xcover: Cross-language test coverage with eBPF

FOSDEM 2026



The Problem

Testing functional coverage requires instrumentation
Language-specific tools (Go cover, LLVM cov) need recompilation

Can't measure coverage on production binaries



What is xcover?

Functional test coverage profiler
No binary instrumentation required
Cross-language (works with any ELF binary)

Uses kernel instrumentation via eBPF uprobes



How it works

BPF_PROG_TYPE_TRACE_UPROBE_MULTI program
Attach uprobe to each function in binary
Track which functions execute via cookies

Calculate coverage: ack funcs / total funcs * 100



One program, multiple attachments

handle_user_function ~ ONE program

|

BPF Program |
|

|

- Attach to main.foo() (cookie: 1)
|- Attach to main.bar() (cookie: 2)
|- Attach to main.baz() (cookie: 3)
L- Attach to main.qux() (cookie: 4)

T
Multiple attachments

1. Userspace passes cookies to uprobe_multi attach via libbpfgo
2. eBPF function handler notifies userspace with the cookie

3. Function identified in userspace by unique cookie



Data structures (eBPF side)

/* Ring buffer for function events (256MB) */
struct {
__uint(type, BPF_MAP_TYPE_RINGBUF);
_uint(max_entries, 1 << 28);
} events SEC(".maps");

/* Hash map to track seen functions */

struct {
__uint(type, BPF_MAP_TYPE_HASH);
_uint(max_entries, 40960);
__type(key, u64); /* Function cookie */
__type(value, u8); /* Seen marker */

} seen_funcs SEC(".maps");

/* Event sent to userspace */
struct event_t {
__u64 cookie;

¥i



Data structures (userspace side)

/* Userspace Go map: cookie - function info */
type UserTracee struct {

funcs map[cookie]funcInfo

}

type funcInfo struct {
name string // Function name
offset uint64 // Offset in ELF

Cookie generation:

for _, sym := range funcSyms {
// Hash function name to generate cookie
t.funcs[cookie(utils.Hash(sym.Name))] = funcInfo{
name: sym.Name,

offset: helpers.SymbolToOffset(exePath, sym.Name),



Uprobe multi attachment

Batch attachment of uprobes

func (t *UserTracer) attachProbe(ctx context.Context) {
batchSize := bpfUprobeMultiAttachMaxOffsets
offsets := t.tracee.GetFuncOffsets()

cookies := t.tracee.GetFuncCookies()
for 1 := 0; 1 < len(offsets); i += batchSize {
end := 1 + batchSize

if end > len(offsets) {
end = len(offsets)
¥
t.probe.Attach(ctx, t.tracee.exePath,
offsets[i:end], cookies[i:end])



Uprobe multi support in libbpfgo

Benefits:

e Single syscall attaches thousands of uprobes
e No perf events, no FD per uprobe

Enables efficient batch attachment from Go

github.com/aquasecurity/libbpfgo/pull/486



The eBPF program

SEC("uprobe/handle_user_function")
int handle_user_function(struct pt_regs *ctx) {
__u64 cookie = bpf_get_attach_cookie(ctx);

/* Skip if already reported */
if (bpf_map_lookup_elem(&seen_funcs, &cookie))
return 0;

/* Mark as seen */
u8 seen = 1;
bpf_map_update_elem(&seen_funcs, &cookie, &seen, BPF_ANY);

/* Send event to userspace */
struct event_t *event = bpf_ringbuf_reserve(&events,
sizeof(struct event_t), 0);
if (event) {
event->cookie = cookie;
bpf_ringbuf_submit(event, ringbuffer_flags);
b

return 0,



Userspace processing

func (t *UserTracer) handleEvent(data []byte) {
var event Event
binary.Read(bytes.NewBuffer(data), binary.LittleEndian, &event)

// Lookup function by cookie from ELF symbols

fun, ok := t.tracee.funcs[event.Cookie]
if lok {

return
}

// Track acknowledged functions (deduplicate)
if _, ok := t.ack.Load(event.Cookie); !ok {
if t.verbose {
fmt.Fprintln(t.writer, fun.name)

b
t.ack.Store(event.Cookie, struct{}{})

11



CLI usage example

$ xcover run --detach --path /path/to/bin --exclude "Aruntime.|Ainternal"
$ xcover wait

xcover 1is ready

$ /path/to/bin test1

$ /path/to/bin test2

$ /path/to/bin test3

$ xcover stop

xcover 1s stopped

$ cat xcover-report.json | jq .cov_by_func

89.9786897

12



Implementation challenges

Symbolization from ELF symbol tables
Stripped binaries need debug info (e.g., .gopcintab for GO)
Ring buffer sizing for high-frequency functions

Kernel limit: ~1M offsets per uprobe_multi attach

13



Thank you

e github.com/maxgio92/xcover

e github.com/aquasecurity/libbpfgo/pull/486

e docs.ebpf.io/ebpf-library/libbpf/userspace/bpf_program__attach_uprobe_multi
e lwn.net/Articles/930066

e kernel.org/doc/html/latest/trace/uprobetracer.html

e github.com/torvalds/linux/blob/1f97d9dcf53649c41¢33227b345a36902cbb08ad/
kernel/trace/bpf_trace.c#L43

14



