
xcover: Cross-language test coverage with eBPF

FOSDEM 2026

1

The Problem

Testing functional coverage requires instrumentation

Language-specific tools (Go cover, LLVM cov) need recompilation

Can't measure coverage on production binaries

2

What is xcover?

Functional test coverage profiler

No binary instrumentation required

Cross-language (works with any ELF binary)

Uses kernel instrumentation via eBPF uprobes

3

How it works

BPF_PROG_TYPE_TRACE_UPROBE_MULTI program

Attach uprobe to each function in binary

Track which functions execute via cookies

Calculate coverage: ack_funcs / total_funcs * 100

4

One program, multiple attachments

┌──────────────────────────────────────┐
│ BPF Program │
│ handle_user_function │ ← ONE program
└────────────────┬─────────────────────┘
 │
 ├─ Attach to main.foo() (cookie: 1)
 ├─ Attach to main.bar() (cookie: 2)
 ├─ Attach to main.baz() (cookie: 3)
 └─ Attach to main.qux() (cookie: 4)
 ↑
 Multiple attachments

1. Userspace passes cookies to uprobe_multi attach via libbpfgo
2. eBPF function handler notifies userspace with the cookie
3. Function identified in userspace by unique cookie

5

Data structures (eBPF side)

/* Ring buffer for function events (256MB) */
struct {
 __uint(type, BPF_MAP_TYPE_RINGBUF);
 __uint(max_entries, 1 << 28);
} events SEC(".maps");

/* Hash map to track seen functions */
struct {
 __uint(type, BPF_MAP_TYPE_HASH);
 __uint(max_entries, 40960);
 __type(key, u64); /* Function cookie */
 __type(value, u8); /* Seen marker */
} seen_funcs SEC(".maps");

/* Event sent to userspace */
struct event_t {
 __u64 cookie;
};

6

Data structures (userspace side)

/* Userspace Go map: cookie → function info */
type UserTracee struct {
 funcs map[cookie]funcInfo
}

type funcInfo struct {
 name string // Function name
 offset uint64 // Offset in ELF
}

Cookie generation:

for _, sym := range funcSyms {
// Hash function name to generate cookie

 t.funcs[cookie(utils.Hash(sym.Name))] = funcInfo{
 name: sym.Name,
 offset: helpers.SymbolToOffset(exePath, sym.Name),
 }
}

At attach: Pass cookies array to kernel
7

Uprobe multi attachment

Batch attachment of uprobes

func (t *UserTracer) attachProbe(ctx context.Context) {
 batchSize := bpfUprobeMultiAttachMaxOffsets
 offsets := t.tracee.GetFuncOffsets()
 cookies := t.tracee.GetFuncCookies()

for i := 0; i < len(offsets); i += batchSize {
 end := i + batchSize

if end > len(offsets) {
 end = len(offsets)
 }
 t.probe.Attach(ctx, t.tracee.exePath,
 offsets[i:end], cookies[i:end])
 }
}

8

Uprobe multi support in libbpfgo

Benefits:

• Single syscall attaches thousands of uprobes
• No perf events, no FD per uprobe

Enables efficient batch attachment from Go

github.com/aquasecurity/libbpfgo/pull/486

9

The eBPF program

SEC("uprobe/handle_user_function")
int handle_user_function(struct pt_regs *ctx) {
 __u64 cookie = bpf_get_attach_cookie(ctx);

/* Skip if already reported */
if (bpf_map_lookup_elem(&seen_funcs, &cookie))

return 0;

/* Mark as seen */
 u8 seen = 1;
 bpf_map_update_elem(&seen_funcs, &cookie, &seen, BPF_ANY);

/* Send event to userspace */
struct event_t *event = bpf_ringbuf_reserve(&events,

sizeof(struct event_t), 0);
if (event) {

 event->cookie = cookie;
 bpf_ringbuf_submit(event, ringbuffer_flags);
 }

return 0;
} 10

Userspace processing

func (t *UserTracer) handleEvent(data []byte) {
var event Event

 binary.Read(bytes.NewBuffer(data), binary.LittleEndian, &event)

// Lookup function by cookie from ELF symbols
 fun, ok := t.tracee.funcs[event.Cookie]

if !ok {
return

 }

// Track acknowledged functions (deduplicate)
if _, ok := t.ack.Load(event.Cookie); !ok {

if t.verbose {
 fmt.Fprintln(t.writer, fun.name)
 }
 t.ack.Store(event.Cookie, struct{}{})
 }
}

11

CLI usage example

$ xcover run --detach --path /path/to/bin --exclude "^runtime.|^internal"
$ xcover wait
xcover is ready
$ /path/to/bin test1
$ /path/to/bin test2
$ /path/to/bin test3
$ xcover stop
xcover is stopped
$ cat xcover-report.json | jq .cov_by_func
89.9786897

12

Implementation challenges

Symbolization from ELF symbol tables

Stripped binaries need debug info (e.g., .gopclntab for Go)

Ring buffer sizing for high-frequency functions

Kernel limit: ~1M offsets per uprobe_multi attach

13

Thank you

• github.com/maxgio92/xcover
• github.com/aquasecurity/libbpfgo/pull/486
• docs.ebpf.io/ebpf-library/libbpf/userspace/bpf_program__attach_uprobe_multi
• lwn.net/Articles/930066
• kernel.org/doc/html/latest/trace/uprobetracer.html
• github.com/torvalds/linux/blob/1f97d9dcf53649c41c33227b345a36902cbb08ad/

kernel/trace/bpf_trace.c#L43

14

