"N LVGL

Build your hardware, easily!

FROGRAMMING FOR THE FUTIRE ——

[l dens sans V) = *
oo GOWIN
o j = ; 1o lale e Iy iediwi ™)
5 »uooooooooo 30 00CCTIGGOG LG v ,
SIPCEDE s ne

Socmel 1 Alperto IANZX,
SDR on a Litex SoC |

-
o]

)

L
5T =

[T T G

1S

; oEmAau a

:\—l:\:

llllllll
lllllllll

3 PR OO0CC
.OOQO%QJ ¢
1Q0CCOOG®
000000 O
. 4 0O G
§ .\, QOO¢
+ 0006

-

= Q00

£ A/Av \..“ ;\.\,‘ \.\.
@ ® s

< 4

\

000000

D00

20 -

\‘,‘\,}- -

s
LAY,
(

00000

)

i

-
\

¥ N £

\ @
Ve,

Namibia [~ Zimbab
Botswan

ETS

Sudafrics. 2 e ‘
i | new e
Mappa sateliie Srarciatnie da tastiera Nati manna B2025 Gooale INFRI Tmn:rli_

h .l;;ﬂ.
German Research D_@._@I}m[z@ﬁ Polarstern

German Amateur Radio Statlon

’ -.; -_.-s..'- =
o - - - . - - 5 % >

i

Aliane

AT

® 9988

- O 00999 &
5 00000 EHB S
Oodovooes

, COOODOEH
CO00OOO®OOE

H000000006

000 05
O OO000®EO OO

00 QOOO00OBOOO QO

QODOC00000000OG

VO0000000000

CO00COO0OO0000 -0

D000000000000

O 00000000000 0

O 00000CQ0 500

LOOOOO 00O = D .0

NOCOOOOCE .
CACL) C) AV AW AV EVE W KDY ; Pl L %

(TS

A Darlington amplifier is a 2-port device: RF input, and combined RF output and bias
input. It is housed in a 4-lead package including 2 ground leads; connecting both of
them to external ground will minimize common path impedance for best RF

performance. Internal resistors in Figure 1 . gum.rg
determine the DC operating point of the AP N—
transistors and provide feedback to set RE nput i
gain, bandwidth, and input and output -
impedances to optimum values.

, b v R2 R3 R4

Figure 1 Schematic Diagram

AN-60-010 Rev.:F (DL2009) MI12010&6 File: ANGDDLO0.doc Papge 1 OF 10

This document and its contents are the property of Mini-Circuits.

minicircuits.com

— Anfé TRIMeR 2.0 4
i (ABT| BoE
I\
=
\
)
T\ RBC v
AN (!(-ﬂ {
b2 7 N
VAT — l\ GlLL)
10 Cl s

3]
.Hlv 10 w::"”‘“ﬁ!li.iﬁlﬁiiﬁ GilZ #@ i
I e 4 W e lﬁﬁemmmﬁﬁ IR
5 4 o S Ao) o o e Hﬂ%a@ﬁi
DS allZ H=ammey (U3 ineT TRl | | | G
I o = B

[£l
vV

bl

= MA

2+

e]
|

OPEN FILES 4P sdr 5|peed _tang_primer_20k.py demo.py * sdrvlpy X myperiph.v — socmel_1/../socmel 1 % myperiph.w — litex_venv/.../ftest

ey e e L
sipeed_tang_primer_20k.py

myperiph:v — socmel_1/ i ;

myperiphy — litex_venv/.. ftest : iy ' 1 SHELA) L ("LVCMOS33")),

myperiph.py

sipeed_tang_primer_20k-1.py

B3

1ubf_gnjlr ' I", Pins("B13"), IO0Standard("LVYCM0S33"})),
1ut5'gnal|”r 0", Pins("R7"), IO0Standard("LVCMOS33")),
Subsignal (SI I", Pins("Al4"), IOStandard("LVCMOS33")),
Subsignal ("M Q", Pins("D1le"), IOStandard{"LVCMOS33"))},
Subsignal ("SCK I", Pins("Cl12"), I‘:Landqldr”LV”H0533“ﬁﬁ,
Subsignal ("SCK Q", Pins("P7"), hﬂﬂddfd|“LI MOS33")
Subsignal ("SSEL I", Pins("B12"}), IJ;tdndardt“ .”OJ33”]J:
Subsignal {"SSEL 0", Pins{"B11"), IOStandard[“LU{HGEBB”]J,

testhilbert2.m
cic_filterv
sdr_periph.v
pt8211_drivew
hilbertw
Hilbertv

d
=
#
¥
¥
#
u
%
#

main.c

"RFOut", F ({"Bl14"), >t ("LVCMO533")), #B14

"X NED", Pins(["Al4™), 1 ird ("LVCMOS33")), #G13
i "TX", Pins("D15"), IO0Sts ("LVCMOS33")), #T13
Enable for BIT 1 ADC
L{"RFIn p", Pins("D14"), 1 ird ("LVDS25")), #T3
: . 'RFIn n", Pins("E15"), IO0Si d ("LVDS25")), #T3
End Enable

'PA_EN", Pins{"R16"), IO0St ("LVCMOS33")), #T3
"HP DIN®; Pins{®P15%), 1 ird ("LVCM0S33")), #T3

platform. ("/home/alberto/litex venv/litex-boards/litex boards/targets/test/sdr periph/verilog/sdr periph.v")
platform.add source{”/home/alberto/lltex _venv/litex-boards/litex boards/targets/test/sdr periph/verilog/CIC.v")
platform. ("/home/alberto/litex venv/lltex boards/litex boards/targets/test/sdr perlph/verllog/Hllbert v")
platform. ('/home/alberto/lltex_venv/lltex boards/litex boards/targets/test/sdr periph/verilog/NC0.v")
platform. ("/home/alberto/litex venv/litex-boards/litex boards/targets/test/sdr periph/verilog/pt8211 drive.v")
Non Abilitare platform.add source("/home/alberto/litex _venv/litex-boards/litex boards/targets/test/sdr _ perlph/verllog/PWH v")
platform. ("/home/alberto/litex _venv/litex- boards/litex _boards/targets/test/sdr _periph/verilog/SinCos.v")
Non Abilitare platform.add source("/home/alberto/litex _venv/litex-boards/litex boards/targets/test/sdr periph/verilog/TX SPI.v")
platform.add source{”/home/alberto/lltex _venv/litex- boards/litex _boards/targets/test/sdr periph/verilog/gowin mult.v")
platform.add source("/home/alberto/litex venv/litex-boards/litex boards/targets/test/sdr periph/verilog/gowin multl.v")
platform. ("/home/alberto/litex venv/lltex boards/litex boards/targets/test/sdr periph/verilog/dds ii.v")
platform. ("/home/alberto/litex venv/litex-boards/litex boards/targets/test/sdr periph/verilog/cic_filter.v")
.submodules.sdr periph = (platform)
("sdr_periph")

Build

def main():
from litex.build.parser import LiteXArgumentParser
parser = (platform=sipeed tang primer 20k.Platform, description="LiteX SoC on Tang Primer 20K.")
parser. ("--dock", default="standard", help="Dock version (standard (default) or lite.")
parser. ("--flash", action="store true", help="Flash Bitstream.")
parser. ("--sys-clk-freq", default=48e6, type= , help="System clock frequency.")
sdopts = parser.target group. ()
sdopts. ("--with-spi-sdcard", action="store true", help="Enable SPI-mode SDCard support.")
sdopts. ("--with-sdcard", action="store true", help="Enable SDCard support.")
parser. ("--with-spi-flash", action="store true", help="Enable SPI Flash (MMAPed).")
parser. ("--with-video-terminal", action="store true", help="Enable Video Terminal (HDMI).")
ethopts = parser.target group. ()
ethopts. ("--with-ethernet", action="store true", help="Add Ethernet.")
ethopts. ("--with-etherbone", action="store true", help="Add EtherBone.")
parser. ("--eth-ip", default="192.168.1.50", help="Etherbone IP address.")
parser. ("--remote-ip", default="192.168.1.100", help="Remote IP address of TFTP server.")
parser. ("--eth-dynamic-ip", action="store true", help="Enable dynamic Ethernet IP addresses setting.")

[litex_venv) albertogalberto-ThinkPad-X230-2: % ./sipeed _tang primer 20k soc_socmel 1.py
-sys-clk-freq=48e6 --soc-csv=soc.csT --with-etherbone --cpu-type=vexriscv --cpu-variant=lite --12-size=512 --with-spi-sdcard --eth-ip 192.16§
1.5 --build --csr-csv build/sipeed tang_primer 20k/csr.csv --doc

== 0000000OCCOOCOO0COCOCOOCOCCOCOONCOONCOCNCOCOOOCOCOCCO0NCOON000MKUsing custom platform with dock = standard

:GWINPLL:Creating GWINPLL.

:GWINPLL:Registering Single Ended ClkIn of 27.088MHz.

:GWINPLL:Creating ClkOut® sys2x_i of 96.06MHz (+-10000.00ppm).

:50C:

:50C: P O B A I P

:50C: fF - =

:50C: A A AN A
:50C: Build your hardware, easily!

_ = e e =
T

_ e e e =

:50C:

:SoC:

:50C:FPGA device : GW2A-LV1BPG256C8/I7.

:50C:System clock: 48.000MHz.

:50CBusHandler:Creating Bus Handler...
:50CBusHandler:32-bit wishbone Bus, 4.8GiB Address Space.
:5oCBusHandler:Adding Bus Regions...
:SoCBusHandler:Bus Handler .
:5o0CCSRHandler:Creating CSR Handler. ..
:50CCSRHandler:32-bit CSR Bus, 32-bit Aligned, 16.8KiB Address Space, 2048B Paging, big Ordering (Up to 32 Locations).
:50CCSRHandler:Adding CSRs. ..

:50CC5RHandler:CSR Handler .
:50CIROHandler:Creating IRO Handler...

:50CIRQHandler:IRQ Handler (up to 32 Locations).
:50CIR0Handler:Adding IROs. ..

:SoCIRQHandler:IRQ Handler

- i - - A

_ e e e =

- = =

:50C:

:SoC:

:50C:32-bit wishbone Bus, 4.8GiB Address Space.

:50C:32-bit CSR Bus, 32-bit Aligned, 16.BKiB Address Space, 20648B Paging,
:50C:IRQ Handler (up to 32 Locations).

:50C:

:SoC:Controller ctrl

:SoC:CPU wexriscw .

:50C:CPU wexriscy I0 Region @ at BxB50000086 (Size: Ox80000000).
:50CBusHandler:io8 Region at Origin: ©x80000000, Size: Ox80000000, Mode: RW, Cached: False, Linker: False.
:50C:CPU wvexriscw sram mapping from ©x061000000 to 6x16000000.
:50C:CPU wexriscw reset address to Gx00066000.

:50C:CPU wexriscy Bus Master(s).

- = =

- -

= ==

FO
0
0
0
0
0
0
0
0:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0:
0
0
0
0
0
0
0
0
0
0
0
0
0

—

B e S S S s S S S o S
25! Auto-generated by LiteX (26076b3e2) on 20625-12-18 16:38:12

I R e
4

e e
6 // CSR Includes.

E e it
8

9 #include =generated/soc.h=>
10 #ifndef GEMERATED CSR_H
11 #define GEMERATED CSR_H
12 #include =<stdint.h=
13 #include <system.h=
14 #ifndef CSR_ACCESSORS_ DEFINED
15 #include <hw/common.h=
16 #endif /* | CSR_ACCESSORS_DEFINED */
17
18 #ifndef CSR BASE
19 #defTine CSR BASE 0xTee000eeL
20 #endif /* ! CSR_BASE */
21
P R e e

26 /* MYPERIPH Registers */

27 #define CSR_MYPERIPH BASE (CSR BASE + 0x0L)

28 #define CSR MYPERIPH CSR@ ADDR (CSR BASE + ©x0L)

29 #define CSR_MYPERIPH CSRO SIZE 1

30 #define CSR_MYPERIPH CSR1_ADDR (CSR_BASE + ©x4L)

31 #define CSR_MYPERIPH CSR1 SIZE 1

32 #define CSR_MYPERIPH_CSR2 ADDR (CSR_BASE + ©x8L)

33 #define CSR_MYPERIPH_CSR2 SIZE 1

34 #define CSR_MYPERIPH_CSR3 ADDR (CSR_BASE + @xcl)

35 #define CSR_MYPERIPH CSR3 STZE 1

36 #define CSR_MYPERIPH CSR R _ADDR (CSR_BASE + ®x16L)
37 #define CSR MYPERIPH CSR R SIZE 4

38

39 /* MYPERIPH Fields */

40

41 /* SDR_PERIPH Registers */

42 #define CSR_SDR_PERIPH BASE (CSR_BASE + ©x800L)

43 #define CSR_SDR_PERIPH_CSR@ ADDR (CSR_BASE + ©x800L)
44 #define CSR_SDR_PERIPH CSRO® SIZE 1

45 #define CSR_SDR_PERIPH CSR1_ADDR (CSR_BASE + 0x804L)
46 #define CSR_SDR_PERIPH CSR1 SIZE 1

47 #define CSR _SDR PERIPH CSR2 ADDR (CSR BASE + ©x808L)
48 #define CSR SDR PERIPH CSR2 SIZE 1

49 #define CSR_SDR_PERIPH CSR3_ADDR (CSR_BASE + ©x8@cL)
50 #define CSR_SDR_PERIPH CSR3 SIZE 1

51 #define CSR_SDR_PERIPH CSR_R_ADDR (CSR_BASE + 0x816L)
52 #define CSR_SDR_PERIPH CSR_R SIZE 4

=3

275 #define CSR_UART EV_ENABLE RX OFFSET 1
276 #define CSR_UART EV_ENABLE RX SIZE 1
P77

281

282 #ifndef LITEX CSR ACCESS FUNCTIONS
283 #define LITEX CSR ACCESS FUNCTIONS 1
284 #endif

285

286 #1f LITEX CSR ACCESS FUNCTIONS

287
288 /* MYPERIPH Access Functions */ .

289 static inline uint32_t myperiph csr@ read(void) {

290 return csr read simple((CSR_BASE + 0x@L));
291 }

292 static inline void myperiph csr@ write(uint32_t v) {
293 csr_write simple(v, (CSR_BASE + 8x@L));

294 }

295 static inline uint32_t myperiph csrl read(void) {
296 return csr_read simple((CSR BASE + 0x4L));
297 }

298 static inline void myperiph_csrl write(uint32_t v) {
299 csr_write simple(v, (CSR_BASE + 8x4L));

300 }

301 static inline uint32_t myperiph csr2 read(void) {
302 return csr_read simple((CSR_BASE + 0x8L));
303 }

384 static inline void myperiph csr2 write(uint32_t v) {
305 csr_write simple(v, (CSR BASE + 8x8L));

306 }

387 static inline uint32_t myperiph csr3 read(void) {
308 return csr_read simple((CSR_BASE + @xcl));
309 }

310 static inline void myperiph csr3 write(uint32_t v) {
311 csr_write simple(v, (CSR_BASE + @xcl));

312 }

.

1[¢!/usr/bin/env python3

2

3 import time

4

5

6 from litex import RemoteClient

7

8 wb = RemoteClient(csr csv="/home/alberto/litex venv/litex-boards/litex boards/targets/test/build/sipeed tang primer 28k/csr.csv")
9 wb.open()

10

11 # Dump all CSR registers of the SoC

12 #for name, reg in wb.regs. dict .items():

13 # print("ex{:088x} : Bx{:88x} {}".format(reg.addr, reg.read(), name))
14

15 # For some reason registers need a dummy write at start
16 wb.write(OxFOO0B800, 0x0)

17 wb.write({0xFoo08804, 0x1)

18 wb.write(0xFOO0B808, 0x2)

19 wb.write{8xFoOOB80Cc, 0x3)

20

21 wb.write(@xFOOOR010, Oxa5a5a5a5)

22 wh.write(@xFoOOR014, Oxa5a5a5a5)

23 wb.write(8xFOO0R018, Oxa5a5a5a5)

24 wb.write(OxFoOOR01c, 0x5a5a5a5a)

25

26 Frequency = 7072000

27 NCOstep = ((pow(2,64) * Frequency // 48000000))
28 NCOstepHi = NCOstep => 32

29 NCOstepLo = NCOstep & oxepeooeeaffffffff

30

31

32

33 print ("NCOstep ", hex(NCOstep))

34 print ("NCOstepHi ", hex(NCOstepHi))

35 print ("NCOstepLo ", hex(NCOstepLo))

36 wb.write(0xFooeeoee, NCOstepLo)

37 wb.write(0xFoo00004, NCOstepHi)

38 wb.write{8xFOOOROE8, Oxa5a5a5a5)

39 wbh.write(OxFo0e008Cc, ©x5a5ababa)

A

prev NCOFrequency = 0;

if (NCOFrequency != prev_NCOFrequency) {
NCOIncrement = ((2,64) * NCOFrequency) / SAMPLE FREQUENCY;

NCOIncrementHi NCOIncrement == 32:
NCOIncrementLo NCOIncrement & OxQ0000000FfFffffff;

(NCOIncrementlLo);
(NCOIncrementHi)

prev_NCOFrequency = NCOFrequency;

}

if (DesiredSideband != prev DesiredSideband) {
s (DesiredSideband + ((AudioVol & OxT)

prev DesiredSideband = DesiredSideband;

void ui init(lv_display t *disp) {

/* set screen background to black */
1v.obj £ *ser = | active();
bi t sty k 1 {scr, (0x000000) ,
(scr, LV _OPA 100, 0);

LV It)ECLARE (army_panel);

lv obj t * imgl = 1 age. create(l

1 i t (imgl, &army panel);
(imgl, LV_ALIGN_CENTER, O, Bﬂ:
ize(imgl, 240, 135);

// create label
~ONT LARE(lv_font scoreboard 32);
; = (scr);
n(label, LV ALIGN OUT TOP LEFT);
t(label, LV SIZE CONTENT);
t (label, LV SIZE CONTENT);
f (label, 38 , 28); // 0Or in one function
//1lv _obj set style text font(label, &lv font montserrat 32, 0);

t(label, &lv_font scoreboard 32 , 0);
(label, 1lv col X (0xTfbfeo), 0);
r(label,)i //Enable re-coloring by commands in the text
t(label, "Hello World!");

label2 = lv label create(lv s active());
e(label2, LV _LABEL LONG MODE SCROLL CIRCULAR); //Circular scroll
(label2, 100);
; xt(label2, "START VALUE ");
bos (label2, 42 , 78);
tyle text (label2, r hex(@xffbfeo), 0};
‘ont(label2, &lv font scoreboard 32, 0);
' (label2, 4000, LV_PART_MAIN);

barl = TR

ite()
ize(barl, 38, 12);
lign(label, LV ALIGN OUT TOP LEFT);

yos(barl, 168 , 88);

tyle | coleribarl, | lor hex(0xffbf00), LV _PART_INDICATOR);

tyle bg (barl, T Lot (0x181713), LV_PART MAIN);
lue(barl, barl value, LV _ANIM OFF);

3,4,4,4,4,4,4,4,4,

2
T]

ANALOG 8-Bit 40 MSPS/60 MSPS/80 MSPS
DEVICES A/D Converter

AD3057

FEATURES FUNCTIONAL BLOCK DIAGRAM
8-Bit, Low Power ADC: 200 mW Typical

120 MHz Analog Bandwidth Vg PWRON Voo
On-Chip 2.5 V Reference and Track-and-Hold

1V p-p Analog Input Range

Single 5 V Supply Operation

5V or 3 V Logic Interface

Power-Down Mode: <10 mW

3 Performance Grades (40 MSPS, 60 MSPS, 80 MSPS)

APPLICATIONS

Digital Communications (QAM Demodulators)
RGB and YC/Composite Video Processing
Digital Data Storage Read Channels

Medical Imaging

Digital Instrumentation

GHD ENCODE

PRODUCT DESCRIPTION power-down function may be exercised to bring rotal consumption
The AD9057 is an 8-bit monolithic analog-to-digital converter to <10 mW. In power-down mode, the digital outputs are driven
optimized for low cost, low power, small size, and ease of use. to a high impedance state.

Witk S0 M3 S0 MOES ke MEFSaconds s capabﬂnly Fabricated on an advanced BiCMOS process, the AD9057 is
and full-power analog bandwidth of 120 MHz, the component is arallahlain s anaci aating I lead chiiri s all audine nackags

; 2 i 2) : available in a space-saving 20-lead shrink small outline package
ideal for applications requiring excellent dynamic performance. (20-lead SSOP) and is specified over the industrial temperature
To minimize system cost and power dissipation, the AD9057 range (—40°C to +85°C).

includes an internal 2.5 V reference and a track-and-hold (T/H)

B ; S Customers desiring multichannel digitizarion may consider the
circuit. The user must provide only a 5 V power supply and an

AD9059. a dual 8-bit. 60 MSPS monolithic based on the

A better ADC...

https://
www.youtube.com/
watch?v=]L7FPLmdea0

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24

