/0~ 2 41 §g maina g DirectSyscall-Example « [y

B Qsacwera. g @ M N 0 © 9 A0 e Ao 00

Conclusion

e Although 100% transparency is not yet feasible, HyperEvade significantly raises the
bar for transparent debugging

e HyperEvade extends HyperDbg to provide system-wide visibility and transparency

e As malware techniques evolve, new countermeasures will be required to address
emerging threats

e HyperEvade is FOSS (GPLv3), under active development, and available for the
community to contribute to and enhance

Thanks

Bjorn Ruytenberg Mohammad Sina Karvandi
B ©@OXiphorus@infosec.exchange G @rayanfam@infosec.exchange
@ https://bjornweb.nl @ https://rayanfam.com

Get the source code:
github.com/HyperDbg/HyperDbg

https://infosec.exchange/@0Xiphorus
https://bjornweb.nl
https://infosec.exchange/@rayanfam
https://rayanfam.com

Additional
Slides

04

Evaluation

Comparing HyperEvade with state of the art

31

Al-Khaser Benchmark Coverage

100.00%

75.00%

50.00%

25.00%

B HyperEvade

B x64dbg

Pafish Benchmark Coverage

100%

75%

50%

25%

0%

B HyperEvade

B x64dbg

Hypervisor-Based Transparency

Implementation showcase: Kernel struct monitoring

Structure / Field Description Check
EPROCESS->DebugPort Non-null when a debugger is attached Detect debugger on any process
KdDebuggerEnabled/ Global kernel flags Detect kernel debugging
KdDebuggerNotPresent
IDT Table Hooks to interrupts Look for handlers outside kernel
DR7 (Debug Register) HW breakpoints Check if debugger set one
CR4 VMX/Debug trap flag Detect hypervisor presence
PslLoadedModuleList Loaded drivers Detect debugger-related modules
DbgPrint Hook Output redirection Check if hooked by tools

Challenges in Malware Analysis

Malware Analysis

Extensive code inspection || Disassembly & Decompilation Monitoring inside a VM || Monitoring outside VMs
Heavily packed/protected Obfuscation techniques Anti-Debugging/HV System infection

